1. Recursive and Recursively Enumerable Sets

2. The Parameter Theorem
Recall that by the Enumeration Theorem, the collection of r.e. sets can be written as

\[W_1, W_2, \ldots, W_n, \ldots \]

where \(W_n = \{ x \in \mathbb{N} \mid \Phi(x, n) \downarrow \} \).
Let K be the set of all numbers n such that the program number n eventually halts on number n.

Definition

The set K is defined as:

$$K = \{ n \in \mathbb{N} \mid n \in W_n \}.$$

Note that $n \in W_n$ if and only if $\Phi(n, n) \downarrow$ if and only if $\text{HALT}(n, n) = \text{TRUE}$.
Theorem

The set K is r.e. but not recursive.
Proof.

Note that $K = \{ n \in \mathbb{N} \mid \Phi(n, n) \downarrow \}$, Φ is partially computable, hence K is r.e.

If \overline{K} were r.e, by the Enumeration Theorem we would have $\overline{K} = W_i$ for some i. Then,

$$i \in K \iff i \in W_i \iff i \in \overline{K},$$

which is a contradiction. Therefore, \overline{K} is not r.e., which implies that K is not recursive.
An alternative characterization of r.e. sets is provided next.

Theorem

Projection Theorem Let B be an r.e. set. There exists a *primitive recursive* predicate $R(x, t)$ such that:

$$B = \{ x \in \mathbb{N} \mid (\exists t) R(x, t) \}.$$

Note that this is *unbounded* existential quantification!
Proof.

Let $B = W_n$. Then,

$$B = \{ x \in \mathbb{N} \mid (\exists t) \text{STP}^{(1)}(x, n, t) \}$$

and STP is primitive recursive. The role of $R(x, t)$ is played by $\text{STP}^{(1)}(x, n, t)$. □
Theorem

Let S be a non-empty r.e. set. Then, there is a primitive recursive function $f(u)$ such that

$$S = \{ f(n) \mid n \in \mathbb{N} \} = \{ f(0), f(1), \ldots \}.$$

That is, S is the range of f.

THEORY OF COMPUTATION Recursively Enumerable Sets - 11 part 2

Recursive and Recursively Enumerable Sets
Proof.

By a previous theorem, \(S = \{ x \in \mathbb{N} \mid (\exists t)R(x, t) \} \), where \(R \) is a primitive recursive predicate. Let \(x_0 \) be some fixed member of \(S \) (for example the smallest). Let \(f \) the primitive recursive function:

\[
f(u) = \begin{cases} \ell(u) & \text{if } R(\ell(u), r(u)), \\ x_0 & \text{otherwise.} \end{cases}
\]

Each value of \(f(u) \) is in \(S \), since \(x_0 \in S \), while if \(R(\ell(u), r(u)) \) is TRUE, then \((\exists t)R(\ell(u), t)\) is TRUE, which implies that \(f(u) = \ell(u) \in S \).

Conversely, if \(x \in S \), then \(R(x, t_0) \) is TRUE for some \(t_0 \). Then, \(f(\langle x, t_0 \rangle) = \ell(\langle x, t_0 \rangle) = x \), so that \(x = f(u) \) for \(u = \langle x, t_0 \rangle \). \(\square\)
Theorem

Let $f(x)$ be a partially computable function and let
$S = \{ f(x) \mid f(x) \downarrow \}$. In other words, S is the range of f. Then, S is r.e.
Proof.

Let

\[g(x) = \begin{cases}
0 & \text{if } x \in S, \\
\uparrow & \text{otherwise.}
\end{cases} \]

Since \(S = \{x \mid g(x) \downarrow\} \) it suffices to show that the fact that partially computability of \(f \) implies that \(g \) is partially computable.
Proof cont’d

Proof.

Let \mathcal{P} be a program that computes f and $\#(\mathcal{P}) = p$. Then, g is computed by

<table>
<thead>
<tr>
<th>A</th>
<th>IF $STP^{(1)}(Z, p, T)$ GOTO B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$V \leftarrow f(Z)$</td>
</tr>
<tr>
<td></td>
<td>IF $V = X$ GOTO E</td>
</tr>
<tr>
<td>B</td>
<td>$Z \leftarrow Z + 1$</td>
</tr>
<tr>
<td></td>
<td>IF $Z \leq T$ GOTO A</td>
</tr>
<tr>
<td></td>
<td>$T \leftarrow T + 1$</td>
</tr>
<tr>
<td></td>
<td>$Z \leftarrow 0$</td>
</tr>
<tr>
<td></td>
<td>GOTO A</td>
</tr>
</tbody>
</table>

