THEORY OF COMPUTATION
Recursively Enumerable Sets - 11 part 2

Prof. Dan A. Simovici

UMB
1. Recursive and Recursively Enumerable Sets

2. The Parameter Theorem
Recall that by the Enumeration Theorem, the collection of r.e. sets can be written as
\[W_1, W_2, \ldots, W_n, \ldots \]
where \(W_n = \{ x \in \mathbb{N} \mid \Phi(n, x) \downarrow \} \).
Let K be the set of all numbers n such that the program number n eventually halts on number n.

Definition

The set K is defined as:

$$K = \{n \in \mathbb{N} \mid n \in W_n\}.$$

Note that $n \in W_n$ if and only if $\Phi(n, n) \downarrow$ if and only if $\text{HALT}(n, n) = \text{TRUE}$.
Theorem

The set K is r.e. but not recursive.
Proof.

Note that $K = \{ n \in \mathbb{N} \mid \Phi(n, n) \downarrow \}$, Φ is partially computable, hence K is r.e.

If \overline{K} were r.e, by the Enumeration Theorem we would have $\overline{K} = W_i$ for some i. Then,

$$i \in K \iff i \in W_i \iff i \in \overline{K},$$

which is a contradiction. Therefore, \overline{K} is not r.e., which implies that K is not recursive.
Recursive and Recursively Enumerable Sets

- \overline{K}

Recursive Sets

Recursive Enumerable Sets

K
An alternative characterization of r.e. sets is provided next.

Theorem

Projection Theorem Let B be an r.e. set. There exists a \textit{primitive recursive predicate} $R(x, t)$ such that:

$$ B = \{ x \in \mathbb{N} \mid (\exists t)R(x, t) \}. $$
Proof.

Let $B = W_n$. Then,

$$B = \{ x \in \mathbb{N} \mid (\exists t)\text{STP}^{(1)}(x, n, t) \}$$

and STP is primitive recursive. The role of $R(x, t)$ is played by $\text{STP}^{(1)}(x, n, t)$.

\square
Theorem

Let S be a non-empty r.e. set. Then, there is a primitive recursive function $f(u)$ such that

$$S = \{ f(n) \mid n \in \mathbb{N} \} = \{ f(0), f(1), \ldots \}.$$

That is, S is the range of f.

Proof.

By a previous theorem, \(S = \{ x \in \mathbb{N} \mid (\exists t)R(x, t) \} \), where \(R \) is a primitive recursive predicate. Let \(x_0 \) be some fixed member of \(S \) (for example the smallest). Let \(f \) the primitive recursive function:

\[
f(u) = \begin{cases}
\ell(u) & \text{if } R(\ell(u), r(u)), \\
x_0 & \text{otherwise}.
\end{cases}
\]

Each value of \(f(u) \) is in \(S \), since \(x_0 \in S \), while if \(R(\ell(u), r(u)) \) is TRUE, then \((\exists t)R(\ell(u), t) \) is TRUE, which implies that \(f(u) = \ell(u) \in S \).

Conversely, if \(x \in S \), then \(R(x, t_0) \) is TRUE for some \(t_0 \). Then, \(f(\langle x, t_0 \rangle) = \ell(\langle x, t_0 \rangle) = x \), so that \(x = f(u) \) for \(u = \langle x, t_0 \rangle \). \(\square \)
Theorem

Let $f(x)$ be a partially computable function and let

$$ S = \{ f(x) \mid f(x) \downarrow \}. $$

In other words, S is the range of f. Then, S is r.e.
Proof.

Let

\[g(x) = \begin{cases}
0 & \text{if } x \in S, \\
\uparrow & \text{otherwise}.
\end{cases} \]

Since \(S = \{ x \mid g(x) \downarrow \} \) it suffices to show that the fact that partially computability of \(f \) implies that \(g \) is partially computable.
Proof cont’d

Proof.

Let \mathcal{P} be a program that computes f and $\#(\mathcal{P}) = p$. Then, g is computed by

$$\begin{align*}
[A] & \quad \text{IF } STP^{(1)}(Z, p, T) \text{ GOTO B} \\
& \quad V \leftarrow f(Z) \\
& \quad \text{IF } V = X \text{ GOTO E} \\
[B] & \quad Z \leftarrow Z + 1 \\
& \quad \text{IF } Z \leq T \text{ GOTO A} \\
& \quad T \leftarrow T + 1 \\
& \quad Z \leftarrow 0 \\
& \quad \text{GOTO A}
\end{align*}$$

