Outline

1 Recapitulation

2 Numerical representation of Strings (Words)

3 A List of Primitive Recursive Functions
We seek to extend computations from numbers to words on certain alphabets.

- An **alphabet** is a finite non-empty set of **symbols**.
- A **word** is an n-tuple of symbols $w = (a_1, a_2, \ldots, a_n)$ written as $a_1 a_2 \cdots a_n$. Here n is the **length** of w denoted by $n = |w|$.
- If $|A| = m$, there are m^n words of length n.
- There is a unique word of length 0 denoted by 0.
The set of words over the alphabet A is denoted by A^*.

A *language* over the alphabet A is any subset of A^*.

We do not distinguish between the symbol a and the word a.

If u, v are words, we write uv for the word obtained by placing v after u.

Example

If $A = \{a, b, c\}$, $u = bab$, $v = caba$, then

$$uv = babcaba \text{ and } vu = cababab.$$

We have $u0 = 0u = u$ for every $u \in A^*$.
The set of words over the alphabet A is denoted by A^*.

A *language* over the alphabet A is any subset of A^*.

We do not distinguish between the symbol a and the word a.

If u, v are words, we write uv for the word obtained by placing v after u.

Example

If $A = \{a, b, c\}$, $u = bab$, $v = caba$, then

$$uv = babcaba \text{ and } vu = cababab.$$
Word product is **associative**, that is,

\[u(vw) = (uv)w \]

for \(u, v, w \in A^* \).

If either \(uv = uw \) or \(vu = wu \), then \(v = w \).

If \(u \) is a word and \(n > 0 \) we write

\[u^n = uu \cdots u \]

and \(u^0 = \lambda \).
Let $A = \{s_1, \ldots, s_n\}$ be an alphabet that consists of n symbols and let

$$w = s_{i_k} s_{i_{k-1}} \cdots s_{i_1} s_{i_0}$$

be a word in A^*. The integer associated with w is

$$x = i_k \cdot n^k + i_{k-1} \cdot n^{k-1} + \cdots + i_1 \cdot n + i_0.$$

The integer associated with the null word 0 (the word without symbols) is 0.
Example

Let $A = \{s_1, s_2, s_3\}$ be an alphabet that consists of 3 symbols. The number associated with the word $s_2s_1s_1s_3s_1$ is

\[
x = 2 \cdot 3^4 + 1 \cdot 3^3 + 1 \cdot 3^2 + 3 \cdot 3^1 + 1 \\
= 2 \cdot 81 + 1 \cdot 27 + 1 \cdot 9 + 3 \cdot 3 + 1 = 208.
\]
When an alphabet, say $A = \{a, b, c\}$ is used, we assume that the symbols a, b, c correspond to s_1, s_2, s_3. Then, the number that represents the word $w = baacb$ (which corresponds to $s_2 s_1 s_1 s_3 s_2$) is

$$2 \cdot 3^4 + 1 \cdot 3^3 + 1 \cdot 3^2 + 3 \cdot 3^1 + 2 = 209.$$
The representation of a word by a number is unique. This follows from the fact that we can retrieve the subscripts of the symbols from the numerical equivalent of the word.

Recall that:

- \(R(x, y) \) is the remainder when \(x \) is divided by \(y \).
- \(y \mid x \) is the predicate which is TRUE when \(y \) is a divisor of \(x \).
Define the **primitive recursive** functions

\[
R^+(x, y) = \begin{cases}
R(x, y) & \text{if } \sim (y|x) \\
y & \text{otherwise,}
\end{cases}
\]

\[
Q^+(x, y) = \begin{cases}
\lfloor x/y \rfloor & \text{if } \sim (y|x) \\
\lfloor x/y \rfloor - 1 & \text{otherwise.}
\end{cases}
\]

Theorem

We have

\[x = Q^+(x, y) \cdot y + R^+(x, y)\]

and \(0 < R^+(x, y) \leq y\).
Proof

The equality clearly holds as long as \(y \) is not a divisor of \(x \). If \(y \) divides \(x \) we have:

\[
\frac{x}{y} = \left\lfloor \frac{x}{y} \right\rfloor = \left(\left\lfloor \frac{x}{y} \right\rfloor \div 1 \right) + \frac{y}{y} = Q^+(x, y) + \frac{R^+(x, y)}{y}.
\]

