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Clustering Quality

The quality of clusterings can be evaluated using criteria that are
unrelated to the data set that is subjected to clustering (external criteria),
or criteria that are derived from the data set (internal criteria).

Typical internal criteria of clustering quality formalize the goal of
attaining high intra-cluster similarity and low inter-cluster similarity.
Good scores on an internal criterion do not necessarily translate into
good effectiveness in an application.

External validation criteria are useful when a “ground truth” is known
(as it is typically the case for classification problems) and we seek to
evaluate the appropriateness of a clustering algorithm for separating
objects into clusters that conform more or less to the existing
classification.
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Clustering Quality

The ground truth is captured by a reference partition τ = {T1, . . . ,Tr} of
data set D (also known as the ground-truth partition). We discuss
modalities of comparing a clustering κ = (C1, . . . ,Cm) with the ground
truth partition.
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External Measures

Definition

Let τ and κ be two partitions of a data set D.
The contingency matrix of τ and κ is the matrix G (τ, κ) ∈ Rr×m, where τ
contains r reference blocks, κ contains m clusters, and gij = |Ti ∩ Gj | for
1 6 i 6 r and 1 6 j 6 m.
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External Measures

Suppose that the classes of objects of a data set D relative to the
partitions τ and κ are described respectively by the R -vectors t and k

whose length is n = |D|.
Then, the contingency matrix G (τ, κ) of partitions τ and κ can be
obtained by using table(t,k).
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External Measures

Example

Let D be a data set with |D| = 12 and let τ and κ be two partitions of D:

τ = {{d1, d6, d10}, {d3, d4, d7, d8, d12}, {d2, d5, d9, d11}},
κ = {{d4, d6, d10, d12}, {d1, d3, d8}, {d2, d5, d7, d9, d11}}.

The R -vectors that describe these partitions are:

t <- c(1,3,2,2,3,1,2,2,3,1,3,2)

k <- c(2,3,2,1,3,1,3,2,3,1,3,1).

A call to the function table returns the contingency table of partitions:

> table(t,k)

k

t 1 2 3

1 2 1 0

2 2 2 1

3 0 0 4

The row sums of this matrix equal the sizes of the blocks of τ , while the
column sums equal the sizes of the blocks of κ.
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External Measures

A cluster Ci is τ -pure if it is included in a block Tj of the reference
partition τ .
We denote by Tij the largest block of the reference partition τ that has
the largest intersection with the cluster Cj .
Next we introduce the notions of precision and recall for a cluster.

Definition

The precision of a cluster Cj is defined as

precisionτ (Cj) =
1

|Cj |
·max{|Ti ∩ Cj | | 1 6 j 6 r},

and it measures the largest fraction of the cluster in a block of the
reference partition.
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External Measures

Definition

The precision of clustering κ is the average precision of the clusters
C1, . . . ,Cm, that is,

precisionτ (κ) =
m∑
j=1

|Cj |
|D|

precisionτ (Cj)

=
1

|D|

m∑
j=1

max{|Ti ∩ Cj | | 1 6 i 6 r}.

If all clusters of κ are pure, then precisionτ (κ) = 1.

9 / 47



External Measures

Definition

The recall of cluster Cj is defined as

recallτ (Cj) =
1

|Tij |
|Tij ∩ Cj |

and measures the fraction of the largest reference block that has the
largest intersection with Cj which is shared with Ci .
The F-measure of cluster Cj is the harmonic average of its precision and
recall:

F (Cj) =
2

1
precisionτ (Cj )

+ 1
recallτ (Cj )

= 2
nij j

nj + |Tij |
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External Measures

The F -measure F (κ) for the clustering κ is the mean of the F -measures
for the clusters:

F (κ) =
1

m

m∑
j=1

F (Cj).

