Outline

1. Macros for Use in S_n
2. Two Important Examples
3. The Languages S and S_n
4. Post-Turing Programs
5. Simulation of S_n in S
6. Simulating Instructions in S_n by Post-Turing Programs
7. Simulation of S in T
We introduce for each $n > 0$ a programming language S_n designed for string calculations on an alphabet with n symbols.
The instructions of S_n are:

- $V \leftarrow \sigma V$: place symbol σ at the left of V
- $V \leftarrow V^-$: delete the final symbol of the string that is the value of V; if the value is 0 leave it unchanged
- $V \leftarrow V$: do nothing instruction
- IF V ENDS σ GOTO L: if the value of V ends in σ then execute the first instruction with label L; otherwise proceed with next instruction
Example

Suppose that the alphabet A consists of the symbols s_1, s_2, s_3 and $x = s_3s_2s_2s_1$ is a string of length 4 on the alphabet V. The effect of the above instructions applied to x is shown below:

<table>
<thead>
<tr>
<th>Instr.</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x \leftarrow s_2x$</td>
<td>$s_2s_3s_2s_2s_1$</td>
</tr>
<tr>
<td>$x \leftarrow x^-$</td>
<td>$s_3s_2s_2$</td>
</tr>
<tr>
<td>$x \leftarrow x$</td>
<td>$s_3s_2s_2s_1$</td>
</tr>
<tr>
<td>IF x ENDS s_2 GOTO L</td>
<td>no effect</td>
</tr>
<tr>
<td>IF x ENDS s_1 GOTO L</td>
<td>jump to L</td>
</tr>
</tbody>
</table>
Also the instructions of S_n refer to strings, we can also think of them as referring to numbers that the strings represent.

Example

The numerical effect of $X \leftarrow s_iX$ in the n-symbol alphabet \{s_1, \ldots, s_n\} is to replace numerical value x by $i \cdot n^{|x|} + x$.
The macro

\[\text{IF } V \neq 0 \text{ GOTO } L \]

has the expression

\[\text{IF } V \text{ ENDS } s_1 \text{ GOTO } L \]
\[\text{IF } V \text{ ENDS } s_2 \text{ GOTO } L \]
\[\vdots \]
\[\text{IF } V \text{ ENDS } s_n \text{ GOTO } L \]
The macro $V \leftarrow 0$ has the expansion

\[[A] \quad V \leftarrow V^- \\
\text{IF } V \neq 0 \text{ GOTO } A \]
The macro

\textbf{GOTO } L

has the expansion

\begin{align*}
Z & \leftarrow 0 \\
Z & \leftarrow s_1 Z \\
\text{IF } Z \text{ ENDS } s_1 & \text{ GOTO } L
\end{align*}
The block of instructions

\[
\begin{align*}
\text{IF} & \text{ V ENDS } s_1 \text{ GOTO } B_1 \\
\text{IF} & \text{ V ENDS } s_2 \text{ GOTO } B_2 \\
& \vdots \\
\text{IF} & \text{ V ENDS } s_n \text{ GOTO } B_n
\end{align*}
\]

is abbreviated as

\[
\text{IF} \; V \; \text{ ENDS } \; s_i \; \text{ GOTO } \; B_i (1 \leq i \leq n)
\]
The macro $V' \leftarrow V$ has the expansion

\[
\begin{align*}
Z & \leftarrow 0 \\
V' & \leftarrow 0 \\
[A] & \quad \text{IF } V \text{ ENDS } s_i \text{ GOTO } B_i(1 \leq i \leq n) \\
& \quad \text{GOTO } C \\
[B_i] & \quad V \leftarrow V^- (\text{This group of 4 repeated for } 1 \leq i \leq n) \\
& \quad V' \leftarrow s_i V' \\
& \quad Z \leftarrow s_i Z \\
& \quad \text{GOTO } A(\text{end group}) \\
[C] & \quad \text{IF } Z \text{ ENDS } s_i \text{ GOTO } D_i(1 \leq i \leq n) \\
[D_i] & \quad Z \leftarrow Z^- \\
& \quad V \leftarrow s_i V \\
& \quad \text{GOTO } C
\end{align*}
\]
The function $x + 1$ is computable in S_n, as shown by the following flowchart.
Example

