1. Macros for Use in S_n

2. Two Important Examples

3. The Languages S and S_n

4. Post-Turing Programs

5. Simulation of S_n in S

6. Simulation of \mathcal{T} in S
We introduce for each $n > 0$ a programming language S_n designed for string calculations on an alphabet with n symbols.
The instructions of S_n are:

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V \leftarrow \sigma V$</td>
<td>place symbol σ at the left of V</td>
</tr>
<tr>
<td>$V \leftarrow V^-$</td>
<td>delete the final symbol of the string that is the value of V; if the value is 0 leave it unchanged</td>
</tr>
<tr>
<td>$V \leftarrow V$</td>
<td>do nothing instruction</td>
</tr>
<tr>
<td>IF V ENDS σ GOTO L</td>
<td>if the value of V ends in σ then execute the first instruction with label L; otherwise proceed with next instruction</td>
</tr>
</tbody>
</table>
Example

Suppose that the alphabet A consists of the symbols s_1, s_2, s_3 and $x = s_3s_2s_2s_1$ is a string of length 4 on the alphabet V. The effect of the above instructions applied to x is shown below:

<table>
<thead>
<tr>
<th>Instr.</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x \leftarrow s_2x$</td>
<td>$s_2s_3s_2s_2s_1$</td>
</tr>
<tr>
<td>$x \leftarrow \bar{x}$</td>
<td>$s_3s_2s_2$</td>
</tr>
<tr>
<td>$x \leftarrow x$</td>
<td>$s_3s_2s_2s_1$</td>
</tr>
<tr>
<td>IF x ENDS s_2 GOTO L</td>
<td>no effect</td>
</tr>
<tr>
<td>IF x ENDS s_1 GOTO L</td>
<td>jump to L</td>
</tr>
</tbody>
</table>
Also the instructions of S_n refer to strings, we can also think of them as referring to numbers that the strings represent.

Example

The numerical effect of $X \leftarrow s_i X$ in the n-symbol alphabet $\{s_1, \ldots, s_n\}$ is to replace numerical value x by $i \cdot n|x| + x$.
The macro

$$\text{IF } V \neq 0 \text{ GOTO } L$$

has the expression

$$\text{IF } V \text{ ENDS } s_1 \text{ GOTO } L$$
$$\text{IF } V \text{ ENDS } s_2 \text{ GOTO } L$$

...
$$\text{IF } V \text{ ENDS } s_n \text{ GOTO } L$$
The macro $V \leftarrow 0$ has the expansion

\[
[A] \quad V \leftarrow V^{-} \\
\text{IF } V \neq 0 \text{ GOTO } A
\]
The macro

GOTO L

has the expansion

Z ← 0
Z ← s_1 Z
IF Z ENDS s_1 GOTO L
The block of instructions

\[
\begin{align*}
\text{IF } V \text{ ENDS } s_1 & \text{ GOTO } B_1 \\
\text{IF } V \text{ ENDS } s_2 & \text{ GOTO } B_2 \\
& \vdots \\
\text{IF } V \text{ ENDS } s_n & \text{ GOTO } B_n
\end{align*}
\]

is abbreviated as

\[
\text{IF } V \text{ ENDS } s_i \text{ GOTO } B_i (1 \leq i \leq n)
\]
The macro $V' \leftarrow V$ has the expansion

$$
\begin{align*}
Z &\leftarrow 0 \\
V' &\leftarrow 0 \\
[A] &\quad \text{IF } V \text{ ENDS } s_i \text{ GOTO } B_i (1 \leq i \leq n) \\
&\quad \text{GOTO } C \\
[B_i] &\quad V \leftarrow V^- \text{(This group of 4 repeated for } 1 \leq i \leq n) \\
&\quad V' \leftarrow s_i V' \\
&\quad Z \leftarrow s_i Z \\
&\quad \text{GOTO } A \text{(end group)} \\
[C] &\quad \text{IF } Z \text{ ENDS } s_i \text{ GOTO } D_i (1 \leq i \leq n) \\
[D_i] &\quad Z \leftarrow Z^- \\
&\quad V \leftarrow s_i V \\
&\quad \text{GOTO } C
\end{align*}
$$
The function $x + 1$ is computable in S_n, as shown by the following flowchart.
Example

Start with the string \(s = s_2s_1s_1s_3s_1 \). The numerical values is 208. Strings produced by the algorithm are:

