Homework 3
posted March 2, 2020
due March 23, 2020

Let $B_n = \{0, 1\}^n$ and let $K \subseteq B_n$. The sequence of Chow parameters of K is $\text{chow}(K) = (c_1, \ldots, c_n, c_K) \in \mathbb{N}^n$ defined as $c_K = |K|$ and $c_i = |\{x \in K \mid x_i = 1\}|$. For example, for $n = 4$ and $K = \{(0, 1, 1, 1), (0, 0, 1, 1), (0, 0, 0, 1)\}$ we have $\text{chow}(K) = (0, 1, 2, 3, 3)$.

Two subsets K, G of B_n are equipollent if they have the same Chow parameters.

The subsets K and $B_n - K$ are linearly separable if there exists a pair $(w, t) \in \mathbb{R}^n \times \mathbb{R}$ such that

$K = \{x \in B_n \mid w'x \geq t\}$ and $B_n - K = \{x \in B_n \mid w'x < t\}$.

We say that K is linearly separable if K and $B_n - K$ are linearly separable.

1. Let $K \subseteq B_n$. Prove that $\text{chow}(K) = (\sum_{x \in K} x, |K|)$.

2. A diagonal of B_n is a pair $(u, v) \in B_n^2$ such that $u = 1_n - v$, where $1_n = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$. Prove that if K is a linearly separable subset of B_n that contains a diagonal of B_n, then it contains a point of every other diagonal of B_n.

3. The optimization problem of the separable data case that seeks to determine a separating hyperplane in \mathbb{R}^n can be transformed into an equivalent optimization problem in \mathbb{R}^{n+1} that seeks to identify a separating subspace. Given a data set $s = ((x_1, y_1), \ldots, (x_m, y_m))$ prove that there exists $r \in \mathbb{R}^n$ such that s is separable by a hyperplane if and only if the set $\tilde{s} = ((x_1 + r, y_1), \ldots, (x_m + r, y_m))$ is separable be a subspace M of \mathbb{R}^n.

4. Consider the data set D in \mathbb{R}^2 shown in Figure 1, where C is a circle centered in $(6, 4)$ having radius 3. Define a transformation $\phi : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ such that $\phi(D)$ is linearly separable.

5. There are 16 functions of the form $f : \{0, 1\}^2 \rightarrow \{0, 1\}$. For each such function consider the sequence $S_f = ((x_1, y_1), \ldots, (x_4, y_4))$, where
Figure 1: Non-linearly separable data; positive examples are filled circles.

\[x_i \in \{0, 1\}^2 \text{ and } \]

\[y_i = \begin{cases}
-1 & \text{if } f(x_i) = 0, \\
1 & \text{if } f(x_i) = 1
\end{cases} \]

for \(1 \leq i \leq 4 \). For how many of these functions is \(S_f \) linearly separable?