Start with the string $s = s_2s_1s_1s_3s_1$. The numerical values is 208. Strings produced by the algorithm are:

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>$s_2s_1s_1s_3$</td>
<td>s_2</td>
</tr>
<tr>
<td>$s_2s_1s_1$</td>
<td>s_3s_2</td>
</tr>
<tr>
<td>s_2s_1</td>
<td>$s_1s_3s_2$</td>
</tr>
<tr>
<td>s_2</td>
<td>$s_1s_1s_3s_2$</td>
</tr>
<tr>
<td>0</td>
<td>$s_2s_1s_1s_3s_2$</td>
</tr>
</tbody>
</table>

The value of Y is $2 \cdot 3^4 + 1 \cdot 3^3 + 1 \cdot 3^2 + 3 \cdot 3^1 + 2 = 209$.
Example

Start with the string $s = s_2s_1s_3s_3$. The numerical values is 75. Strings produced by the algorithm are:

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>$s_2s_1s_3$</td>
<td>s_1</td>
</tr>
<tr>
<td>s_2s_1</td>
<td>s_1s_1</td>
</tr>
<tr>
<td>s_2</td>
<td>$s_2s_1s_1$</td>
</tr>
<tr>
<td>0</td>
<td>$s_2s_2s_1s_1$</td>
</tr>
</tbody>
</table>

The value of Y is $2 \cdot 3^3 + 2 \cdot 3^2 + 1 \cdot 3^1 + 1 = 76$.
The previous flowchart corresponds to the program

[B] IF X ENDS s₁ GOTO Aᵢ (1 ≤ i ≤ n)
Y ← s₁ Y
GOTO E

[Aᵢ] X ← X⁻ (This group of 3 repeated for 1 ≤ i ≤ n)
Y ← sᵢ₊₁ Y
GOTO C

[Aₙ] X ← X⁻
Y ← s₁ Y
GOTO B

[C] IF X ENDS sᵢ GOTO Dᵢ (1 ≤ i ≤ n)
GOTO E

[Dᵢ] X ← X⁻ (This group of 3 repeated for 1 ≤ i ≤ n)
Y ← sᵢ Y
GOTO C
The function $x \div 1$ is computed by the following flowchart:
Example

Start with the string \(s = s_2s_1s_1s_3s_2 \) having the numerical value 209. The successive values of \(X \) and \(Y \) are:

<table>
<thead>
<tr>
<th>(X)</th>
<th>(Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s_2s_1s_3)</td>
<td>(s_1)</td>
</tr>
<tr>
<td>(s_2s_1s_1)</td>
<td>(s_3s_1)</td>
</tr>
<tr>
<td>(s_2s_1)</td>
<td>(s_1s_3s_1)</td>
</tr>
<tr>
<td>(s_2)</td>
<td>(s_1s_1s_3s_1)</td>
</tr>
<tr>
<td>0</td>
<td>(s_2s_1s_1s_3s_1)</td>
</tr>
</tbody>
</table>

The numerical equivalent is 208.
Example

Let $s = s_3s_2s_1s_1$ having the numerical equivalent
$3 \cdot 3^3 + 2 \cdot 3^2 + 1 \cdot 3^1 + 1 = 103$.