<table>
<thead>
<tr>
<th>(X)</th>
<th>(Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s_2s_1s_3)</td>
<td>(s_2)</td>
</tr>
<tr>
<td>(s_2s_1s_1)</td>
<td>(s_3s_2)</td>
</tr>
<tr>
<td>(s_2s_1)</td>
<td>(s_1s_3s_2)</td>
</tr>
<tr>
<td>(s_2)</td>
<td>(s_1s_1s_3s_2)</td>
</tr>
<tr>
<td>(0)</td>
<td>(s_2s_1s_1s_3s_2)</td>
</tr>
</tbody>
</table>

The value of \(Y \) is \(2 \cdot 3^4 + 1 \cdot 3^3 + 1 \cdot 3^2 + 3 \cdot 3^1 + 2 = 209 \).
Example

Start with the string $s = s_2s_1s_3s_3$. The numerical values is 75. Strings produced by the algorithm are:

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>$s_2s_1s_3$</td>
<td>s_1</td>
</tr>
<tr>
<td>s_2s_1</td>
<td>s_1s_1</td>
</tr>
<tr>
<td>s_2</td>
<td>$s_2s_1s_1$</td>
</tr>
<tr>
<td>0</td>
<td>$s_2s_2s_1s_1$</td>
</tr>
</tbody>
</table>

The value of Y is $2 \cdot 3^3 + 2 \cdot 3^2 + 1 \cdot 3^1 + 1 = 76$.
The previous flowchart corresponds to the program

\[[B] \quad \text{IF } X \text{ ENDS } s_1 \text{ GOTO } A_i (1 \leq i \leq n) \]
\[Y \leftarrow s_1 Y \]
\[\text{GOTO } E \]

\[[A_i] \quad X \leftarrow X^- \text{ (This group of 3 repeated for } 1 \leq i \leq n) \]
\[Y \leftarrow s_{i+1} Y \]
\[\text{GOTO } C \]

\[[A_n] \quad X \leftarrow X^- \]
\[Y \leftarrow s_1 Y \]
\[\text{GOTO } B \]

\[[C] \quad \text{IF } X \text{ ENDS } s_i \text{ GOTO } D_i (1 \leq i \leq n) \]
\[\text{GOTO } E \]

\[[D_i] \quad X \leftarrow X^- \text{ (This group of 3 repeated for } 1 \leq i \leq n) \]
\[Y \leftarrow s_i Y \]
\[\text{GOTO } C \]
The function $x \div 1$ is computed by the following flowchart:
Example

Start with the string $s = s_2s_1s_1s_3s_2$ having the numerical value 209. The successive values of X and Y are:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$s_2s_1s_1s_3$</td>
<td>s_1</td>
</tr>
<tr>
<td>$s_2s_1s_1$</td>
<td>s_3s_1</td>
</tr>
<tr>
<td>s_2s_1</td>
<td>$s_1s_3s_1$</td>
</tr>
<tr>
<td>s_2</td>
<td>$s_1s_1s_3s_1$</td>
</tr>
<tr>
<td>0</td>
<td>$s_2s_1s_1s_3s_1$</td>
</tr>
</tbody>
</table>

The numerical equivalent is 208.
Example

Let \(s = s_3s_2s_1s_1 \) having the numerical equivalent
\[3 \cdot 3^3 + 2 \cdot 3^2 + 1 \cdot 3^1 + 1 = 103. \]
The successive values of \(X \) and \(Y \) are:

<table>
<thead>
<tr>
<th>(X)</th>
<th>(Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s_3s_2s_1)</td>
<td>0</td>
</tr>
<tr>
<td>(s_3s_2s_1)</td>
<td>(s_3) (carry is propagated)</td>
</tr>
<tr>
<td>(s_3s_2)</td>
<td>(s_3s_3)</td>
</tr>
<tr>
<td>(s_3)</td>
<td>(s_1s_3s_3) (carry is absorbed)</td>
</tr>
<tr>
<td>0</td>
<td>(s_3s_1s_3s_3)</td>
</tr>
</tbody>
</table>

