1. The Recursion Theorem

2. The Fixed Point Theorem
The Recursion Theorem: Let $g(z, x_1, \ldots, x_m)$ be a partially computable function of $m + 1$ variables. There exists a number e such that

$$g(e, x_1, \ldots, x_m) = \Phi_e(x_1, \ldots, x_m).$$
Discussion: Let \(e = \#(\mathcal{P}) \) so that

\[
\psi^{(m)}_{\mathcal{P}}(x_1, \ldots, x_m) = \Phi^{(m)}_e(x_1, \ldots, x_m).
\]

This means that \(\mathcal{P} \) is a program that gets access to its own number \(e \) and computes \(g(e, x_1, \ldots, x_m) \). This means that \(\mathcal{P} \) must somehow compute \(e \) because \(e \) does not appear among the arguments of \(\mathcal{P} \).
Intuitively, suppose that you write a JAVA program that has at the top the statement “CONST = 0”. Call this program \mathcal{P}_0. If I come along and replace that 0 with a 17, we will call that program \mathcal{P}_{17}. More generally, if that 0 is replaced by b, it is program \mathcal{P}_b. Our theorem says is that there is some number a such that if you use a for the parameter then the program produced is actually program \mathcal{P}_a. The resulting program can be said to “know its own index”.
Proof.

Consider the partially computable function

\[g(S^1_m(v, v), x_1, \ldots, x_m), \]

where \(S^1_m(v, v) \) is the function that occurs in the smn Theorem. There is a number \(z_0 \) such that

\[
g(S^1_m(v, v), x_1, \ldots, x_m) = \Phi^{(m+1)}(x_1, \ldots, x_m, v, z_0) = \Phi^{(m)}(x_1, \ldots, x_m, S^1_m(v, z_0))
\]

by the smn Theorem. Setting \(v = z_0 \) and \(e = S^1_m(z_0, z_0) \) we have

\[g(e, x_1, \ldots, x_m) = \Phi^{(m)}(x_1, \ldots, x_m, e) = \Phi_e^{(m)}(x_1, \ldots, x_m). \]
One of the applications of the recursion theorem is to allow us to write definitions of functions that involve the program used to compute the function as a part of its definition.

Corollary

There is a number e *such that for all* x *we have*

$$\Phi_e(x) = e.$$

Proof.

Consider the computable function $g(z, x) = u_1^2(z, x) = z$. Applying the recursion theorem we obtain the existence of a number e such that $\Phi_e(x) = g(e, x) = e.$
The program with number \(e \) consumes its input \(x \) and outputs a copy of itself. This program can be regarded as a “self-reproducing organism”.
Example

Let \(g(x, y) \) be a computable function. Define the partially computable function \(f \) as

\[
f(x, t) = \begin{cases}
 k & \text{if } t = 0, \\
 g(t - 1, \Phi_x(t - 1)) & \text{otherwise}
\end{cases}
\]

By the Recursion Theorem there is a program numbered \(e \) such that

\[
\Phi_e(t) = f(e, t) = \begin{cases}
 k & \text{if } t = 0, \\
 g(t - 1, \Phi_e(t - 1)) & \text{otherwise}
\end{cases}
\]
Example cont’d

Example

The function Φ_e is a total, and therefore, a computable function that satisfies the equations

$$\Phi_e(0) = k, \text{ and } \Phi_e(t + 1) = g(t, \Phi_e(t)),$$

that is, Φ_e is obtained from g by primitive recursion. This is another justification of the correctness of definitions by primitive recursion.
The recursion theorem can be used to justify other recursive definition schemes.

