THEORY OF COMPUTATION
Problem session - 6

Prof. Dan A. Simovici

UMB
1 Problems

2 Solutions
Problem 1: Prove that the functions min and max where

\[
\min(x, y) = \begin{cases}
 x & \text{if } x \leq y, \\
 y & \text{if } x \geq y,
\end{cases}
\]

and

\[
\max(x, y) = \begin{cases}
 y & \text{if } x \leq y, \\
 x & \text{if } x \geq y,
\end{cases}
\]

are primitive recursive.
Problem 2: Let

\[h_1(x, 0) = f_1(x), \]
\[h_2(x, 0) = f_2(x), \]
\[h_1(x, t + 1) = g_1(x, h_1(x, t), h_2(x, t)), \]
\[h_2(x, t + 1) = g_2(x, h_1(x, t), h_2(x, t)). \]

Prove that if \(f_1, f_2, g_1, g_2 \) all belong to some PRC class \(C \), then \(h_1, h_2 \) do also.
Problem 3: Let \(\text{trim} : \mathbb{N} \rightarrow \mathbb{N} \) be the function defined as follows: if \(z = [x_1, \ldots, x_{n-1}, x_n] \), then \(\text{trim}(z) = [x_1, \ldots, x_{n-1}] \). For the special case when \(z = 0 \), we define \(\text{trim}(z) = 0 \). Prove that \(\text{trim} \) is primitive recursive.
Problem 4: The function insert : \(\mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N} \) takes the code of an sorted list of numbers \(x \), and number \(y \), inserts \(y \) in to the list in the correct position and returns the code of the new list. Prove that insert is primitive recursive.
Problem 1: Prove that the functions min and max where

\[
\max(x, y) = \begin{cases}
 y & \text{if } x \leq y, \\
 x & \text{if } x \geq y,
\end{cases}
\]

and

\[
\min(x, y) = \begin{cases}
 x & \text{if } x \leq y, \\
 y & \text{if } x \geq y,
\end{cases}
\]

are primitive recursive.

Solution: Note that

\[
\max(x, y) = \lceil (x + y + |x - y|)/2 \rceil
\]

and

\[
\min(x, y) = \lceil (x + y \div |x - y|)/2 \rceil,
\]

which implies the primitive recursiveness.
Problem 2: Let

\[
\begin{align*}
 h_1(x, 0) &= f_1(x), \\
 h_2(x, 0) &= f_2(x), \\
 h_1(x, t + 1) &= g_1(x, h_1(x, t), h_2(x, t)), \\
 h_2(x, t + 1) &= g_2(x, h_1(x, t), h_2(x, t)).
\end{align*}
\]

Prove that if \(f_1, f_2, g_1, g_2 \) all belong to some PRC class \(C \), then \(h_1, h_2 \) do also.

Solution: Define the function \(F(x, t) = \langle h_1(x, t), h_2(x, t) \rangle \).

Clearly,

\[
F(x, 0) = \langle f_1(x), f_2(x) \rangle.
\]

Also,

\[
F(x, t + 1) = \langle h_1(x, t + 1), h_2(x, t + 1) \rangle
= \langle g_1(x, h_1(x, t), h_2(x, t)), g_2(x, h_1(x, t), h_2(x, t)) \rangle
= \langle g_1(x, \ell(F(x, t))), g_2(x, r(F(x, t))) \rangle,
\]

which is a definition be primitive recursion of \(F \). Thus, \(F \in C \).

Since \(h_1(x, t) = \ell(F(x, t)) \) and \(h_2 = r(F(x, t)) \) and \(\ell, r, F \in C \), it follows that \(h_1, h_2 \in C \).
Problem 3: Let \(\text{trim} : \mathbb{N} \rightarrow \mathbb{N} \) be the function defined as follow: if \(z = [x_1, \ldots, x_{n-1}, x_n] \), then \(\text{trim}(z) = [x_1, \ldots, x_{n-1}] \). For the special case when \(z = 0 \), we define \(\text{trim}(0) = 0 \). Prove that \(\text{trim} \) is primitive recursive.

Solution: The primitive recursiveness of \(\text{trim} \) results from the equality

\[
\text{trim}(z) = \min_{u \leq z} \bigwedge_{i=1}^{\text{Lt}(z)-1} [(u)_i = (z)_i].
\]
Problem 4: The function \(\text{insert} : \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N} \) takes the code of an sorted list of numbers \(x \) and number \(y \), inserts \(y \) in to the list in the correct position and returns the code of the new list. Prove that \(\text{insert} \) is primitive recursive.

Solution: Let \(\mu(x, y) \) be the largest position in \(x \) whose component is smaller than \(y \). We have \(\mu(x, y) = \max_{j \le \text{Lt}(x)} (x)_j < y \). Clearly, \(\mu \) is primitive recursive. Then,

\[
\text{insert}(x, y) = \prod_{i=1}^{\mu(x,y)} p_i^{(x)_i} \cdot p_y^{\mu(x,y)+1} \prod_{k=\mu(x,y)+2}^{p_{(x)_{k-1}}},
\]

which proves that \(\text{insert} \) is primitive recursive.

For example, suppose that \(x = [1, 4, 7, 8, 10] \) and we need to compute \(\text{insert}(x, 6) \). We have \(\mu(x, 6) = 2 \) because \((x)_1 = 1 < 6, (x)_2 = 4 < 6 \) but \((x)_3 = 7 \not< 6 \). Therefore,

\[
\text{insert}(x, 6) = p_1^1 p_2^4 p_3^6 p_4^7 p_5^8 p_6^{10}.
\]