The successive values of X and Y are:

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>$s_3s_2s_1$</td>
<td>0</td>
</tr>
<tr>
<td>$s_3s_2s_1$</td>
<td>s_3 (carry is propagated)</td>
</tr>
<tr>
<td>s_3s_2</td>
<td>s_3s_3</td>
</tr>
<tr>
<td>s_3</td>
<td>$s_1s_3s_3$ (carry is absorbed)</td>
</tr>
<tr>
<td>0</td>
<td>$s_3s_1s_3s_3$</td>
</tr>
</tbody>
</table>

The numerical equivalent of $s_3s_1s_3s_3$ is 102.
The previous flowchart corresponds to the program

\[[B] \quad \text{IF } X \text{ ENDS } s_i \text{ GOTO } A \text{ (This is repeated for } 1 \leq i \leq n) \]
\[\quad \text{GOTO } E \]

\[[A_i] \quad X \leftarrow X^- \text{ (This group of 3 repeated for } 1 \leq i \leq n) \]
\[\quad Y \leftarrow s_{i-1} Y \]
\[\quad \text{GOTO C} \]

\[[A_1] \quad X \leftarrow X^- \]
\[\quad \text{IF } X \neq 0 \text{ GOTO } C_2 \]
\[\quad \text{GOTO } E \]

\[[C_2] \quad Y \leftarrow s_n Y \]
\[\quad \text{GOTO B} \]

\[[C] \quad \text{IF } X \text{ ENDS } s_i \text{ GOTO } D_i \text{ (This group of 2 repeated for } 1 \leq i \leq n) \]
\[\quad \text{GOTO } E \]

\[[D_i] \quad X \leftarrow X^- \text{ (This group of 3 repeated for } 1 \leq i \leq n) \]
\[\quad Y \leftarrow s_i Y \]
\[\quad \text{GOTO C} \]
In either S or S_n computations are really dealing with numbers and strings on an n letter alphabets are objects being used to represent numbers in the base n.

Theorem

A function f is partially computable if and only if it is partially computable in S_1.
Proof.

Note that the languages S and S_1 are the same. Indeed, the effect of the S_1 instructions

$$V \leftarrow s_1 V \text{ and } V \leftarrow V^-$$

is identical to the effect of the S instructions

$$V \leftarrow V + 1 \text{ and } V \leftarrow V - 1.$$

The condition $V \text{ ENDS } s_1$ in S_1 is equivalent to $V \neq 0$ in S.

Thus, the results involving S_n can be specialized to $n = 1$ to give results about S.

Theorem

If a function is partially computable, then it also partially computable in S_n for each n.

Proof.

Suppose f is computed by P in S. P is translated into a program in S_n by replacing instructions in P by a macro in S_n:

- $V \leftarrow V + 1$ is replaced by the macro $V \leftarrow V + 1$ in S_n;
- $V \leftarrow V - 1$ is replaced by the macro $V \leftarrow V \div 1$ in S_n;
- IF $V \neq 0$ GOTO L by the macro IF $V \neq 0$ GOTO L in S_n.

\(\mathcal{T} \) is another programming language for string manipulation named the Post-Turing language.

- there is a unique variable and its content is placed on a tape;
- the tape is divided into cells; each cell is able to contain a symbol of the alphabet \(A = \{s_1, \ldots, s_n\} \);
- there is a special symbol \(s_0 \) (also denoted by \(B \) and referred to as blank);
- only one symbol is observed at any given time.
- All but a finite number of cells contain B. The content of the tape is shown by exhibiting a finite portion of the tape containing the non-blank symbols.
- At any given moment only one tape symbol is being scanned by a head. This is indicated by an arrow.
- The head can move one square to the left or to the right of the square that is currently scanned.
This is indicated by writing

\[a_2 \ B \ a_3 \ a_1 \]
There are four types of instructions in the Post-Turing Language:

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRINT(\sigma)</td>
<td>replace the symbol on the square being scanned by (\sigma)</td>
</tr>
<tr>
<td>IF (\sigma) GOTO (L)</td>
<td>goto the first instruction labeled (L) if the symbol currently scanned is (\sigma); otherwise continue to the next instruction.</td>
</tr>
<tr>
<td>RIGHT</td>
<td>scan the square to the right of the current square.</td>
</tr>
<tr>
<td>LEFT</td>
<td>scan the square to the left of the current square.</td>
</tr>
</tbody>
</table>
To compute a partial function $f(x_1, \ldots, x_m)$ of m variables we start with the initial tape configuration

$$B \ x_1 \ B \ x_2 \ \cdots \ x_m$$

↑

The inputs are separated by single blanks, and the symbol initially scanned is the blank immediately at left of x_1.
Example