Note that $V \leftarrow f(Z)$ is entered only when the step-counter test has already determined that f is defined.
Theorem

Suppose that \(S \neq \emptyset \). The following statements are equivalent:

1. \(S \) is r.e.;
2. \(S \) is the range of a primitive recursive function;
3. \(S \) is the range of a recursive function;
4. \(S \) is the range of a partial recursive function;

This follows from previous theorems: the implication (1) \(\Rightarrow \) (2) follows from the theorem on Slide 10. The implications (2) \(\Rightarrow \) (3) and (3) \(\Rightarrow \) (4) are obvious. The implication (4) \(\Rightarrow \) (1) follows from the theorem on Slide 12.
The parameter theorem is also known as the \textit{smn}-theorem.

\textbf{Theorem}

For each \(n, m > 0\) there is a primitive recursive function \(S^n_m(u_1, \ldots, u_n, y)\) such that

\[
\Phi^{(m+n)}(x_1, \ldots, x_m, u_1, \ldots, u_n, y) = \Phi^{(m)}(x_1, \ldots, x_m, S^n_m(u_1, \ldots, u_n, y)).
\]
Proof.

The proof is by induction on \(n \), the number of arguments \(u_1, \ldots, u_n \) packed into \(S \).

For \(n = 1 \), the base case, we need to show that there is a function \(S_m^1 \) such that

\[
\Phi^{(m+n)}(x_1, \ldots, x_m, u_1, y) = \Phi^{(m)}(x_1, \ldots, x_m, S_m^1(u_1, y)).
\]

Here \(S_m^1(u_1, y) \) must be the number of a program which, given \(m \) inputs \(x_1, \ldots, x_m \) computes the same value as the program \(y \) does when given the \(m + 1 \) inputs \(x_1, \ldots, x_m, u_1 \).

Let \(\mathcal{P} \) be the program with \(\#(\mathcal{P}) = y \). Then, \(S_m^1(u_1, y) \) can be taken as the number of a program which first gives \(X_{m+1} \) the value \(u_1 \) and then proceeds to execute \(\mathcal{P} \).
Proof cont’d

Proof.

So the new program begins with

\[
\begin{align*}
X_{m+1} &\leftarrow X_{m+1} + 1 \\
\vdots \\
X_{m+1} &\leftarrow X_{m+1} + 1
\end{align*}
\]

\[u_1\]

Note that the code of \(X_{m+1} \leftarrow X_{m+1} + 1\) is

\[\langle 0, \langle 1, 2m + 1 \rangle \rangle = 16m + 10.\]
Proof cont’d

Proof.

So, we may take

$$S^1_m(u_1, y) = \left(\prod_{i=1}^{u_1} p_i \right)^{16m+10 \cdot \text{Lt}(y+1)} \prod_{j=1}^{\text{Lt}(y+1)} p^{(y+1)j}_{u_1+j} - 1,$$

which is a primitive recursive function.

Note that the numbers of the instructions of P which appear as exponents in the prime power factorization of $y + 1$ have been shifted to the primes $p_{u_1+1}, p_{u_1+2}, \ldots, p_{u_1+\text{Lt}(y+1)}$.

□
Proof cont’d

Proof.

Suppose now that the result holds for \(n = k \). Then, we have

\[
\begin{align*}
\Phi^{(m+k+1)}(x_1, \ldots, x_m, u_1, \ldots, u_k, u_{k+1}, y) &= \Phi^{(m+k)}(x_1, \ldots, x_m, u_1, \ldots, u_k, S_{m+k}^1(u_{k+1}, y)) \\
&= \Phi^m(x_1, \ldots, x_m, S_m^k(u_1, \ldots, u_k, S_{m+k}^1(u_{k+1}, y))),
\end{align*}
\]

using the result for \(n = 1 \) and the induction hypothesis. Now, we can define

\[
S_{m+1}^k(u_1, \ldots, u_k, u_{k+1}) = S_m^k(u_1, \ldots, u_k, S_{m+k}^1(u_{k+1}, y)).
\]
Example

Using the smn theorem we can show the existence of a primitive recursive function g such that $\Phi_u(\Phi_v(x)) = \Phi_{g(u,v)}(x)$. This means that

$$\Phi_u(\Phi_v(x)) = \Phi(\Phi(x, v), u),$$

so $\Phi_u(\Phi_v(x)) = \Phi(x, u, v, z_0)$ is a partially computable function of x, u, v. Hence

$$\Phi_u(\Phi_v(x)) = \Phi(x, S^3_1(u, v, z_0)),$$

and $g(u, v) = S^3_1(u, v, z_0)$.