The numerical equivalent of \(s_3s_1s_3s_3 \) is 102.
The previous flowchart corresponds to the program

\[[B] \quad \text{IF } X \text{ ENDS } s_i \text{ GOTO } A \text{ (This is repeated for } 1 \leq i \leq n) \\
\quad \text{GOTO } E \]

\[[A_i] \quad X \leftarrow X^- \text{ (This group of 3 repeated for } 1 \leq i \leq n) \\
\quad Y \leftarrow s_{i-1}Y \\
\quad \text{GOTO } C \]

\[[A_1] \quad X \leftarrow X^- \\
\quad \text{IF } X \neq 0 \text{ GOTO } C_2 \\
\quad \text{GOTO } E \]

\[[C_2] \quad Y \leftarrow s_nY \\
\quad \text{GOTO } B \]

\[[C] \quad \text{IF } X \text{ ENDS } s_i \text{ GOTO } D_i \text{ (This group of 2 repeated for } 1 \leq i \leq n) \\
\quad \text{GOTO } E \]

\[[D_i] \quad X \leftarrow X^- \text{ (This group of 3 repeated for } 1 \leq i \leq n) \\
\quad Y \leftarrow s_iY \\
\quad \text{GOTO } C \]
In either S or S_n computations are really dealing with numbers and strings on an n letter alphabets are objects being used to represent numbers in the base n.

Theorem

*A function f is partially computable if and only if it is partially computable in S_1.***
Proof.

Note that the languages S and S_1 are the same. Indeed, the effect of the S_1 instructions

$$V \leftarrow s_1 V \text{ and } V \leftarrow V^-$$

is identical to the effect of the S instructions

$$V \leftarrow V + 1 \text{ and } V \leftarrow V - 1.$$

The condition V ENDS s_1 in S_1 is equivalent to $V \neq 0$ in S.

Thus, the results involving S_n can be specialized to $n = 1$ to give results about S.

Theorem

If a function is partially computable, then it also partially computable in S_n for each n.

Proof.

Suppose f is computed by P in S. P is translated into a program in S_n by replacing instructions in P by a macro in S_n:

- $V \leftarrow V + 1$ is replaced by the macro $V \leftarrow V + 1$ in S_n;
- $V \leftarrow V - 1$ is replaced by the macro $V \leftarrow V - 1$ in S_n;
- IF $V \neq 0$ GOTO L by the macro IF $V \neq 0$ GOTO L in S_n.

\blacksquare
\mathcal{T} is another programming language for string manipulation named the Post-Turing language.

- there is a unique variable and its content is placed on a tape;
- the tape is divided into cells; each cell is able to contain a symbol of the alphabet $A = \{s_1, \ldots, s_n\}$;
- there is a special symbol s_0 (also denoted by B and referred to as blank);
- only one symbol is observed at any given time.
- All **but a finite number of cells** contain \(B \). The content of the tape is shown by exhibiting a finite portion of the tape containing the non-blank symbols.

- At any given moment only one tape symbol is being scanned by a **head**. This is indicated by an arrow.

- The head can move one square to the left or to the right of the square that is currently scanned.
This is indicated by writing

\[a_2 \ B \ a_3 \ a_1 \]
There are four types of instructions in the Post-Turing Language:

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRINT$_\sigma$</td>
<td>replace the symbol on the square being scanned by σ</td>
</tr>
<tr>
<td>IF σ GOTO L</td>
<td>goto the first instruction labeled L if the symbol currently scanned is σ; otherwise continue to the next instruction.</td>
</tr>
<tr>
<td>RIGHT</td>
<td>scan the square to the right of the current square.</td>
</tr>
<tr>
<td>LEFT</td>
<td>scan the square to the left of the current square.</td>
</tr>
</tbody>
</table>
To compute a partial function $f(x_1, \ldots, x_m)$ of m variables we start with the initial tape configuration

$$B \ x_1 \ B \ x_2 \ \cdots \ x_m$$

The inputs are separated by single blanks, and the symbol initially scanned is the blank immediately at left of x_1.
Example

If $n = 1$, the alphabet is $\{s_1\}$. We want to compute a function $f(x_1, x_2)$ and the initial values are $x_1 = s_1s_1$, $x_2 = s_1$. Then, the initial configuration is:

$$B \ s_1 \ s_1 \ B \ s_1$$
Example

\[n = 2, \ x_1 = s_1 s_2, \ x_2 = s_2 s_1. \]\n
The initial configuration is

\[B \ s_1 \ s_2 \ B \ s_2 \ s_1 \]

↑
Example

Suppose $n = 2$, $x_1 = 0$, $x_2 = s_1 s_1$, $x_3 = s_2$. The tape configuration is

```
B B s_1 s_1 B s_2
```

↑
Example

For $n = 2$, $x_1 = s_1 s_2$, $x_2 = s_2 s_1$, $x_3 = 0$ the tape configuration is initially

$$B \ s_1 \ s_2 \ B \ s_2 \ s_1 \ B$$

The number of arguments placed on tape must be provided externally.
An example of a Post-Turing program that begins with the input x and outputs s_2s_1x is

```
PRINTs_1
LEFT
PRINTs_2
LEFT
```