Example

We claim that there are partially computable functions f and g that satisfy the equations:

\[
\begin{align*}
 f(0) &= 1, \\
 f(t + 1) &= g(2t) + 1, \\
 g(0) &= 3, \\
 g(2t + 2) &= f(t) + 2.
\end{align*}
\]
Start with the assumption that there exists a program z such that

$$f(x) = \Phi_z(\langle 0, x \rangle) \quad \text{and} \quad g(x) = \Phi_z(\langle 1, x \rangle).$$

Note that $\langle 0, x \rangle = 2x$ and $\langle 1, x \rangle = 4x + 1$, so the sets

$$\{2x \mid x \in \mathbb{N}\} \quad \text{and} \quad \{4x + 1 \mid x \in \mathbb{N}\}$$

are disjoint: the first consists of even numbers, while the second consists of odd numbers.
The definitions of f and g

\[
\begin{align*}
 f(0) &= 1, \\
 f(t + 1) &= g(2t) + 1, \\
 g(0) &= 3, \\
 g(2t + 2) &= f(t) + 2
\end{align*}
\]

can be rewritten as:

\[
\begin{align*}
 \Phi_z(\langle 0, 0 \rangle) &= 1 \\
 \Phi_z(\langle 0, t + 1 \rangle) &= \Phi_z(\langle 1, 2t \rangle) + 1 \\
 \Phi_z(\langle 1, 0 \rangle) &= 3, \\
 \Phi_z(\langle 1, 2t + 2 \rangle) &= \Phi_z(\langle 0, t \rangle) + 2.
\end{align*}
\]
Let x be the argument of Φ_z. The previous equalities can be written as:

- $\Phi_z(x) = 1$ if $x = \langle 0, 0 \rangle$.
- In this case $x = \langle 0, t + 1 \rangle$, so $t = r(x) \div 1$. This means that $\Phi_z(x) = \Phi_z(\langle 1, 2(r(x) \div 1) \rangle) + 1$. This holds when $(\exists y)_{\leq x}(x = \langle 0, y + 1 \rangle)$.
The next case is: \(\Phi_z(x) = 3 \) if \(x = \langle 1, 0 \rangle \).

Finally, if \(x = \langle 1, 2t + 2 \rangle \) (which happens when \((\exists y)_{\leq x}(x = \langle 1, 2y + 2 \rangle) \)) we have \(2t + 2 = r(x) \), hence \(t = \lfloor (r(x) \div 2)/2 \rfloor \). This allows us to write:

\[
\Phi_z(x) = \Phi_z(\langle 0, \lfloor (r(x) \div 2)/2 \rfloor \rangle) + 2
\]

if \((\exists y)_{\leq x}(x = \langle 1, 2y + 2 \rangle) \) holds.
Define the function $F(z, x)$ as

$$F(z, x) = \begin{cases}
1 & \text{if } x = \langle 0, 0 \rangle \\
\Phi_z(\langle 1, 2(r(x) \div 1) \rangle) + 1 & \text{if } (\exists y) \leq_x (x = \langle 0, y + 1 \rangle).
\end{cases}$$

$$= \begin{cases}
3 & \text{if } x = \langle 1, 0 \rangle \\
\Phi_z(\langle 0, \lfloor (r(x) \div 2) / 2 \rfloor \rangle) + 2 & \text{if } (\exists y) \leq_x (x = \langle 1, 2y + 2 \rangle).
\end{cases}$$
By the recursion theorem, there exists e such that $\Phi_e(x) = F(e, x)$. This amounts to:

$$F(e, x) = \Phi_e(x)$$

$$= \begin{cases}
1 & \text{if } x = \langle 0, 0 \rangle \\
\Phi_e(\langle 1, 2(r(x) \div 1) \rangle + 1 & \text{if } (\exists y) \leq x (x = \langle 0, y + 1 \rangle). \\
3 & \text{if } x = \langle 1, 0 \rangle \\
\Phi_e(\langle 0, \lceil (r(x) \div 2)/2 \rceil \rangle) + 2 & \text{if } (\exists y) \leq x (x = \langle 1, 2y + 2 \rangle).
\end{cases}$$
If $f(x) = \Phi_e(\langle 0, x \rangle)$ and $g(x) = \Phi_e(\langle 1, x \rangle)$ the previous equalities imply:

$$f(0) = \Phi_e(0) = 1.$$

In the second case $x = 2(y + 1)$, $r(x) = y + 1$, so $r(x) \div 1 = y$. The equality in this case translates into:

$$\Phi_e(x) = \Phi_e(\langle 1, 2y \rangle) + 1$$
The Fixed Point Theorem:

Let $f(z)$ be a computable function. Then, there is a number e such that $\Phi_{f(e)}(x) = \Phi_e(x)$ for all x.