Higher values for the F -measure indicate a better fit between the reference
partition τ and the clustering κ.
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External Measures

Example

Let τ and κ be the partitions introduced on Slide 7, where
τ = {T1,T2,T3}, κ = {C1,C2,C3} and

T1 = {d1, d6, d10} C1 = {d4, d6, d10, d12},
T2 = {d3, d4, d7, d8, d12} C2 = {d1, d3, d8},
T3 = {d2, d5, d9, d11} C3 = {d2, d5, d7, d9, d11}.

Note that contingency matrix G (τ, σ) can be written as

G =

|T1 ∩ C1| |T1 ∩ C2| |T1 ∩ C3|
|T2 ∩ C1| |T2 ∩ C2| |T2 ∩ C3|
|T3 ∩ C1| |T3 ∩ C2| |T3 ∩ C3|

 =

2 1 0
2 2 1
0 0 4


Thus, the blocks of the reference partitions that have the largest
intersection with the clusters C1,C2 and C3 are T2, again T2 and T3,
respectively.
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External Measures

The precision of the clusters of κ relative to τ are

precisionτ (C1) =
2

4
, precisionτ (C2) =

2

3
, precisionτ (C3) =

4

5
,

so C3 has the largest precision.
The precision of κ is

precisionτ (κ) =
m∑
j=1

|Cj |
|D|

precisionτ (Cj)

=
4

12

2

4
+

3

12

2

3
+

5

12

4

5
=

2

3
.
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External Measures

The recalls of the clusters are

recallτ (C1) =
2

5
, recallτ (C2) =

2

5
, recallτ (C3) =

4

4
.

The F -score of C1 is

F (C1) =
2precision(C1) · recall(C1)

precision(C1) + recall(C1)
=

4

9
.

Similarly, F (C2) = 1
2 and F (C3) = 8

9 . The F-score for the cluster κ is the
average of these scores, that is, 1

3(49 + 1
2 + 8

9) = 11
18 .

A good score is usually close to 1.
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Pairwise Measures

For a partition π ∈ PART(D) we write x ≡π y if there is a block B ∈ π
such that {x , y} ⊆ B. It is immediate that “≡π is an equivalence relation.
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Pairwise Measures

Let τ = {T1, . . . ,Tr} be a reference partition of data set D (also known
as the ground-truth partition) and let κ = (C1, . . . ,Cm) be a clustering.
The pairs of elements of D can be classified into four classes relative to
the partitions τ and σ. Namely, a pair (x , y) with x 6= y is

i a true positive pair if x ≡τ y and x ≡κ y ;

ii a true negative pair if x 6≡τ y and x 6≡κ y ;

iii a false positive pair if x 6≡τ y and x ≡κ y ;

iv a false negative pair if x ≡τ y and x 6≡κ y .

The number of true positive pairs is denoted by TP(τ, κ), that of true
negative pairs is TN(τ, κ), the number of false positive pairs is FP(τ, κ),
and the number of false negative pairs is FN(τ, κ). All there values can be
computed in O(rm) time.
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Pairwise Measures

For |D| = n there are
(n
2

)
distinct pairs, hence(

n

2

)
= TP(τ, κ) + TN(τ, κ) + FP(τ, κ) + FN(τ, κ).

Let G (τ, κ) = (gij) ∈ Rr×m be the contingency matrix for the reference
partition τ = {T1, . . . ,Tr} and clustering κ = {C1, . . . ,Cm}. We
introduce the partial sums:

gi · =
m∑
j=1

gij = |Ti |,

g·j =
r∑

i=1

gij = |Cj |,

g·· =
r∑

i=1

m∑
j=1

gij = |D|,

for 1 6 i 6 r and 1 6 j 6 m.
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Pairwise Measures

These notations are summarized by the following table:

part. κ
class C1 C2 · · · Cm sums
T1 g11 g12 · · · g1m g1·
T2 g21 g22 · · · g2m g2·

part. τ
...

...
... · · ·

...
...

Tr gr1 gr2 · · · grm gr ·
sums g·1 g·2 · · · g·m g·· = |D|

Since the contingency matrix G (τ, κ) can be computed in linear time it is
possible to compute efficiently the measures introduced above.
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Pairwise Measures

We have

TP(τ, κ) =
r∑

i=1

m∑
j=1

(
gij
2

)

=
1

2

 r∑
i=1

m∑
j=1

g2
ij −

r∑
i=1

m∑
j=1

gij


=

1

2

 r∑
i=1

m∑
j=1

g2
ij − n

 .