The program starts with

```
B x
```

and ends with

```
B s_2 s_1 x
```
Example

Suppose now that the alphabet is \(\{s_1, s_2, s_3\} \) and let \(x \in \{s_1, s_2, s_3\}^* \). Beginning with

\[
B \ x \\
\uparrow
\]

the program needs to halt with the tape configuration

\[
B \ x \ s_1 \ s_1 \\
\uparrow
\]

The computation proceeds by first moving right until the blank to the right of \(x \) is located. Then, \(s_1 \) is printed twice and then the computation moves to the left until first \(B \) is located.
Example cont’d

Example

[A] RIGHT
 IF \(s_1 \) GOTO A
 IF \(s_2 \) GOTO A
 IF \(s_3 \) GOTO A
 PRINT \(s_1 \)
 RIGHT
 PRINT \(s_1 \)

[C] LEFT
 IF \(s_1 \) GOTO C
 IF \(s_2 \) GOTO C
 IF \(s_3 \) GOTO C
Example

The alphabet is \(\{s_1, s_2\} \) and the next program aims to erase all occurrences of \(s_2 \) in the input string (that is, replace \(s_2 \) by \(B \)). For the purpose of reading output values from the tape, additional \(B \)s are ignored.
Example cont’d

Example

[C] RIGHT
 IF B GOTO E
 IF \(s_2 \) GOTO A
 IF \(s_1 \) GOTO C

[A] PRINT B
 IF B GOTO C

The function computed by this program satisfies

\[
\begin{align*}
 f(s_2 s_1 s_2) &= s_1, \\
 f(s_1 s_2 s_1) &= s_1 s_1.
\end{align*}
\]
Example

The previous program achieves the following computation:

\[
\begin{align*}
B & ~s_1 ~s_2 ~s_1 \\
\uparrow & \\
B & ~s_1 ~s_2 ~s_1 \\
\uparrow & \\
B & ~s_1 ~s_2 ~s_1 \\
\uparrow & \\
B & ~s_1 ~B ~s_1 \\
\uparrow & \\
\end{align*}
\]

ending with \(Bs_1 Bs_1 B\) on the tape.
We discuss a number of macros in \mathcal{T}. The \mathcal{T} macro $\text{GOTO } L$ has the expansion

$$
\text{IF } s_0 \text{ GOTO } L \\
\text{IF } s_1 \text{ GOTO } L \\
\vdots \\
\text{IF } s_n \text{ GOTO } L
$$
The \mathcal{T} macro **RIGHT TO NEXT BLANK** has the expansion

```
[A]    RIGHT
    IF $B$ GOTO $E$
    GOTO $A$
```

Similarly, **LEFT TO NEXT BLANK** has the expansion

```
[A]    LEFT
    IF $B$ GOTO $E$
    GOTO $A$
```
The macro **MOVE BLOCK RIGHT** has the expansion

```
[C]  LEFT
    IF $s_0$ GOTO $A_0$
    IF $s_1$ GOTO $A_1$
    ...
    IF $s_n$ GOTO $A_n$

[A_i]  RIGHT
    PRINT $s_i$
    LEFT
    GOTO $C$

[A_0]  RIGHT
    PRINT $B$
    LEFT
```

this group of 4 instructions is executed for $1 \leq i \leq n$
The macro **ERASE A BLOCK** causes the head to move to the right with everything erased between the square at which it begins and the first blank to the right. Its expansion is

```
[A]   RIGHT
    IF B GOTO E
    PRINT B
    GOTO A
```
Convention: a non-negative number between brackets after the name of a macro indicates that the macro is repeated that number of times.

Example

RIGHT TO NEXT BLANK[3]

is short for

RIGHT TO NEXT BLANK
RIGHT TO NEXT BLANK
RIGHT TO NEXT BLANK
Exercise in class!
The next program uses three symbols: s_1 from the input alphabet \{s_1\}, B, and a marker symbol M. Beginning with the tape $B \ u$

\uparrow

where u is a string in \{s_1\}*, the program terminates with a tape $B \ u \ B \ u$

\uparrow
A program P in T computes a function $f(x_1, \ldots, x_m)$ on the alphabet $\{s_1, \ldots, s_n\}$ if when started with a tape configuration

$$B \ x_1 \ B \ \cdots \ B \ x_m$$

it eventually halts if and only if $f(x_1, \ldots, x_m)$ is defined and if, on halting, the string $f(x_1, \ldots, x_m)$ can be read off the tape by ignoring all symbols other than s_1, \ldots, s_n.

