Decision Trees - Preliminaries

Prof. Dan A. Simovici

UMB
1 Decision Trees

2 Equivalence Relations

3 Partitions

4 Trace of a Partition on a Set
Decision trees learning is one of the most widely used for approximative learning of discrete-valued functions that is robust relative to noise in data.
Consider a table that shows the decision of playing tennis depending on certain climatic factors. The attributes and their domains are shown below:

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outlook</td>
<td>{sunny, overcast, rain}</td>
</tr>
<tr>
<td>Temperature</td>
<td>{hot, mild, cool}</td>
</tr>
<tr>
<td>Humidity</td>
<td>{normal, high}</td>
</tr>
<tr>
<td>Wind</td>
<td>{weak, strong}</td>
</tr>
</tbody>
</table>

The decision attribute is PlayTennis; this attribute has the domain {yes, no}.
The data set is shown below:

<table>
<thead>
<tr>
<th>Outlook</th>
<th>Temperature</th>
<th>Humidity</th>
<th>Wind</th>
<th>PlayTennis</th>
</tr>
</thead>
<tbody>
<tr>
<td>sunny</td>
<td>hot</td>
<td>high</td>
<td>weak</td>
<td>no</td>
</tr>
<tr>
<td>sunny</td>
<td>hot</td>
<td>high</td>
<td>strong</td>
<td>no</td>
</tr>
<tr>
<td>overcast</td>
<td>hot</td>
<td>high</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>rain</td>
<td>mild</td>
<td>high</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>rain</td>
<td>cool</td>
<td>normal</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>rain</td>
<td>cool</td>
<td>normal</td>
<td>strong</td>
<td>no</td>
</tr>
<tr>
<td>overcast</td>
<td>cool</td>
<td>normal</td>
<td>strong</td>
<td>yes</td>
</tr>
<tr>
<td>sunny</td>
<td>mild</td>
<td>high</td>
<td>weak</td>
<td>no</td>
</tr>
<tr>
<td>sunny</td>
<td>cool</td>
<td>normal</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>rain</td>
<td>mild</td>
<td>normal</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>sunny</td>
<td>mild</td>
<td>normal</td>
<td>strong</td>
<td>yes</td>
</tr>
<tr>
<td>overcast</td>
<td>mild</td>
<td>high</td>
<td>strong</td>
<td>yes</td>
</tr>
<tr>
<td>rain</td>
<td>hot</td>
<td>normal</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>rain</td>
<td>mild</td>
<td>high</td>
<td>strong</td>
<td>no</td>
</tr>
</tbody>
</table>

The goal of a decision tree is to formulate a rule (as simple as possible) that will allow us to decide when to play tennis as a function of climate factors.
Equivalence relations and partitions are essential instruments in the study of decision trees.

Definition

An *equivalence relation* on a set S is a relation ρ that is reflexive, symmetric, and transitive.
This means that

- \((x, x) \in \rho\) for every \(x \in S\);
- \((x, y) \in \rho\) if and only if \((y, x) \in \rho\);
- \((x, y) \in \rho\) and \((y, z) \in \rho\) imply \((x, z) \in \rho\).
Example

Let U and V be two sets, and consider a function $f : U \rightarrow V$. The relation $\ker(f) \subseteq U \times U$, called the kernel of f, is given by

$$\ker(f) = \{(u, u') \in U \times U \mid f(u) = f(u')\}.$$

In other words, $(u, u') \in \ker(f)$ if f maps both u and u' into the same element of V.
Equivalence Relations

\[S \rightarrow T \]

\[f \rightarrow \ldots \rightarrow t \]
Example

Let \(m \in \mathbb{N} \) be a positive natural number. Define the function \(f_m : \mathbb{Z} \to \mathbb{N} \) by \(f_m(n) = r \) if \(r \) is the remainder of the division of \(n \) by \(m \). The range of the function \(f_m \) is the set \(\{0, \ldots, m - 1\} \).

The relation \(\ker(f_m) \) is usually denoted by \(\equiv_m \). We have \((p, q) \in \equiv_m\) if and only if \(p - q \) is divisible by \(m \); if \((p, q) \in \equiv_m\), we also write \(p \equiv q \pmod{m} \).
Definition

Let ρ be an equivalence on a set U and let $u \in U$. The *equivalence class* of u is the set $[u]_\rho$, given by

$$[u]_\rho = \{ y \in U \mid (u, y) \in \rho \}.$$

When there is no risk of confusion, we write simply $[u]$ instead of $[u]_\rho$.
Note that an equivalence class \([u]\) of an element \(u\) is never empty since \(u \in [u]\) because of the reflexivity of \(\rho\).

Theorem

Let \(\rho\) be an equivalence on a set \(U\) and let \(u, v \in U\). The following three statements are equivalent:

1. \((u, v) \in \rho;\)
2. \([u] = [v];\)
3. \([u] \cap [v] \neq \emptyset.\)
Definition

Let S be a set and let $\rho \in \text{EQ}(S)$. A subset U of S is ρ-saturated if it equals a union of equivalence classes of ρ.

It is easy to see that U is a ρ-saturated set if and only if $x \in U$ and $(x, y) \in \rho$ imply $y \in U$. It is clear that both \emptyset and S are ρ-saturated sets.
Definition

Let S be a nonempty set. A *partition* of S is a nonempty collection

$$\pi = \{ B_i \mid i \in I \}$$

of nonempty subsets of S, such that $\bigcup \{ B_i \mid i \in I \} = S$, and $B_i \cap B_j = \emptyset$ for every $i, j \in I$ such that $i \neq j$.