Note that e is not quite a fixed point in a mathematical sense. A number t would be a fixed point of t if we would have $f(t) = t$. This theorem says that for every computable function f there is a number of a program e that computes the same function as the program with number $f(e)$.
Proof.

Let \(g(z, x) = \Phi_{f(z)}(x) \) be a partially computable function. By the recursion theorem, there is a number \(e \) such that

\[
\Phi_e(x) = g(e, x) = \Phi_{f(e)}(x).
\]
Example

Let $P(x)$ be a computable predicate, let $g(x)$ be a computable function and let $\text{while}(n) = \#(Q_n)$, where Q_n is the program:

\[
\begin{align*}
X_2 & \leftarrow n \\
Y & \leftarrow X \\
[A] & \quad \text{IF} \sim P(Y) \text{ GOTO } E \\
Y & \leftarrow \Phi_{X_2}(g(Y))
\end{align*}
\]

The function while is clearly computable (and, in fact is primitive recursive). By the fixed point theorem, there is a number e such that $\Phi_e(x) = \Phi_{\text{while}(e)}(x)$.

Example cont’d

Example

The construction of while(\(e\)) implies

\[
\phi_e(x) = \phi_{\text{while}(e)}(x) = \begin{cases}
 x & \text{if } \sim P(x), \\
 \phi_e(g(x)) & \text{otherwise}.
\end{cases}
\]

Moreover,

\[
\phi_e(g(x)) = \phi_{\text{while}(e)}(g(x)) = \begin{cases}
 g(x) & \text{if } \sim P(g(x)), \\
 \phi_e(g(g(x))) & \text{otherwise}.
\end{cases}
\]
Example cont’d

Thus, we have:

\[\Phi_e(x) = \Phi_{\text{while}(e)}(x) = \begin{cases}
 x & \text{if } \sim P(x) \\
 g(x) & \text{if } P(x) \& \sim P(g(x)), \\
 \Phi_e(g(g(x))) & \text{otherwise.}
\end{cases} \]
Example cont’d

Example

Continuing in this fashion we get

\[\Phi_e(x) = \Phi_{\text{while}(e)}(x) = \begin{cases}
 x & \text{if } \sim P(x) \\
 g(x) & \text{if } P(x) & \sim P(g(x)), \\
 g(g(x)) & \text{if } P(x) & P(g(x)) & \sim P(g(g(x))) \\
 \vdots & \&
\end{cases} \]

In other words, the program whose number is \(e \) behaves like the program

\[
Y \leftarrow X \\
\text{while } P(Y) \text{ do} \\
\quad Y \leftarrow g(Y) \\
\text{end}
\]
Yet another proof of Rice’s Theorem

Suppose that R_{Γ} were recursive. Let P_{Γ} be the characteristic function of R_{Γ}, that is,

$$P_{\Gamma}(t) = \begin{cases} 1 & \text{if } t \in R_{\Gamma} \\ 0 & \text{otherwise.} \end{cases}$$

Define $h(t, x)$ as

$$h(t, x) = \begin{cases} g(x) & \text{if } t \in R_{\Gamma}, \\ f(x) & \text{otherwise}, \end{cases}$$

where, as before, $f \in \Gamma$ and $g \not\in \Gamma$.
Then, since

\[h(t, x) = g(x) \cdot P_\Gamma(t) + f(x) \cdot \alpha(P_\Gamma(t)) \]

it follows that \(h(t, x) \) is partially computable. By the recursion theorem, there is a number \(e \) such that

\[\Phi_e(x) = h(e, x) = \begin{cases}
 g(x) & \text{if } \Phi_e \in \Gamma \\
 f(x) & \text{otherwise.}
\end{cases} \]
Since $f \in \Gamma$ and $g \not\in \Gamma$ we have:

$$e \in R_{\Gamma} \implies \Phi_e(x) = g(x)$$

$$\implies \Phi_e \not\in \Gamma$$

$$\implies e \not\in R_{\Gamma}.$$
Likewise,

\[e \not\in R_{\Gamma} \implies \Phi_e(x) = f(x) \]
\[\implies \Phi_e \in \Gamma \]
\[\implies e \in R_{\Gamma}, \]

so either case leads to a contradiction.