Note that in the final configuration all markers and blanks are ignored.
A program P computes f strictly if two additional conditions are met:

- no instruction in P mentions other symbol than $s_0 = B, s_1, \ldots, s_n$, and
- whenever P halts, the tape configuration is

\[
\cdots B B y B \cdots
\]

where $y = f(x_1, \ldots, x_m)$.

Thus, when P computes f strictly, the output is available in a consecutive block of cells.
Theorem

If \(f(x_1, \ldots, x_m) \) is a partially computable function in \(S_n \), then there is a Post-Turing program that computes \(f \) strictly.

Proof.

Let \(\mathcal{P} \) be a program in \(S_n \) that computes \(f \) using \(\ell = m + 1 + k \) variables that include the input variables \(X_1, \ldots, X_m \), the output variable \(Y \), and the local variables \(Z_1, \ldots, Z_k \).

The list of variables

\[
X_1, \ldots, X_m, Y, Z_1, \ldots, Z_k
\]

will be denoted by

\[
V_1, \ldots, V_\ell.
\]
Proof.

Let Q be a Post-Turing program that simulates P step by step. We must allocate space on the tape to accommodate the values of the ℓ variables. At the beginning of each simulated step the tape configuration is

\[
B \ x_1 \ B \ x_2 \ B \ \cdots \ B \ x_m \ B \ z_1 \ B \ \cdots \ z_k \ B \ y
\]

where $x_1, \ldots, x_m, z_1, \ldots, z_k, y$ are the current values of $X_1, \ldots, X_m, Z_1, \ldots, Z_k, Y$. \hfill \square
Proof cont’d

Note that the initial tape configuration

\[B \ x_1 \ B \ x_2 \ B \ \cdots \ B \ x_m \]

\[\uparrow \]

is already in correct form because the remaining variables are initialized to 0.
Next, we show how to program the effect of each instruction in \(S \) in \(\mathcal{T} \).
Proof cont’d

Simulating Instructions in S_n by Post-Turing Programs:

- every simulation of an instruction of S_n begins and ends on the first blank;
- the value of V_i is written between the i^{th} blank and the $i + 1^{st}$ blank;
- if V_i is 0 we have two consecutive blanks: the i^{th} blank and the $i + 1^{st}$ blank.
Proof cont’d

Simulation of \(V_j \leftarrow s_i V_j \):

To place \(s_i \) at the left of the \(j^{th} \) variable on the tape, the values of \(V_j, \ldots, V_\ell \) must be all moved one square to the right to make room.

After \(s_i \) was inserted, the head must go back at the left of the value of \(V_1 \) to be ready for the next simulated instruction.

RIGHT TO NEXT BLANK [\(\ell \)]
MOVE BLOCK RIGHT [\(\ell - j + 1 \)]
RIGHT
PRINT \(s_i \)
LEFT TO NEXT BLANK [\(j \)]
Proof cont’d

Simulation of $V_j \leftarrow V_j^-$: difficulty is that if the value is 0 we need to leave it unchanged. By moving one square to the left we find two consecutive blanks.

RIGHT TO THE NEXT BLANK $[j]$
LEFT
IF B GOTO C
MOVE BLOCK RIGHT $[j]$
RIGHT
GOTO E
[C] LEFT TO NEXT BLANK $[j-1]$
Proof cont’d

Finally, to simulate

IF V_j ENDS s_i GOTO L

we use

RIGHT TO NEXT BLANK $[j]$
LEFT
IF s_i GOTO C
 GOTO D
[C] LEFT TO NEXT BLANK $[j]$
 GOTO L
[D] RIGHT
 LEFT TO NEXT BLANK $[j]$
When simulation ends the tape configuration is

\[\cdots \mathcal{B} \mathcal{B} \mathcal{B} x_1 \cdots x_n \mathcal{B} z_1 \mathcal{B} \cdots z_k \mathcal{B} y \mathcal{B} \mathcal{B} \cdots \]

\[\uparrow \]

At the end of the computation we need to have the tape configuration

\[\cdots \mathcal{B} \mathcal{B} \mathcal{B} y \mathcal{B} \mathcal{B} \mathcal{B} \cdots \mathcal{B} \mathcal{B} \cdots \]

\[\uparrow \]

To reach this configuration we put at the end of the Post-Turing program the following:

\[\text{ERASE A BLOCK } [\ell - 1] \]

Thus, the program computes the function \(f \) strictly.
Consider the following statements:

1. \(f \) is partially computable;
2. \(f \) is partially computable in \(S_n \);
3. \(f \) is strictly computed by a Post-Turing Program;
4. \(f \) is computed by a Post-Turing program.