This differs from ordinary division with reminders in that the “remainders” are permitted to take values between 1 and \(y \) rather than between 0 and \(y - 1 \).
Now, let $u_0 = x$ and $u_{m+1} = Q^+(u_m, n)$

Since we have

\[
\begin{align*}
 u_0 &= i_k \cdot n^k + i_{k-1} \cdot n^{k-1} + \cdots + i_1 \cdot n + i_0 \\
 u_1 &= i_k \cdot n^{k-1} + i_{k-1} \cdot n^{k-2} + \cdots + i_1 \\
 &\quad \vdots \\
 u_k &= i_k,
\end{align*}
\]

it follows that $i_m = R^+(u_m, n)$ for $0 \leq m \leq k$.
To summarize the previous cases for computing $R^+(x, y)$ and $Q^+(x, y)$ we write:

<table>
<thead>
<tr>
<th>y divides x</th>
<th>y does not divide x</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R^+(x, y) = y$</td>
<td>$R^+(x, y) = R(x, y)$</td>
</tr>
<tr>
<td>$Q^+(x, y) = \lfloor x/y \rfloor \div 1$</td>
<td>$Q^+(x, y) = \lfloor x/y \rfloor$.</td>
</tr>
</tbody>
</table>
Example

Let $S = \{s_1, s_2, s_3\}$ be an alphabet. Let us determine the word that has the numerical equivalent 208. We have $u_0 = 208$.

\[
i_0 = R^+(208, 3) = 1 \text{ since } \sim 3|208 \text{ and } u_1 = \lfloor 208/3 \rfloor = 69
\]
\[
i_1 = R^+(69, 3) = 3 \text{ since } 3|69 \text{ and } u_2 = \lfloor 69/3 \rfloor = 1 = 22
\]
\[
i_2 = R^+(22, 3) = 1 \text{ since } \sim 3|22 \text{ and } u_3 = \lfloor 22/3 \rfloor = 7
\]
\[
i_3 = R^+(7, 3) = 1 \text{ since } \sim 3|7 \text{ and } u_4 = \lfloor 7/3 \rfloor = 2
\]
\[
i_4 = R^+(2, 3) = 2
\]

Thus, the word we sought is $x = s_2s_1s_1s_3s_1$.
To compute u_{m+1} as $u_{m+1} = Q^+(u_m, n)$ we use the function $g(m, n, x) = u_m$. This function is primitive recursive because

$$g(0, n, x) = x,$$
$$g(m + 1, n, x) = Q^+(g(m, n, x), n).$$

If we let $h(m, n, x) = R^+(g(m, n, x), n)$, then h is also primitive recursive and $i_m = h(m, n, x)$ for $0 \leq m \leq k$.
Definition

Given the alphabet A that consists of s_1, \ldots, s_n in this order, the word $w = s_{i_k} s_{i_{k-1}} \cdots s_{i_1} s_{i_0}$ is the base n notation for the number x, where

$$x = i_k \cdot n^k + i_{k-1} \cdot n^{k-1} + \cdots + i_1 \cdot n + i_0.$$

Note that 0 is the base n notation for the null string for every n. This allows us to introduce the notion of m-ary partial function on A^* with values in A^* as being partially computable, or when is total, of being computable.
Subsets of A^* are languages over the alphabet A. By associating numbers with the words of A^* we can talk about recursive sets or $r.e.$ sets.

Let A be an alphabet with $|A| = n$, say $A = \{s_1, \ldots, s_n\}$.

Definition

For $m \geq 1$ let $\text{CONCAT}_n^{(m)}$ be defined as

\[
\text{CONCAT}_n^{(1)}(u) = u,
\]
\[
\text{CONCAT}_n^{(m+1)}(u_1, \ldots, u_m, u_{m+1}) = z u_{m+1},
\]

where $z = \text{CONCAT}_n^{(m)}(u_1, \ldots, u_m)$.

Thus, for u_1, \ldots, u_m, $\text{CONCAT}_n^{(m)}(u_1, \ldots, u_m)$ is the string obtained by placing the strings u_1, \ldots, u_m one after another. The superscript is usually omitted so we write

\[
\text{CONCAT}(s_2 s_1, s_1 s_1 s_2) = s_2 s_1 s_1 s_1 s_2.
\]
If we need to consider CONCAT as defining functions on \mathbb{N}, then note that:

- the string s_2s_1 in base 2 is $2 \cdot 2^1 + 1 = 5$;
- the string $s_1s_1s_2$ in base 2 is $1 \cdot 2^2 + 1 \cdot 2^1 + 2 = 8$;
- the string $s_2s_1s_1s_1s_2$ in base 2 is $2 \cdot 2^4 + 1 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^1 + 2 = 48$.