The number of pairs that belong to the same block of the reference
partition is

∑r
i=1

(gi·
2

)
. If we eliminate from these pairs the true positive

pairs we obtain the number of false negative pairs:

FN(τ, κ) =
r∑

i=1

(
gi ·
2

)
− TP(τ, κ)

=
1

2

r∑
i=1

g2
i · −

1

2

r∑
i=1

gi · −
1

2

r∑
i=1

m∑
j=1

g2
ij +

n

2

=
1

2

 r∑
i=1

g2
i · −

r∑
i=1

m∑
j=1

g2
ij


because

∑r
i=1 gi · = n.
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Pairwise Measures

The number of false positive pairs is obtained by subtracting from the
number of pairs that belong to the same cluster the number of true
positive pairs:

FP(τ, κ) =
m∑
j=1

(
g·j
2

)
− TP(τ, κ)

=
1

2

m∑
j=1

g2
·j −

1

2

m∑
j=1

g·j −
1

2

r∑
i=1

m∑
j=1

g2
ij +

n

2

=
1

2

 m∑
j=1

g2
·j −

r∑
i=1

m∑
j=1

g2
ij


because

∑m
j=1 g·j = n.
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Pairwise Measures

The number of true negative pairs is

TN(τ, κ) =
1

2

g2
·· −

r∑
i=1

g2
i · −

m∑
j=1

g2
·j +

r∑
i=1

m∑
j=1

g2
ij

 .

21 / 47



Pairwise Measures

These numbers can be used, in turn, to compute efficiently several
numerical characteristics of the pair (τ, κ).
Let ρτ and ρκ the equivalences that correspond to the partitions τ and κ.
These equivalences are sets of pairs in D × D. Therefore, it makes sense
to consider their Jaccard coefficient:

J(ρτ , ρκ) =
|ρτ ∩ ρκ|
|ρτ ∪ ρκ|

,

which evaluates the similarity between the reference partition τ and the
clustering κ. It is clear that

J(ρτ , ρκ) =
|TP(τ, κ)|

|TP(τ, κ)|+ |FN(τ, κ)|+ |FP(τ, κ)|
.
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Pairwise Measures

The Rand coefficient is

R(τ, κ) =
|TP(τ, κ)|+ |TN(τ, κ)|(n

2

) ,

and represents the fraction of objects where the reference partition and the
clustering agree. When R(τ, κ) = 1 the two partitions are identical.
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Pairwise Measures

The notions of precision and recall previously introduced are reformulated
for pairs of objects.
The precision for τ and κ is

precision(τ, κ) =
TP(τ, κ)

TP(τ, κ) + FP(τ, κ)

and reflects the size of the set of correctly classified pairs of objects vs.
the size of the sets of pairs of objects that reside in the same cluster. We
have precision(τ, κ) = 1 if and only if no false positive pairs.
The recall for τ and κ is

recall(τ, κ) =
TP(τ, κ)

TP(τ, κ) + FN(τ, κ)

Recall evaluates the fraction of correctly classiffied pairs of objects
compared to all pairs of objects that inhabit the same block of reference
partition.
We have recall(τ, κ) = 1 if FN(τ, κ) = 0, that is, if there are no pairs in ρτ
whose components belong to two distinct clusters.
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Pairwise Measures

The Fowlkes-Mallows coefficient FM(τ, κ) is the geometric average of recall
and precision, that is,

FM(τ, κ) =
√

precision(τ, κ) · recall(τ, κ)

=
TP(τ, κ)√

(TP(τ, κ) + FP(τ, κ))(TP(τ, κ) + FN(τ, κ))
.
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Internal Criteria

Definition

Let (S , d) be a metric space. A dispersion measure on (S , d) is a function
s : P(S) −→ R>0 such that s(C ) = 0 if and only if |C | = 1.