So far we proved the implications

\[(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4).\]

We are about to prove \((4) \Rightarrow (1)\) thereby showing that all statements are equivalent.
Theorem

If there is a Post-Turing that computes the partial function $f(x_1, \ldots, x_m)$ then f is partially computable.
Proof.

Let \(P \) be a Post-Turing program that computes \(f \). We need to construct a program \(Q \) in the language \(S \) that computes \(f \). \(Q \) consists of three sections:

BEGINNING
MIDDLE
END

- BEGINNING arranges the input in \(Q \) in the appropriate format for MIDDLE.
- MIDDLE simulates \(P \) in a step-by-step manner.
- END extracts the output.
The Post-Turing program makes use of B and perhaps some additional symbols s_{n+1}, \ldots, s_r in this order:

$$s_1, \ldots, s_n, s_{n+1}, \ldots, s_r, B$$

Q simulates P by using the numbers that strings on this alphabet represent in base $r + 1$ as codes for corresponding strings. B represents the number $r + 1$. For this reason, we will write B as s_{r+1}.

The tape configuration at a stage of P is tracked by Q using three numbers L, H, and R:

- the value of H is the numerical value of the symbol currently scanned
- the value of L is the numerical value in base $r + 1$ of a string w such that the content of the tape at the left of the head is $\cdots B B w$;
- the value of R is the numerical value in base $r + 1$ of a string z such that the content of the tape at the right of the head is $z B B \cdots$.
Example

For the tape configuration

\[\cdots B B B B s_2 s_1 B s_3 s_1 s_2 B B \cdots \]

with \(r = 3 \) and the base 4, we have

\[
\begin{align*}
H & = 3, \\
L & = 2 \cdot 4^2 + 1 \cdot 4 + 4 = 40 \\
R & = 1 \cdot 4 + 2 = 6.
\end{align*}
\]
An instruction PRINT i is simulated by $H \leftarrow i$.

An instruction IF s_i GOTO L is simulated by

$$\text{IF } H = i \text{ GOTO } L$$
An instruction RIGHT is simulated by

\[L \leftarrow \text{CONCAT}_{r+1}(L, H) \]
\[H \leftarrow \text{LTEND}_{r+1}(R) \]
\[R \leftarrow \text{LTRUNC}_{r+1}(R) \]
\[\text{IF } R \neq 0 \text{ GOTO } E \]
\[R \leftarrow r + 1 \]
An instruction LEFT is simulated by

\[
R \leftarrow \text{CONCAT}_{r+1}(H, R) \\
H \leftarrow \text{RTEND}_{r+1}(L) \\
L \leftarrow \text{RTRUNC}_{r+1}(L) \\
\text{IF } L \neq 0 \text{ GOTO } E \\
L \leftarrow r + 1
\]

The section MIDDLE of \(Q \) can be obtained by replacing each instruction by its simulation.
The BEGINNING and END section must deal with the fact that f is a function of m arguments on $\{s_1, \ldots, s_n\}^*$.

- Initial values of X_1, \ldots, X_m for Q are numbers that represent the input strings in base n.

- The BEGINNING section calculates the initial values of L, H, R that correspond to the tape configuration

$$B \ x_1 \ B \ x_2 \ B \ \cdots \ B \ x_m$$

where the numbers x_1, \ldots, x_m are represented in base n notation.
the BEGINNING section is:

\[
\begin{align*}
L & \leftarrow r + 1 \\
H & \leftarrow r + 1 \\
Z_1 & \leftarrow \text{UPCHANGE}_{n,r+1}(X_1) \\
Z_2 & \leftarrow \text{UPCHANGE}_{n,r+1}(X_2) \\
& \quad \vdots \\
Z_m & \leftarrow \text{UPCHANGE}_{n,r+1}(X_m) \\
R & \leftarrow \text{CONCAT}_{r+1}(Z_1, r + 1, Z_2, r + 1, \ldots, r + 1, \ldots, Z_m)
\end{align*}
\]
The END section consists of:

\[Z \leftarrow \text{CONCAT}_{r+1}(L, H, R) \]
\[Y \leftarrow \text{DOWNCHANGE}_{n,r+1}(Z). \]

This concludes the description of the program \(Q \).