This allows us to write

$$\text{CONCAT}_2(5, 8) = 48.$$
Example

The length function $f(u) = |u|$ defined on A^* and taking values in \mathbb{N}.

For each x, the number $\sum_{j=0}^{x} n^j$ has the base n representation s_1^{x+1}; hence, this number is the smallest number whose base n representation contains $x + 1$ symbols.
Example

The function $\text{CONCAT}_n(u, v)$ is primitive recursive because

$$\text{CONCAT}_n(u, v) = u \cdot n^{|v|} + v.$$
Example

The function $\text{CONCAT}^{(m)}_{n}(u, v)$ is primitive recursive for each $m, n \geq 1$. This follows from

\[
\begin{align*}
\text{CONCAT}^{(1)}_{n}(u) &= u, \\
\text{CONCAT}^{(m+1)}_{n}(u_1, \ldots, u_m, u_{m+1}) &= zu_{m+1},
\end{align*}
\]

where $z = \text{CONCAT}^{(m)}_{n}(u_1, \ldots, u_m)$.
Example

The function $\text{RTEND}_n(w)$ which gives the rightmost symbol of a non-empty word w is primitive recursive because

$$\text{RTEND}_n(w) = h(0, n, w),$$

where $h(0, n, x) = R^+(g(0, n, x))$, previously defined.
Example

The function $\text{LTEND}_n(w)$ which gives the leftmost symbol of a non-empty word w is primitive recursive because

$$\text{LTEND}_n(w) = h(|w| - 1, n, w).$$
Example

The function \(\text{RTRUNC}_n(w) \) which gives the result of removing the rightmost symbol from a given non-empty word is primitive recursive because

\[
\text{RTRUNC}_n(w) = g(1, n, w).
\]

An alternative notation for \(\text{RTRUNC}_n(w) \) is \(w^- \).
Example

The function $\text{LTRUNC}_n(w)$ which gives the result of removing the leftmost symbol from a given non-empty word is primitive recursive because

$$\text{LTRUNC}_n(w) = w - i_k \cdot n^k.$$
Next, we discuss a pair of functions $\text{UPCHANGE}_{n,\ell}$ and $\text{DOWNCHANGE}_{n,\ell}$ that can be used to change base.

Let A be an alphabet with n symbols and A' be an alphabet with ℓ symbols, where $1 \leq n < \ell$. A string that belongs to A^* also belongs to $(A')^*$.

If $x \in \mathbb{N}$ and $w \in A^*$ is the word that represents x in basis n, then $\text{UPCHANGE}_{n,\ell}(x)$ is the number which w represents in basis ℓ.
Theorem

Let $0 < n < \ell$. Then the function $\text{UPCHANGE}_{n,\ell}$ and $\text{DOWNCHANGE}_{n,\ell}$ are computable.
Proof.

The next program computes $\text{UPCHANGE}_{n,\ell}$ by extracting the symbols of a word that the given number represents in basis n and uses them to compute the number that the given word represents in basis ℓ:

\[
\begin{align*}
[A] & \quad \text{IF } X = 0 \text{ GOTO E} \\
& \quad Z \leftarrow \text{LTEND}_n(X) \\
& \quad X \leftarrow \text{LTRUNC}_n(X) \\
& \quad Y \leftarrow \ell \cdot Y + Z \\
& \quad \text{GOTO A}
\end{align*}
\]
Proof cont’d

For $\text{DOWNCHANGE}_{n,\ell}$ the program will extract the symbols of the word that the given number represents in the base ℓ. These symbols will be added only if they belong to the smaller alphabet:

[A] \hspace{1em} \text{IF } X = 0 \text{ GOTO } E
\hspace{1em} Z \leftarrow \text{LTEND}(X)
\hspace{1em} X \leftarrow \text{LTRUNC}(X)
\hspace{1em} \text{IF } Z > n \text{ GOTO } A
\hspace{1em} Y \leftarrow n \cdot Y + Z
\hspace{1em} \text{GOTO } A