Note that $V \leftarrow f(Z)$ is entered only when the step-counter test has already determined that f is defined.
Theorem

Suppose that $S \neq \emptyset$. The following statements are equivalent:

1. S is r.e.;
2. S is the range of a primitive recursive function;
3. S is the range of a recursive function;
4. S is the range of a partial recursive function;

This follows from previous theorems: the implication (1) \Rightarrow (2) follows from the theorem on Slide 10. The implications (2) \Rightarrow (3) and (3) \Rightarrow (4) are obvious. The implication (4) \Rightarrow (1) follows from the theorem on Slide 12.
The parameter theorem is also known as the **smn-theorem**.

Theorem

For each $n, m > 0$ *there is a primitive recursive function* $S^n_m(u_1, \ldots, u_n, y)$ *such that*

\[
\Phi^{(m+n)}(x_1, \ldots, x_m, u_1, \ldots, u_n, y) = \Phi^{(m)}(x_1, \ldots, x_m, S^n_m(u_1, \ldots, u_n, y)).
\]
Proof.

The proof is by induction on n, the number of arguments u_1, \ldots, u_n packed into S.

For $n = 1$, the base case, we need to show that there is a function S^1_m such that

$$
\Phi^{(m+n)}(x_1, \ldots, x_m, u_1, y) = \Phi^{(m)}(x_1, \ldots, x_m, S^1_m(u_1, y)).
$$

Here $S^1_m(u_1, y)$ must be the number of a program which, given m inputs x_1, \ldots, x_m computes the same value as the program y does when given the $m + 1$ inputs x_1, \ldots, x_m, u_1.

Let \mathcal{P} be the program with $\#(\mathcal{P}) = y$. Then, $S^1_m(u_1, y)$ can be taken as the number of a program which first gives X_{m+1} the value u_1 and then proceeds to execute \mathcal{P}.
Proof.

So the new program begins with

\[
\begin{align*}
X_{m+1} & \leftarrow X_{m+1} + 1 \\
& \quad \vdots \\
X_{m+1} & \leftarrow X_{m+1} + 1 \\
\end{align*}
\]

\[u_1\]

Note that the code of \(X_{m+1} \leftarrow X_{m+1} + 1\) is

\[\langle 0, \langle 1, 2m + 1 \rangle \rangle = 16m + 10.\]
Proof cont’d

Proof.

So, we may take

\[S_m^1(u_1, y) = \left(\prod_{i=1}^{u_1} p_i \right)^{16m+10 \operatorname{Lt}(y+1)} \prod_{j=1}^{\operatorname{Lt}(y+1)} p_{u_1+j}^{(y+1)_j} = 1, \]

which is a primitive recursive function.

Note that the numbers of the instructions of \(\mathcal{P} \) which appear as exponents in the prime power factorization of \(y + 1 \) have been shifted to the primes \(p_{u_1+1}, p_{u_1+2}, \ldots, p_{u_1+\operatorname{Lt}(y+1)}. \)
Proof cont’d

Proof.

Suppose now that the result holds for \(n = k \). Then, we have

\[
\begin{aligned}
\Phi^{(m+k+1)}(x_1, \ldots, x_m, u_1, \ldots, u_k, u_{k+1}, y) \\
= \Phi^{(m+k)}(x_1, \ldots, x_m, u_1, \ldots, u_k, S_{m+k}^{1}(u_{k+1}, y)) \\
= \Phi^m(x_1, \ldots, x_m, S_k^m(u_1, \ldots, u_k, S_{m+k}^{1}(u_{k+1}, y))),
\end{aligned}
\]

using the result for \(n = 1 \) and the induction hypothesis. Now, we can define

\[
S_{m+1}^{k+1}(u_1, \ldots, u_k, u_{k+1}) = S_m^k(u_1, \ldots, u_k, S_{m+k}^{1}(u_{k+1}, y)).
\]
Example

Using the smn theorem we can show the existence of a primitive recursive function \(g \) such that \(\Phi_u(\Phi_v(x)) = \Phi_{g(u,v)}(x) \). This means that

\[
\Phi_u(\Phi_v(x)) = \Phi(\Phi(x, v), u),
\]

so \(\Phi_u(\Phi_v(x)) = \Phi(x, u, v, z_0) \) is a partially computable function of \(x, u, v \). Hence

\[
\Phi_u(\Phi_v(x)) = \Phi(x, S_1^3(u, v, z_0)),
\]

and \(g(u, v) = S_1^3(u, v, z_0) \).