1. Rice’s Theorem

2. The Other Rice’s Theorem
The purpose of Rice’s Theorem is to provide a tool that allows us to prove that certain general sets are not recursive.

Definition

Let Γ be a collection of partially computable functions of one variable. The index set associated with Γ is the set

$$R_{\Gamma} = \{ t \in \mathbb{N} \mid \Phi_t \in \Gamma \}.$$

An index set R_{Γ} contains program codes that display a certain input-output behavior as specified by Γ.
By Church’s Thesis, R_Γ is a recursive set when there is an algorithm that accepts program codes as inputs and returns the value TRUE or FALSE depending on whether or not the function $\psi^{(1)}_\varphi$ does or does not belong to Γ.
Examples of sets of functions Γ:

- the set of computable functions;
- the set of primitive recursive functions;
- the set of partially computable functions that are defined for all but a finite numbers of values of x.
It would be pleasing to have algorithms that accept a program as input and return as output some useful property of the partial function computed by the program. Unfortunately, such algorithms do not exist.

Theorem

Rice’s Theorem: Let Γ be a collection of partially computable functions of one variable. Let there be partially computable functions $f(x)$ and $g(x)$ such that $f(x)$ belongs to Γ and $g(x)$ does not belong to Γ. Then R_Γ is not recursive.
Proof.

Let $h(x)$ be the function such that $h(x) \uparrow$ for all x, that is the empty function. There are two cases to discuss:

- $h(x) \not\in \Gamma$, and
- $h(x) \in \Gamma$.

Suppose initially that $h(x) \not\in \Gamma$

Let q be the number of the program

\[
\begin{align*}
Z & \leftarrow \Phi(X_2, X_2) \\
Y & \leftarrow f(X_1)
\end{align*}
\]

Let $\Phi(x_1, x_2, q)$ be the function computed by this program. By the smn Theorem we have $\Phi(x_1, x_2, q) = \Phi(x_1, S_1(x_2, q))$. \qed
Proof.

Thus, $S_1^1(i, q)$ is the number of the program

$$
\begin{aligned}
X_2 & \leftarrow i \\
Z & \leftarrow \Phi(X_2, X_2) \\
Y & \leftarrow f(X_1)
\end{aligned}
$$

that computes the function f.

\qed
Proof cont’d

Proof.

Note that

\[i \in K \implies \Phi(i, i) \downarrow \]
\[\implies \Phi_{S_1^1(i, q)}(x) = f(x) \text{ for all } x \]
\[\implies \Phi_{S_1^1(i, q)} \in \Gamma \]
\[\implies S_1^1(i, q) \in R_{\Gamma}. \]
Proof cont’d

Also,

\[
\begin{align*}
i \notin K & \Rightarrow \Phi(i, i) \uparrow \\
& \Rightarrow \Phi_{S^1_i(i, q)}(x) \uparrow \text{ for all } x \\
& \Rightarrow \Phi_{S^1_i(i, q)} = h \\
& \Rightarrow \Phi_{S^1_i(i, q)} \notin \Gamma \\
& \Rightarrow S^1_i(i, q) \notin R_{\Gamma},
\end{align*}
\]

so \(K \leq_m R_{\Gamma} \). Therefore, \(R_{\Gamma} \) is not recursive.
Proof cont’d

Proof.

If \(h(x) \) does not belong to \(\Gamma \), the same argument with \(\Gamma \) and \(f(x) \) replaced by \(\overline{\Gamma} \) and \(g(x) \), respectively, shows that \(R_{\overline{\Gamma}} \) is not recursive. Since \(R_{\overline{\Gamma}} = \overline{R_{\Gamma}} \), \(R_{\Gamma} \) is not recursive in this case either. \(\square \)
Corollary

There are no algorithms for testing a given program \mathcal{P} of the language S to determine whether $\psi^{(1)}_{\mathcal{P}}(x)$ belongs to any of the classes:

- the set of primitive recursive functions;
- the set of partially computable functions that are defined for all but a finite numbers of values of x.

Proof.

