THEORY OF COMPUTATION
Recursively Enumerable Sets - 10 part 1

Prof. Dan A. Simovici

UMB
Predicates can be used to define sets.

Definition

If \(P(x_1, \ldots, x_n) \) is a predicate, the set \(B \) defined by \(P \) is

\[
B = \{(x_1, \ldots, x_n) \mid P(x_1, \ldots, x_n) = \text{TRUE}\}.
\]

\(P \) is the characteristic predicate of the set \(B \).

The set \(B \) is defined as computable or recursive if its characteristic predicate is computable.

\(B \) is primitive recursive if \(P \) is a primitive recursive predicate.
In other words, B is recursive if we can give a yes/no answer to the question \(x \in B \). This follows from the fact that P is computable.
The set

$$B = \{(x, y) \mid \text{the program } \mathcal{P} \text{ with } \#(\mathcal{P}) = y \text{ halts on } x\}$$

has $\text{HALT}(X, Y)$ as its characteristic predicate. Since $HALT$ is not computable, the set B is not recursive.
Definition

A set B belongs to a class of functions if its characteristic predicate belongs to that set.
Theorem

Let \(C \) be a PRC class. If \(B, C \) belong to \(C \), then so do the sets \(B \cup C, B \cap C \) and \(\overline{B} \).

Proof.

If \(P_B, P_C \) are the characteristic predicates of \(B \) and \(C \), respectively, and \(P_B, P_C \in C \), then the characteristic predicates of \(B \cup C, B \cap C \) and \(\overline{B} \) are \(P_B \lor P_C, P_B \land P_C \), and \(\neg P_B \), respectively, and we saw that they belong to \(C \).
Theorem

Let C be a PRC class, and let $B \subseteq \mathbb{N}^m$, where $m \geq 1$. Then $B \in C$ if and only if the set of numbers

$$B' = \{[x_1, \ldots, x_m] \mid (x_1, \ldots, x_m) \in B\}$$

belongs to C.

Proof.

If $P_B(x_1, \ldots, x_m)$ is the characteristic function of B, then

$$P_{B'}(x) \Leftrightarrow P_B((x)_1, \ldots, (x)_m) \& \text{Lt}(x) = m,$$

and $P_{B'}$ clearly belongs to C if $P_B \in C$.

On the other hand, $P_B(x_1, \ldots, x_m) \Leftrightarrow P_{B'}([x_1, \ldots, x_n])$, hence $P_{B'} \in C$ implies $P_B \in C$.

Definition

The set $B \subseteq \mathbb{N}$ is **recursively enumerable** if there is a partially computable function $g(x)$ such that

$$B = \{x \in \mathbb{N} \mid g(x) \downarrow\}.$$

The term recursively enumerable is abbreviated as r.e.

A set is recursively enumerable when it the domain of a partially computable function. Equivalently, B is r.e. if it is just the set of inputs on which some program \mathcal{P} halts.
If P is an algorithm for testing the membership in B, P will provide an *yes* answer for any x in B.

If $x \notin B$ the algorithm P will never terminate. This is why P is also called a *semidecision procedure* for B.
Recursive Enumerable Sets

Recursive Sets

\[
\begin{cases}
1 & \text{if } x \in B \\
? & \text{otherwise}
\end{cases}
\]

Recursive Enumerable Sets

\[
\begin{cases}
? & \text{if } x \in B \\
? & \text{otherwise}
\end{cases}
\]

\[
\begin{cases}
1 & \text{if } x \in B \\
0 & \text{if } x \notin B
\end{cases}
\]
Theorem

If B is a recursive set, then B is r.e.

Proof.

Since B is recursive, the predicate $x \in B$ is computable, so we can write the program P:

$[A] \quad \text{IF } (X \in B) \text{ GOTO } A$

If $h(x)$ is computed by this program then

$B = \{x \in \mathbb{N} \mid h(x) \downarrow\}$.

\[\square \]
Theorem

The set B is recursive if and only if both B and \overline{B} are both r.e.

Proof.

If B is recursive, then so is \overline{B}, hence both B and \overline{B} are r.e. Conversely, suppose that B and \overline{B} are both r.e., that is

\[
B = \{ x \in \mathbb{N} \mid g(x) \downarrow \},
\]
\[
\overline{B} = \{ x \in \mathbb{N} \mid h(x) \downarrow \},
\]

where g and h are both partially computable.
Proof cont’d

Proof.

Let g be the function computed by program P and h be the function computed by program Q, where $\#(P) = p$ and $\#(Q) = q$. The next program computes the characteristic function of B:

\[
\begin{align*}
[A] & \quad \text{IF STP}^{(1)}(X, p, T) \ \text{GOTO C} \\
 & \quad \text{IF STP}^{(1)}(X, q, T) \ \text{GOTO E} \\
 & \quad T \leftarrow T + 1 \\
 & \quad \text{GOTO A} \\
[C] & \quad Y \leftarrow 1
\end{align*}
\]
The technique used in the previous proof is known as dovetailing. It combines the algorithms for computing g and h by running the two algorithms for longer and longer times until one of them terminates.
Theorem

If B and C are r.e. sets, then so are $B \cup C$ and $B \cap C$.

Proof.

Let

$$B = \{ x \in \mathbb{N} \mid g(x) \downarrow \} \text{ and } C = \{ x \in \mathbb{N} \mid h(x) \downarrow \},$$

where g and h are partially computable. Let f be computed by

$$Y \leftarrow g(X)$$
$$Y \leftarrow h(X)$$

Note that $f(x) \downarrow$ if and only if $g(x) \downarrow$ and $h(x) \downarrow$. Hence $B \cap C = \{ x \in \mathbb{N} \mid f(x) \downarrow \}$, so $B \cap C$ is r.e.
Proof cont’d

Proof.

For $B \cup C$ we use dovetailing again. Let g be the function computed by program P and h be the function computed by program Q, where $\#(P) = p$ and $\#(Q) = q$. Let $k(x)$ be computed by

\[
\begin{align*}
[A] & \quad \text{IF } \text{STP}^{(1)}(X, p, T) \text{ GOTO } E \\
& \quad \text{IF } \text{STP}^{(1)}(X, q, T) \text{ GOTO } E \\
& \quad T \leftarrow T + 1 \\
& \quad \text{GOTO } A
\end{align*}
\]

Thus, $k(x) \downarrow$ just when either $g(x) \downarrow$ or $h(x) \downarrow$, that is $B \cup C = \{x \in \mathbb{N} \mid k(x) \downarrow\}$. \qed
The definition domain of $\Phi_n(x)$ is the set denoted as W_n. Equivalently,

$$W_n = \{ x \in \mathbb{N} \mid \Phi(x, n) \downarrow \}.$$

Theorem

Enumeration Theorem: A set B is r.e. if and only if there is an n for which $B = W_n$.

Proof.

This follows immediately from the definition of $\Phi(x, n)$.

The theorem gets its name from the fact that

$$W_0, W_1, \ldots, W_n, \ldots$$

is an enumeration of all r.e. sets.