If $n = 1$, the alphabet is $\{s_1\}$. We want to compute a function $f(x_1, x_2)$ and the initial values are $x_1 = s_1 s_1$, $x_2 = s_1$. Then, the initial configuration is:

$$B \ s_1 \ s_1 \ B \ s_1$$
Example

$n = 2, \ x_1 = s_1 s_2, \ x_2 = s_2 s_1$. The initial configuration is

\[
\begin{array}{c}
B \ s_1 \ s_2 \ B \ s_2 \ s_1 \\
\uparrow
\end{array}
\]
Example

Suppose $n = 2$, $x_1 = 0$, $x_2 = s_1s_1$, $x_3 = s_2$. The tape configuration is

$$B \ B \ s_1 \ s_1 \ B \ s_2$$

\uparrow
Example

For $n = 2$, $x_1 = s_1S_2$, $x_2 = s_2s_1$, $x_3 = 0$ the tape configuration is initially

```
B s_1 s_2 B s_2 s_1 B
```

The number of arguments placed on tape must be provided externally.
An example of a Post-Turing program that begins with the input x and outputs s_2s_1x is

```
PRINT $s_1$
LEFT
PRINT $s_2$
LEFT
```

The program starts with

```
B $x$
```

and ends with

```
B $s_2$ $s_1$ $x$
```
Example

Suppose now that the alphabet is \(\{s_1, s_2, s_3\} \) and let \(x \in \{s_1, s_2, s_3\}^* \). Beginning with

\[
\begin{array}{c}
B \\ \\
\uparrow \\
\end{array}
\begin{array}{c}
x \\
\end{array}
\]

the program needs to halt with the tape configuration

\[
\begin{array}{c}
B \\ \\
\uparrow \\
x \\ s_1 \ s_1
\end{array}
\]

The computation proceeds by first moving right until the blank to the right of \(x \) is located. Then, \(s_1 \) is printed twice and then the computation moves to the left until first \(B \) is located.
Example cont’d

Example

[A] RIGHT
 IF \(s_1 \) GOTO A
 IF \(s_2 \) GOTO A
 IF \(s_3 \) GOTO A
 PRINT \(s_1 \)
 RIGHT
 PRINT \(s_1 \)

[C] LEFT
 IF \(s_1 \) GOTO C
 IF \(s_2 \) GOTO C
 IF \(s_3 \) GOTO C
Example

The alphabet is \(\{ s_1, s_2 \} \) and the next program aims to erase all occurrences of \(s_2 \) in the input string (that is, replace \(s_2 \) by \(B \)). For the purpose of reading output values from the tape, additional \(B \)s are ignored.
Example cont’d

Example

[C] RIGHT
 IF B GOTO E
 IF s₂ GOTO A
 IF s₁ GOTO C

[A] PRINT B
 IF B GOTO C

The function computed by this program satisfies

\[f(s₂s₁s₂) = s₁, \]
\[f(s₁s₂s₁) = s₁s₁. \]
Example

The previous program achieves the following computation:

\[
\begin{align*}
B \ s_1 \ s_2 \ s_1 \\
&
\uparrow
B \ s_1 \ s_2 \ s_1 \\
&
\uparrow
B \ s_1 \ s_2 \ s_1 \\
&
\uparrow
B \ s_1 \ B \ s_1 \\
&
\uparrow
\end{align*}
\]

ending with \(Bs_1Bs_1B\) on the tape.
Example

The next program uses three symbols: s_1 from the input alphabet \{s_1\}, B, and a marker symbol M. Beginning with the tape $B\ u\ \uparrow$

where u is a string in \{s_1\}*, the program terminates with a tape $B\ u\ B\ u\ \uparrow$
Example cont’d

