Predicates can be used to define sets.

Definition

If $P(x_1, \ldots, x_n)$ is a predicate, the set B defined by P is

$$B = \{(x_1, \ldots, x_n) \mid P(x_1, \ldots, x_n) = \text{TRUE}\}.$$

P is the characteristic predicate of the set B.

The set B is defined as computable or recursive if its characteristic predicate is computable.

B is primitive recursive if P is a primitive recursive predicate.
In other words, B is recursive if we can give a yes/no answer to the question "$x \in B$". This follows from the fact that P is computable.
Example

The set

\[B = \{ (x, y) \mid \text{the program } P \text{ with } \#(P) = y \text{ halts on } x \} \]

has \(\text{HALT}(X, Y) \) as its characteristic predicate. Since \(\text{HALT} \) is not computable, the set \(B \) is not recursive.
Definition

A set B belongs to a class of functions if its characteristic predicate belongs to that set.
Theorem

Let \mathcal{C} be a PRC class. If B, C belong to \mathcal{C}, then so do the sets $B \cup C, B \cap C$ and \overline{B}.

Proof.

If P_B, P_C are the characteristic predicates of B and C, respectively, and $P_B, P_C \in \mathcal{C}$, then the characteristic predicates of $B \cup C, B \cap C$ and \overline{B} are $P_B \lor P_C$, $P_B \land P_C$, and $\sim P_B$, respectively, and we saw that they belong to \mathcal{C}.

Theorem

Let \(C \) be a PRC class, and let \(B \subseteq \mathbb{N}^m \), where \(m \geq 1 \). Then \(B \in C \) if and only if the set of numbers

\[
B' = \{ [x_1, \ldots, x_m] \mid (x_1, \ldots, x_m) \in B \}
\]

belongs to \(C \).

Proof.

If \(P_B(x_1, \ldots, x_m) \) is the characteristic function of \(B \), then

\[
P_{B'}(x) \Leftrightarrow P_B((x)_1, \ldots, (x)_m) \& \text{Lt}(x) = m,
\]

and \(P_{B'} \) clearly belongs to \(C \) if \(P_B \in C \).

On the other hand, \(P_B(x_1, \ldots, x_m) \Leftrightarrow P_{B'}([x_1, \ldots, x_n]) \), hence \(P_{B'} \in C \) implies \(P_B \in C \).
Definition

The set $B \subseteq \mathbb{N}$ is **recursively enumerable** if there is a partially computable function $g(x)$ such that

$$B = \{x \in \mathbb{N} \mid g(x) \downarrow\}.$$

The term recursively enumerable is abbreviated as r.e.

A set is recursively enumerable when it the domain of a partially computable function. Equivalently, B is r.e. if it is just the set of inputs on which some program P halts.
If P is an algorithm for testing the membership in B, P will provide an *yes* answer for any x in B.

If $x \notin B$ the algorithm P will never terminate. This is why P is also called a *semidecision procedure* for B.
Recursive Enumerable Sets

\[\begin{cases}
1 & \text{if } x \in B \\
? & \text{otherwise}
\end{cases} \]

Recursive Sets

Recursive Enumerable Sets

\[\begin{cases}
1 & \text{if } x \in B \\
0 & \text{if } x \notin B
\end{cases} \]
Theorem

If B is a recursive set, then B is r.e.

Proof.

Since B is recursive, the predicate $x \in B$ is computable, so we can write the program P:

$$[A] \quad \text{IF } (X \in B) \text{ GOTO A}$$

If $h(x)$ is computed by this program then

$B = \{x \in \mathbb{N} \mid h(x) \downarrow\}$.

□
The set B is recursive if and only if both B and \overline{B} are both r.e.

Proof.

If B is recursive, then so is \overline{B}, hence both B and \overline{B} are r.e. Conversely, suppose that B and \overline{B} are both r.e., that is

$$B = \{ x \in \mathbb{N} \mid g(x) \downarrow \},$$
$$\overline{B} = \{ x \in \mathbb{N} \mid h(x) \downarrow \},$$

where g and h are both partially computable.
Proof.

Let g be the function computed by program P and h be the function computed by program Q, where $\#(P) = p$ and $\#(Q) = q$. The next program computes the characteristic function of B:

```plaintext
[A]  IF STP(1)(X, p, T) GOTO C
     IF STP(1)(X, q, T) GOTO E
     T ← T + 1
     GOTO A

[C]  Y ← 1
```
The technique used in the previous proof is known as dovetailing. It combines the algorithms for computing g and h by running the two algorithms for longer and longer times until one of them terminates.
Theorem

If \(B \) and \(C \) are r.e. sets, then so are \(B \cup C \) and \(B \cap C \).

Proof.

Let

\[
B = \{ x \in \mathbb{N} \mid g(x) \downarrow \} \quad \text{and} \quad C = \{ x \in \mathbb{N} \mid h(x) \downarrow \},
\]

where \(g \) and \(h \) are partially computable. Let \(f \) be computed by

\[
Y \leftarrow g(X) \\
Y \leftarrow h(X)
\]

Note that \(f(x) \downarrow \) if and only if \(g(x) \downarrow \) and \(h(x) \downarrow \). Hence

\[
B \cap C = \{ x \in \mathbb{N} \mid f(x) \downarrow \}, \quad \text{so} \quad B \cap C \text{ is r.e.} \]
Proof cont’d

Proof.

For $B \cup C$ we use dovetailing again. Let g be the function computed by program P and h be the function computed by program Q, where $(P) = p$ and $(Q) = q$. Let $k(x)$ be computed by

$$[A] \quad \text{IF STP}^{(1)}(X, p, T) \text{ GOTO E}$$
$$\quad \text{IF STP}^{(1)}(X, q, T) \text{ GOTO E}$$
$$\quad T \leftarrow T + 1$$
$$\quad \text{GOTO A}$$

Thus, $k(x) \downarrow$ just when either $g(x) \downarrow$ or $h(x) \downarrow$, that is $B \cup C = \{ x \in \mathbb{N} \mid k(x) \downarrow \}$.
The definition domain of $\Phi_n(x)$ is the set denoted as W_n. Equivalently,

$$W_n = \{ x \in \mathbb{N} \mid \Phi(x, n) \downarrow \}.$$
Theorem

Enumeration Theorem: A set B is r.e. if and only if there is an n for which $B = W_n$.

Proof.

This follows immediately from the definition of $\Phi(x, n)$.

The theorem gets its name from the fact that

$$W_0, W_1, \ldots, W_n, \ldots$$

is an enumeration of all r.e. sets.