Example

The function sse is a dispersion measure.
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Internal Criteria

Example

The function δ : P(S) −→ R>0 defined by

δ(C ) =

∑
{d(x , y) | x , y ∈ C , x 6= y}

|C |(|C | − 1)

yields the mean distance between all pairs of objects in C . It is immediate
to see that δ(C ) = 0 if and only if |C | = 1, so δ is a dispersion measure.
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Internal Criteria

Example

The diameter diam : P(S) −→ R>0 is a dispersion function for obvious
reasons.
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Internal Criteria

Definition

For a clustering κ = {C1, . . . ,Ck} let

si be the dispersion of Ci ,

mij be the distance between the representatives ci and cj of the
clusters Ci and Cj (usually chosen as the centroids of the clusters Ci

and Cj) for 1 6 i , j 6 k .

A cluster similarity measure r : R3
>0 −→ R̂ satisfies the following

conditions:

1 r(si , sj ,mij) > 0;

2 r(si , sj ,mij) = r(sj , si ,mij);

3 r(si , sj ,mij) = 0 if and only if si = sj ;

4 if sj = sk and mij < mik , then r(si , sj ,mij) > r(si , sk ,mik);

5 if mik = mij and sj > sk , then r(si , sj ,mij) > r(si , sk ,mik).
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Internal Criteria

The previous definition means that:

when the distance between cluster centers increases while their
dispersions remain constant, the similarity of the clusters decreases;

if the distances between cluster centroids remains constant while the
dispersion increase, the similarity increases.
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Internal Criteria

Example

Consider the function r given by

r(s, s ′,m) =
s + s ′

m

for s, s ′,m ∈ R>0. It is immediate that r satifies the conditions imposed
on similarity measures.
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Internal Criteria

Definition

Let κ = {C1, . . . ,Ck} be a clustering in a metric space (S , d). The
Davies-Bouldin index of κ is the clustering average similarity measure rκ
given by

rκ =
1

k

k∑
i=1

max{rij | 1 6 j 6 k}.
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Internal Criteria

The “best” clustering is the one that minimizes the average similarity
measure.

Example

Consider a data set in R2 that consists of four points,

v1 =

(
2
1

)
, v2 =

(
2
3

)
, v3 =

(
8
1

)
, v4 =

(
8
3

)
grouped into two clusterings:

κ = {C1,C2}, κ′ = {C ′1,C2},

where
C1 = {v1, v2},C2 = {v3, v4},

and
C ′1 = {{v1, v3},C ′2 = {v2, v4}.
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Internal Criteria

v1

v2

v3

v4

2 8

1

3

C1 C2

C ′1

C ′2
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Internal Criteria

The centroids of the clusters are:

cluster C1 C2 C ′1 C ′2

centroid

(
2
2

) (
8
2

) (
5
1

) (
5
3

)
We choose the dispersion measure as the sum of the square errors.
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Internal Criteria

We choose the dispersion measure as the sum of the square errors. Its
values for the clusters shown in Slide 34 are

sse(C1) = 2, sse(C2) = 2, sse(C ′1) = 18, sse(C ′2) = 18.

Thus, r12 = 0.8 and r ′12 = 18, hence rκ = 0.8 and rκ′ = 18, giving the
edge to κ.
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Internal Criteria

A related family of cluster quality indices is known as Dunn quality indices.
For a clustering κ = {C1, . . . ,Ck} a Dunn index is a function

∆(κ) =
min16i<j6k D(Ci ,Cj)

max16j6k s(Cj)
,

where s is a dispersion measure, and D(Ci ,Cj) is an intercluster
dissimilarity (which can be the least distance between two points in
different clusters, the maximum distance between two such points, or the
distance between the centroids of the clusters, etc.). Note that if a cluster
has a high value of the dispersion this impacts negatively the value of the
index due to the presence of max in the denominator.
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Internal Criteria

The Silhouette Coefficient

Let κ = {C1, . . . ,Ck} be a clustering on a dissimilarity space (S , d), where
k > 1. The silhouette coefficient of an object compares the similarity
between an object and other objects located in the same cluster, and the
similarity of the same object to objects located in other clusters.
Suppose that x ∈ S is assigned to the cluster Cp and {x} ⊂ Cp. Define

a(x) =
1

|Cp|
∑
{d(x , u) | u ∈ Cp − {x}}.