<table>
<thead>
<tr>
<th>Example</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[A]</td>
<td>RIGHT</td>
</tr>
<tr>
<td></td>
<td>IF B GOTO E</td>
</tr>
<tr>
<td></td>
<td>PRINT M</td>
</tr>
<tr>
<td>[B]</td>
<td>RIGHT</td>
</tr>
<tr>
<td></td>
<td>IF (s_1) GOTO B</td>
</tr>
<tr>
<td>[C]</td>
<td>RIGHT</td>
</tr>
<tr>
<td></td>
<td>IF (s_1) GOTO C</td>
</tr>
<tr>
<td></td>
<td>PRINT (s_1)</td>
</tr>
<tr>
<td>[D]</td>
<td>LEFT</td>
</tr>
<tr>
<td></td>
<td>IF (s_1) GOTO D</td>
</tr>
<tr>
<td></td>
<td>IF B GOTO D</td>
</tr>
<tr>
<td></td>
<td>PRINT (s_1)</td>
</tr>
<tr>
<td></td>
<td>IF (s_1) GOTO A</td>
</tr>
</tbody>
</table>
Definition

A program P in T computes a function $f(x_1, \ldots, x_m)$ on the alphabet $\{s_1, \ldots, s_n\}$ if when started with a tape configuration

$$B \ x_1 \ B \ \cdots \ B \ x_m$$

it eventually halts if and only if $f(x_1, \ldots, x_m)$ is defined and if, on halting, the string $f(x_1, \ldots, x_m)$ can be read off the tape by ignoring all symbols other than s_1, \ldots, s_n.

Note that in the final configuration all markers and blanks are ignored.
A program \mathcal{P} computes f **strictly** if two additional conditions are met:

- no instruction in \mathcal{P} mentions other symbol than $s_0 = B, s_1, \ldots, s_n$, and
- whenever \mathcal{P} halts, the tape configuration is

$$
\cdots \ B \ B \ y \ B \ \cdots \\
\uparrow
$$

where $y = f(x_1, \ldots, x_m)$.

Thus, when \mathcal{P} computes f strictly, the output is available in a consecutive block of cells.
Theorem

If \(f(x_1, \ldots, x_m) \) is a partially computable function in \(S_n \), then there is a Post-Turing program that computes \(f \) strictly.

Proof.

Let \(P \) be a program in \(S_n \) that computes \(f \) using \(\ell = m + 1 + k \) variables that include the input variables \(X_1, \ldots, X_m \), the output variable \(Y \), and the local variables \(Z_1, \ldots, Z_k \). \(\square \)
Proof cont’d

Proof.

Let Q be a Post-Turing program that simulates P step by step. We must allocate space on the tape to accommodate the values of the ℓ variables. At the beginning of each simulated step the tape configuration is

$$B x_1 B x_2 B \cdots B x_m B z_1 B \cdots z_k B y$$

where $x_1, \ldots, x_m, z_1, \ldots, z_k, y$ are the current values of $X_1, \ldots, X_m, Z_1, \ldots, Z_k, Y$. \qed
Proof cont’d

Note that the initial tape configuration

\[B \ x_1 \ B \ x_2 \ B \ \cdots \ B \ x_m \]

\[\uparrow \]

is already in correct form because the remaining variables are initialized to 0.
Next, we show how to program the effect of each instruction in \(S \) in \(T \).
We discuss a number of macros in \mathcal{T}. The \mathcal{T} macro $\text{GOTO } L$ has the expansion

\begin{align*}
\text{IF } s_0 \text{ GOTO } L \\
\text{IF } s_1 \text{ GOTO } L \\
\vdots \\
\text{IF } s_n \text{ GOTO } L
\end{align*}
Proof cont’d

The T macro **RIGHT TO NEXT BLANK** has the expansion

\[
[A] \text{ RIGHT} \\
\text{ IF } B \text{ GOTO } E \\
\text{ GOTO } A
\]