In each case we need to find the required functions f and g to show that R_{Γ} is not recursive. For example, the functions $f(x) = x$ and $g(x) = 1 - x$ (so that g is defined only for $x = 0$ or $x = 1$) work.
The Other Rice’s Theorem offers a technique for proving that certain sets are not r.e.

Definition

Let f, g be two partial functions. We write $f \subseteq g$ if $x \in \text{Dom}(f)$ implies $x \in \text{Dom}(g)$ and $g(x) = f(x)$.
The Other Rice’s Theorem: Let Γ be a set of computable functions. If there exist m, m' such that $\Phi_m \in \Gamma$, $\Phi_{m'} \not\in \Gamma$ and $\Phi_m \subseteq \Phi_{m'}$, then R_{Γ} is not r.e..
Proof

Consider the flowchart shown on the next slide that can be readily transformed into a S program \mathcal{P}, where $\#\mathcal{P} = p$. Note that the execution of this program depends on the input value x_2.
The Other Rice’s Theorem

\[z \leftarrow 0 \]

\[\text{STP}(x_2, x_2, z) = 1 \]
- yes: \[y \leftarrow \Phi(x_1, m') \]
- no

\[\text{STP}(x_1, m, z) = 1 \]
- yes: \[y \leftarrow \Phi(x_1, m) \]
- no: \[z \leftarrow z + 1 \]
Proof cont’d

The equivalent program can be written as

\[
\begin{align*}
Z &\leftarrow 0 \\
[C] &\quad \text{IF STP}(X_2, X_2, Z) \text{ GOTO } A \\
&\quad \text{IF STP}(X_1, m, Z) \text{ GOTO } B \\
&\quad Z \leftarrow Z + 1 \\
&\quad \text{GOTO } C \\
[A] &\quad Y \leftarrow \Phi(X_1, m) \\
&\quad \text{GOTO } E \\
[B] &\quad Y \leftarrow \Phi(X_1, m')
\end{align*}
\]
Proof cont’d

If \(x_2 \notin K \), then \(\Phi(x_1, x_2, p) = \Phi_m(x_1) \). Otherwise, \(\Phi(x_1, x_2, p) = \Phi_{m'}(x_1) \). Thus, we have

\[
\Phi(x_1, x_2, p) = \begin{cases}
\Phi_m(x_1) & \text{if } x_2 \notin K \\
\Phi_{m'}(x_1) & \text{if } x_2 \in K.
\end{cases}
\]

By the smn Theorem we have:

\[
\Phi_{S^1_1(x_2,p)}(x_1) = \begin{cases}
\Phi_m(x_1) & \text{if } x_2 \notin K \text{ (that is, } x_2 \in \overline{K}) \\
\Phi_{m'}(x_1) & \text{if } x_2 \in K.
\end{cases}
\]
Define f as $f(x_2) = S^1_1(x_2, p)$. We have:

- $x \in \overline{K}$ if and only if $\Phi_{f(x_2)} = \Phi_m$, that is, $f(x_2) \in R_\Gamma$;
- $x \in K$ if and only if $\Phi_{f(x_2)} = \Phi_{m'}$, that is, $f(x_2) \not\in R_\Gamma$.

Thus, $x \in \overline{K}$ if and only if $f(x) \in \Gamma$, so $\overline{K} \leq R_\Gamma$, which implies that R_Γ is not r.e.
Example

The following sets can be shown not to be r.e. using the Other Rice’s Theorem:

- EMPTY = \{x \mid \text{Dom}(\Phi_x) = \emptyset\};
- \{x \mid \text{range}(\Phi_x) = \emptyset\};
- FIN = \{x \mid \text{Dom}(\Phi_x) \text{ is finite}\};
- NOTTOT = \{x \mid \Phi_x \text{ is not total}\}, etc.
For instance, to prove that EMPTY is not r.e. we need to show that there is $m \in \text{EMPTY}$, $m' \notin \text{EMPTY}$ such that $\Phi_m \subseteq \Phi_{m'}$. Choose Φ_m to be the empty function and $\Phi_{m'}$ to be any function with domain $\{0\}$. Both functions are computable and $\Phi_m \subseteq \Phi_{m'}$. Therefore, EMPTY is not r.e.