For r 6= p define d(x ,Cr ) = 1
|Cr |
∑
{d(x , y) | y ∈ Cr} and

b(x) = min{d(x ,Cr ) | 1 6 r 6 k and r 6= p}.

The cluster Cr that defines b(x), that is, b(x) = d(x ,Cr ) is the neighbour
of x and represents the second-best choice for object x .
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Internal Criteria

Definition

The silhouette of x is the number s(x) defined as

s(x) =
b(x)− a(x)

max{a(x), b(x)}
=


1− a(x)

b(x) if a(x) < b(x),

0 if a(x) = b(x),
b(x)
a(x) − 1 if a(x) > b(x).

If Cp = {x} we define s(x) = 0.
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Internal Criteria

Note that −1 6 s(x) 6 1. When s(x) is close to 1, the within
dissimilarity a(x) is much smaller than the smallest between
dissimilarity b(x). Therefore, x is well-classified; the second
best-choice of a cluster for x is not nearly as closes as the actual
choice.

When a(x) is close to 0, then a(x) and b(x) are about the same,
hence it not clear whether x has been correctly assigned to Cp.

When a(x) is close to −1, then a(x) is larger than b(x), so x is closer
to some cluster other than Cp; we say that x has been missassigned.
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Internal Criteria

ir <- iris[,1:4]

Next, we apply the pam algorithm of the package clust:

pamc <- pam(ir,3)

The plot of the pamc object contains two subplots: the clusplot, which
we discussed previously and the sihouette plot. These plots can be
obtained by writing

> pdf("pamc-clusplot.pdf")

> plot(pamc,which.plots=1)

> dev.off()

and

> pdf("pamc-silh.pdf")

> plot(pamc,which.plots=2)

> dev.off()
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Internal Criteria

The plot which is generated is determined by the parameter which.plots
(1 for clusplot and 2 for the silhouette plot.
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Internal Criteria

The clusplot graph
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Internal Criteria

The the silhouette plot

Silhouette width si

0.0 0.2 0.4 0.6 0.8 1.0

Silhouette plot of pam(x = ir, k = 3)

Average silhouette width :  0.55

n = 150 3  clusters  Cj

j :  nj | avei∈Cj  si

1 :   50  |  0.80

2 :   62  |  0.42

3 :   38  |  0.45
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Internal Criteria

Example

The silhouette function can be used to determine the best number of
clusters. Consider, the following example provided in the R
documentation of the txpam function for a uni-dimensional set of objects
defined by

x <- c(rnorm(50),rnorm(50,mean=5),rnorm(50,mean=15))

and define an array w as

w <- numeric(20)
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Internal Criteria

The following fragment of R code generates a representation of the
average silhouette for a various numbers of clusters between 2 and 20:

x <- c(rnorm(50),rnorm(50,mean=5),rnorm(30,mean=15))

w <- numeric(20)

for(k in 2:20)

w[k] <- pam(x,k)$silinfo$avg.width

k.best <- which.max(w)

cat("silhouette-optimal number of clusters is: ",k.best,"\n")

plot(1:20,w,type="h",main="pam() clustering assessment",

xlab="k (no of clusters)",ylab="avg. silhouette width")

axis(1,k.best,paste("best",k.best,sep="\n"),col="red",col.axis="red")
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Internal Criteria

The best value is k = 3, as it also follows from the next graph.

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

pam() clustering assessment

k (no of clusters)

av
g.

 s
ilh

ou
et

te
 w

id
th

best
3

47 / 47


	Outline
	Clustering Quality
	External Measures
	Pairwise Measures
	Internal Criteria