Similarly, **LEFT TO NEXT BLANK** has the expansion

\[
[A] \text{ LEFT} \\
\text{ IF } B \text{ GOTO } E \\
\text{ GOTO } A
\]
The macro MOVE BLOCK RIGHT has the expansion

\[\begin{align*}
[C] & \quad \text{LEFT} \\
& \quad \text{IF } s_0 \text{ GOTO } A_0 \\
& \quad \text{IF } s_1 \text{ GOTO } A_1 \\
& \quad \vdots \\
& \quad \text{IF } s_n \text{ GOTO } A_n \\
[A_i] & \quad \text{RIGHT (This group of 4} \\
& \quad \text{PRINT } s_i \\
& \quad \text{LEFT} \\
& \quad \text{GOTO } C \text{ repeated for } 1 \leq i \leq n) \\
[A_0] & \quad \text{RIGHT} \\
& \quad \text{PRINT } B \\
& \quad \text{LEFT}
\end{align*}\]
The macro **ERASE A BLOCK** causes the head to move to the right with everything erased between the square at which it begins and the first blank to the right. It expansion is

```
[A]  RIGHT
    IF B GOTO E
    PRINT B
    GOTO A
```
Convention: a non-negative number between brackets after the name of a macro indicates that the macro is repeated that number of times.

Example

```
RIGHT TO NEXT BLANK[3]
```

is short for

```
RIGHT TO NEXT BLANK
RIGHT TO NEXT BLANK
RIGHT TO NEXT BLANK
```
Simulation rules:

- every simulation of an instruction of S_n begins and ends on the first blank;
- the value of V_i is written between the i^{th} blank and the $i + 1^{\text{st}}$ blank;
- if V_i is 0 we have two consecutive blanks: the i^{th} blank and the $i + 1^{\text{st}}$ blank.
Simulation of $V_j \leftarrow s_i V_j$:

To place s_i at the left of the j^{th} variable on the tape, the values of V_j, \ldots, V_ℓ must be all moved one square to the right to make room.

After s_i was inserted, the head must go back at the left of the value of V_1 to be ready for the next simulated instruction.

- RIGHT TO NEXT BLANK $[\ell]$
- MOVE BLOCK RIGHT $[\ell - j + 1]$
- RIGHT
- PRINT s_i
- LEFT TO NEXT BLANK $[j]$
Simulation of $V_j \leftarrow V_j^-$: difficulty is that if the value is 0 we need to leave it unchanged. By moving one square to the left we find two consecutive blanks.

RIGHT TO THE NEXT BLANK [j]
LEFT
IF B GOTO C
MOVE BLOCK RIGHT [j]
RIGHT
GOTO E
[C] LEFT TO NEXT BLANK [j − 1]
Finally, to simulate

\[
\text{IF } V_j \text{ ENDS } s_i \text{ GOTO } L
\]

we use

\[
\text{RIGHT TO NEXT BLANK } [j] \\
\text{LEFT} \\
\text{IF } s_i \text{ GOTO } C \\
\text{GOTO } D \\
[C] \text{ LEFT TO NEXT BLANK } [j] \\
\text{GOTO } L \\
[D] \text{ RIGHT} \\
\text{LEFT TO NEXT BLANK } [j]
\]
When simulation ends the tape configuration is
\[\cdots B B B x_1 \cdots x_n B z_1 B \cdots z_k y B B \cdots \]
\[\uparrow \]

At the end of the computation we need to have the tape configuration
\[\cdots B B B y B B B \cdots B B \cdots \]
\[\uparrow \]

To reach this configuration we put at the end of the Post-Turing program the following:

ERASE A BLOCK \([\ell - 1]\)

Thus, the program computes the function \(f \) strictly.
Consider the following statements:

1. f is partially computable;
2. f is partially computable in S_n;
3. f is strictly computed by a Post-Turing Program;
4. f is computed by a Post-Turing program.

So far we proved the implications

$$(1) \implies (2) \implies (3) \implies (4).$$

We are about to prove $(4) \implies (1)$ thereby showing that all statements are equivalent.
Theorem

If there is a Post-Turing that computes the partial function $f(x_1, \ldots, x_m)$ then f is partially computable.
Proof.

