1 Problems

2 Solutions
Problem 1: Let s be the code of an instruction in S. Prove that the label, the variable number, the instruction type can be determined using recursive functions of s. Also, if s is the code of a conditional jump statement, prove that the label to which instruction with code s is pointing can also be determined using a primitive recursive function.
Problem 2: Find the program \mathcal{P} such that $\#(\mathcal{P}) = 1000$.
Problem 3: Prove or disprove: if $f(x_1, \ldots, x_n)$ is a total function such that $f(x_1, \ldots, x_n) \leq k$ for all x_1, \ldots, x_n and some constant k, then f is computable.
Problem 4: Let $f : \mathbb{N} \rightarrow \mathbb{N}$ be a bijection. Prove that if f is computable, then so is f^{-1}.
Problem 5: Let $\text{HALT}^1(x)$ be defined as

$$\text{HALT}^1(x) = \text{HALT}(\ell(x), r(x))$$

for $x \in \mathbb{N}$. Show that HALT^1 is not computable.
Problem 6: The state of a program \mathcal{P} was defined as a set of list of equations of the form $V = m$. Recall that the standard list of variables is

$$Y, X_1, Z_1, X_2, Z_2, \ldots$$

Note that the input variables occupy even numbered positions on this list (X_1 is on the 2nd place, X_2 is on the 4th place, etc.). The state of a program \mathcal{P} is encoded by the number

$$S = [a_1, a_2, \ldots, a_n],$$

where a_i is the value assumed by variable V_i in the list above.

Prove that:

1. The initial state of \mathcal{P} is encoded by the number $\prod_{i=1}^{n} (p_{2i})^{x_i}$.
2. For a prime number p_i we have $p_i|S$ if and only if the state of the program contains the equation $V_i = a_i$, where $a_i \neq 0$.
Problem 1: Let s be the code of an instruction in S. Prove that the label, the variable number, the instruction type can be determined using recursive functions of s. Also, if s is the code of a conditional jump statement, prove that the label to which instruction with code s is pointing can also be determined using a primitive recursive function.

Solution for Problem 1: Let $s = \#(l) = \langle a, \langle b, c \rangle \rangle$. The following primitive recursive function do the job:

\[
\begin{align*}
\text{label}(c) & = a = \ell(s), \\
\text{var}(c) & = c + 1 = r(r(s)) + 1, \\
\text{instr}(c) & = b = \ell(r(s)), \\
\text{label}'(c) & = b \div 2 = \ell(r(s)) \div 2,
\end{align*}
\]

where the last equality holds if $b > 2$.
Problem 2: Find the program \mathcal{P} such that $\#(\mathcal{P}) = 1000$.

Solution for Problem 2: Suppose that \mathcal{P} consists of instructions I_1, \ldots, I_k. Then, $[\#(I_1), \ldots, \#(I_k)] = \#(\mathcal{P}) + 1 = 1001$. Note that 1001 can be factored as $1001 = 7 \cdot 11 \cdot 13$ and that

$$1001 = 2^0 \cdot 3^0 \cdot 5^0 \cdot 7^1 \cdot 11^1 \cdot 13^1.$$

Therefore, \mathcal{P} consists of 6 instructions I_1, \ldots, I_6. The first three unlabeled instructions are $Y \leftarrow Y$.
For the next three, the code is $\langle a, \langle b, c \rangle \rangle = 1$, so
$2^a(2\langle b, c \rangle + 1) - 1 = 1$, that is $2^a(2\langle b, c \rangle + 1) = 2$, which means
that $a = 1$ (so the label is A_1) and $\langle b, c \rangle = 0$, or $2^b(2c + 1) = 1$.
In turn, this implies $b = 1$ and $c = 0$. The variable involved is still
Y because $c = \#(V) - 1$ and the statement is $Y \leftarrow Y + 1$. The program is

```
Y \leftarrow Y
Y \leftarrow Y
Y \leftarrow Y
Y \leftarrow Y
[A] Y \leftarrow Y + 1
[A] Y \leftarrow Y + 1
[A] Y \leftarrow Y + 1
```
Problem 3: Prove or disprove: if $f(x_1, \ldots, x_n)$ is a total function such that $f(x_1, \ldots, x_n) \leq k$ for all x_1, \ldots, x_n and some constant k, then f is computable.

Solution for Problem 3: Note that HALT(x, y) is a total function and HALT(x, y) ≤ 1 for all x, y. Since HALT is not computable, it follows that the statement must be disproved.
Problem 4: Let $f : \mathbb{N} \rightarrow \mathbb{N}$ be a bijection. Prove that if f is computable, then so is f^{-1}.

Solution for Problem 4: Let \mathcal{P} be the program

\[
[A] \quad Z_2 \leftarrow f(Z_1) \\
Z_1 \leftarrow Z_1 + 1 \\
\text{IF } Z_2 \neq X \text{ GOTO A} \\
Y \leftarrow Z_1 - 1
\]

Since f is a bijection, there exists exactly one x such that $f^{-1}(y) = x$ or $f(x) = y$. Therefore, the program \mathcal{P} halts on any input and computes f^{-1}.
Problem 5: Let $\text{HALT}^1(z)$ be defined as

$$\text{HALT}^1(z) = \text{HALT}(\ell(z), r(z))$$

for $x \in \mathbb{N}$. Show that HALT^1 is not computable.

Solution for Problem 5: Let x, y be two arbitrary numbers in \mathbb{N} and let $z = \langle x, y \rangle$. We have $\ell(z) = z$ and $r(z) = y$, hence $\text{HALT}(x, y) = \text{HALT}^1(z)$. Since $\text{HALT}(x, y)$ is not computable, it follows that HALT^1 is not computable.
Problem 6: The state of a program \mathcal{P} was defined as a set of list of equations of the form $V = m$. Recall that the standard list of variables is

$$Y, X_1, Z_1, X_2, Z_2, \ldots$$

Note that the input variables occupy even numbered positions on this list (X_1 is on the 2nd place, X_2 is on the 4th place, etc.). The state of a program \mathcal{P} is encoded by the number

$$S = [a_1, a_2, \ldots , a_n],$$

where a_i is the value assumed by variable V_i in the list above.

Prove that:

1. The initial state of \mathcal{P} is encoded by the number $\prod_{i=1}^{n}(p_{2i})^{x_i}$.

2. For a prime number p_i we have $p_i|S$ if and only if the state of the program contains the equation $V_i = a_i$, where $a_i \neq 0$.
Solution for Problem 6:
The initial state of the program is defined by

\[Y = 0, \ X_1 = x_1, \ Z_1 = 0, \ X_2 = x_2, \ Z_2 = 0, \ldots \]

Therefore, this state is encoded by

\[2^0 \cdot 3^{x_1} \cdot 5^0 \cdot 7^{x_2} \cdot 11^0 \ldots = p_2^{x_1} \cdot p_4^{x_2} \cdots = \prod_{i=1}^{n} (p_{2i})^{x_i}. \]
If the state of the program \mathcal{P} is encoded by

$$S = [a_1, a_2, \ldots, a_n],$$

we have $S = p_1^{a_1} p_2^{a_2} \cdots p_n^{a_n}$. Thus, a prime p is a divisor of S if and only if $p = p_i$ for some i, $1 \leq i \leq n$, and $a_i > 0$. This shows that the state contains the equation $V_i = a_i$, where $a_i \neq 0$.