Each set B_i of π is a *block* of the partition π.

The set of partitions of a set S is denoted by $\text{PART}(S)$. The partition of S that consists of all singletons of the form $\{s\}$ with $s \in S$ will be denoted by α_S; the partition that consists of the set S itself will be denoted by ω_S.
Example

For the two-element set $S = \{a, b\}$, there are two partitions: the partition $\alpha_S = \{\{a\}, \{b\}\}$ and the partition $\omega_S = \{\{a, b\}\}$.

For the one-element set $T = \{c\}$, there exists only one partition, $\alpha_T = \omega_T = \{\{t\}\}$.
Example

A complete list of partitions of a set $S = \{a, b, c\}$ consists of

$$\pi_0 = \{\{a\}, \{b\}, \{c\}\}, \quad \pi_1 = \{\{a, b\}, \{c\}\},$$
$$\pi_2 = \{\{a\}, \{b, c\}\}, \quad \pi_3 = \{\{a, c\}, \{b\}\},$$
$$\pi_4 = \{\{a, b, c\}\}.$$

Clearly, $\pi_0 = \alpha_S$ and $\pi_4 = \omega_S$.
Definition

Let S be a set and let $\pi, \sigma \in \text{PART}(S)$. The partition π is \term{finer} than the partition σ if every block C of σ is a union of blocks of π. This is denoted by $\pi \leq \sigma$.
Theorem

Let $\pi = \{B_i \mid i \in I\}$ and $\sigma = \{C_j \mid j \in J\}$ be two partitions of a set S. For $\pi, \sigma \in \text{PART}(S)$, we have $\pi \leq \sigma$ if and only if for every block $B_i \in \pi$ there exists a block $C_j \in \sigma$ such that $B_i \subseteq C_j$.
Proof

If \(\pi \leq \sigma \), then it is clear for every block \(B_i \in \pi \) there exists a block \(C_j \in \sigma \) such that \(B_i \subseteq C_j \).

Conversely, suppose that for every block \(B_i \in \pi \) there exists a block \(C_j \in \sigma \) such that \(B_i \subseteq C_j \). Since two distinct blocks of \(\sigma \) are disjoint, it follows that for any block \(B_i \) of \(\pi \), the block \(C_j \) of \(\sigma \) that contains \(B_i \) is unique.

Therefore, if a block \(B \) of \(\pi \) intersects a block \(C \) of \(\sigma \), then \(B \subseteq C \).

Let \(Q = \bigcup \{B_i \in \pi \mid B_i \subseteq C_j\} \). Clearly, \(Q \subseteq C_j \). Suppose that there exists \(x \in C_j - Q \). Then, there is a block \(B_\ell \in \pi \) such that \(x \in B_\ell \cap C_j \), which implies that \(B_\ell \subseteq C_j \). This means that \(x \in B_\ell \subseteq C \), which contradicts the assumption we made about \(x \). Consequently, \(C_j = Q \), which concludes the argument.
Note that $\alpha_S \leq \pi \leq \omega_S$ for every $\pi \in \text{PART}(S)$.

Two equivalence classes either coincide or are disjoint. Therefore, starting from an equivalence $\rho \in \text{EQ}(U)$, we can build a partition of the set U.

Definition

The *quotient set* of the set U with respect to the equivalence ρ is the partition U/ρ, where

$$U/\rho = \{ [u]_\rho \mid u \in U \}.$$

An alternative notation for the partition U/ρ is π_ρ.

Theorem

Let $\pi = \{ B_i \mid i \in I \}$ be a partition of the set U. Define the relation ρ_π by $(x, y) \in \rho_\pi$ if there is a set $B_i \in \pi$ such that $\{x, y\} \subseteq B_i$. The relation ρ_π is an equivalence.
Proof

Let B_i be the block of the partition that contains u. Since $\{u\} \subseteq B_i$, we have $(u, u) \in \rho_{\pi}$ for any $u \in U$, which shows that ρ_{π} is reflexive.

The relation ρ_{π} is clearly symmetric. To prove the transitivity of ρ_{π}, consider $(u, v), (v, w) \in \rho_{\pi}$. We have the blocks B_i and B_j such that $\{u, v\} \subseteq B_i$ and $\{v, w\} \subseteq B_j$. Since $v \in B_i \cap B_j$, we obtain $B_i = B_j$ by the definition of partitions; hence, $(u, w) \in \rho_{\pi}$.
Example

Let $f : S \rightarrow T$ be a function. For $t \in T$ define the set $B_t = \{x \in S \mid f(x) = t\}$. Then, the collection of sets $\{B_t \mid t \in T \text{ and } B_t \neq \emptyset\}$ is a partition of S that corresponds to the equivalence $\ker(f)$.
Let T be a set and let $\pi = \{B_1, \ldots, B_k\}$ be a partition of T. If S is a subset of T, the trace of π on the set S is the collection of sets:

$$\pi_S = \{B_i \cap S \mid B_i \in \pi \text{ and } B_i \cap S \neq S\}.$$

Note that π_S is a partition of S.
Example
We have \(S = \{5, 6, 7, 12, 13, 14\} \) and \(\pi = \{B_1, B_2, B_3, B_4, B_5\} \). The trace of \(\pi \) on \(S \) denoted by \(\pi_S \) consists of

\[
B_2 \cap S = \{12\}, \\
B_3 \cap S = \{13, 14\}, \\
B_5 \cap S = \{5, 6, 7\}.
\]