Let \mathcal{P} be a Post-Turing program that computes f. We need to construct a program Q in the language S that computes f. Q consists of three sections:

BEGINNING
MIDDLE
END

- BEGINNING arranges the input in Q in the appropriate format for MIDDLE.
- MIDDLE simulates \mathcal{P} in a step-by-step manner.
- END extracts the output.
The Post-Turing program makes use of B and perhaps some additional symbols s_{n+1}, \ldots, s_r in this order:

$$s_1, \ldots, s_n, s_{n+1}, \ldots, s_r, B$$

Q simulates P by using the numbers that strings on this alphabet represent in base $r + 1$ as codes for corresponding strings. B represents the number $r + 1$. For this reason, we will write B as s_{r+1}.

The tape configuration at a stage of P is tracked by Q using three numbers L, H, and R:

- the value of H is the numerical value of the symbol currently scanned
- the value of L is the numerical value in base $r + 1$ of a string w such that the content of the tape at the left of the head is $\cdots B B w$;
- the value of R is the numerical value in base $r + 1$ of a string z such that the content of the tape at the right of the head is $z B B \cdots$.
Example

For the tape configuration

\[
\cdots B B B B s_2 s_2 B s_3 s_1 s_2 B B \cdots
\]

↑

with \(r = 3 \) and the base 4, we have

\[
H = 3, \\
L = 2 \cdot 4^2 + 1 \cdot 4 + 4 = 40 \\
R = 1 \cdot 4 + 2 = 6.
\]
An instruction PRINTi is simulated by $H \leftarrow i$.

An instruction IF s_i GOTO L is simulated by

$$\text{IF } H = i \text{ GOTO } L$$
An instruction RIGHT is simulated by

\[
\begin{align*}
L & \leftarrow \text{CONCAT}_{r+1}(L, H) \\
H & \leftarrow \text{LTEND}_{r+1}(R) \\
R & \leftarrow \text{LTRUNC}_{r+1}(R) \\
\text{IF } R & \neq 0 \text{ GOTO } E \\
R & \leftarrow r + 1
\end{align*}
\]
An instruction LEFT is simulated by

\[
R \leftarrow \text{CONCAT}_{r+1}(H, R) \\
H \leftarrow \text{RTEND}_{r+1}(L) \\
L \leftarrow \text{RTRUNC}_{r+1}(L) \\
\text{IF } L \neq 0 \text{ GOTO } E \\
L \leftarrow r + 1
\]

The section MIDDLE of \(Q \) can be obtained by replacing each instruction by its simulation.
The BEGINNING and END section must deal with the fact that f is a function of m arguments on $\{s_1, \ldots, s_n\}^*$.

- Initial values of X_1, \ldots, X_m for Q are numbers that represent the input strings in base n.

- The BEGINNING section calculates the initial values of L, H, R that correspond to the tape configuration

 $$B \ x_1 \ B \ x_2 \ B \ \cdots \ B \ x_m$$

 \uparrow

 where the numbers x_1, \ldots, x_m are represented in base n notation.
the BEGINNING section is:

\[
\begin{align*}
L & \leftarrow r + 1 \\
H & \leftarrow r + 1 \\
Z_1 & \leftarrow \text{UPCHANGE}_{n,r+1}(X_1) \\
Z_2 & \leftarrow \text{UPCHANGE}_{n,r+1}(X_2) \\
& \vdots \\
Z_m & \leftarrow \text{UPCHANGE}_{n,r+1}(X_m) \\
R & \leftarrow \text{CONCAT}_{r+1}(Z_1, r + 1, Z_2, r + 1, \ldots, r + 1, \ldots, Z_m)
\end{align*}
\]
The END section consists of:

\[Z \leftarrow \text{CONCAT}_{r+1}(L, H, R) \]
\[Y \leftarrow \text{DOWNCHANGE}_{n,r+1}(Z). \]

This concludes the description of the program \(Q \).