Outline

1. Macros for Use in S_n
2. Two Important Examples
3. The Languages S and S_n
4. Post-Turing Programs
5. Simulation of S_n in S
6. Simulating Instructions in S_n by Post-Turing Programs
7. Simulation of S in T
We introduce for each $n > 0$ a programming language S_n designed for string calculations on an alphabet with n symbols.
The instructions of S_n are:

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V \leftarrow \sigma V$</td>
<td>place symbol σ at the left of V</td>
</tr>
<tr>
<td>$V \leftarrow V^-$</td>
<td>delete the final symbol of the string that is the value of V; if the value is 0 leave it unchanged</td>
</tr>
<tr>
<td>$V \leftarrow V$</td>
<td>do nothing instruction</td>
</tr>
<tr>
<td>IF V ENDS σ GOTO L</td>
<td>if the value of V ends in σ then execute the first instruction with label L; otherwise proceed with next instruction</td>
</tr>
</tbody>
</table>
Also the instructions of S_n refer to strings, we can also think of them as referring to numbers that the strings represent.

Example

The numerical effect of $X \leftarrow s_iX$ in the n-symbol alphabet $\{s_1, \ldots, s_n\}$ is to replace numerical value x by $i \cdot n^{|x|} + x$.
The macro

\[\text{IF } V \neq 0 \text{ GOTO } L \]

has the expression

\[
\begin{align*}
\text{IF } V \text{ ENDS } s_1 \text{ GOTO } L \\
\text{IF } V \text{ ENDS } s_2 \text{ GOTO } L \\
\vdots \\
\text{IF } V \text{ ENDS } s_n \text{ GOTO } L
\end{align*}
\]
The macro $V \leftarrow 0$ has the expansion

$$[A] \quad V \leftarrow V^-$$

IF $V \neq 0$ GOTO A
The macro

GOTO \(L \)

has the expansion

\[Z \leftarrow 0 \]
\[Z \leftarrow s_1 Z \]
\[\text{IF } Z \text{ ENDS } s_1 \text{ GOTO } L \]
The block of instructions

\[
\begin{align*}
&\text{IF } V \text{ ENDS } s_1 \text{ GOTO } B_1 \\
&\text{IF } V \text{ ENDS } s_2 \text{ GOTO } B_2 \\
&\vdots \\
&\text{IF } V \text{ ENDS } s_n \text{ GOTO } B_n
\end{align*}
\]

is abbreviated as

\[
\text{IF } V \text{ ENDS } s_i \text{ GOTO } B_i(1 \leq i \leq n)
\]
The macro $V' \leftarrow V$ has the expansion

$$
Z \leftarrow 0 \\
V' \leftarrow 0 \\
[A] \quad \text{IF } V \text{ ENDS } s_i \quad \text{GOTO } B_i (1 \leq i \leq n) \\
\quad \text{GOTO } C \\
[B_i] \quad V \leftarrow V^- (\text{This group of 4 repeated for } 1 \leq i \leq n) \\
\quad V' \leftarrow s_i V' \\
\quad Z \leftarrow s_i Z \\
\quad \text{GOTO } A (\text{end group}) \\
[C] \quad \text{IF } Z \text{ ENDS } s_i \quad \text{GOTO } D_i (1 \leq i \leq n) \\
[D_i] \quad Z \leftarrow Z^- \\
\quad V \leftarrow s_i V \\
\quad \text{GOTO } C
$$
The function $x + 1$ is computable in S_n, as shown by the following flowchart.

```plaintext
begin
    TEST X

    Y ← s₁ Y
    X ← X⁻
    Y ← sᵢ Y

    x = 0
    TEST X
    x ends sᵢ, i < n
    X ← X⁻
    Y ← sᵢ+₁ Y

    Carry propagates
    x ends sₙ

END
```
Example

Start with the string $s = s_2 s_1 s_1 s_3 s_1$. The numerical values is 208. Strings produced by the algorithm are:

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>$s_2 s_1 s_1 s_3$</td>
<td>s_2</td>
</tr>
<tr>
<td>$s_2 s_1 s_1$</td>
<td>$s_3 s_2$</td>
</tr>
<tr>
<td>$s_2 s_1$</td>
<td>$s_1 s_3 s_2$</td>
</tr>
<tr>
<td>s_2</td>
<td>$s_1 s_1 s_3 s_2$</td>
</tr>
<tr>
<td>0</td>
<td>$s_2 s_1 s_1 s_3 s_2$</td>
</tr>
</tbody>
</table>

The value of Y is $2 \cdot 3^4 + 1 \cdot 3^3 + 1 \cdot 3^2 + 3 \cdot 3^1 + 2 = 209$.
Example

Start with the string $s = s_2s_1s_3s_3$. The numerical values is 75. Strings produced by the algorithm are:

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>$s_2s_1s_3$</td>
<td>s_1</td>
</tr>
<tr>
<td>s_2s_1</td>
<td>s_1s_1</td>
</tr>
<tr>
<td>s_2</td>
<td>$s_2s_1s_1$</td>
</tr>
<tr>
<td>0</td>
<td>$s_2s_2s_1s_1$</td>
</tr>
</tbody>
</table>

The value of Y is $2 \cdot 3^3 + 2 \cdot 3^2 + 1 \cdot 3^1 + 1 = 76$.
The previous flowchart corresponds to the program

\[B \quad \text{IF } X \text{ ENDS } s_1 \text{ GOTO } A_i (1 \leq i \leq n) \]
\[Y \leftarrow s_1 Y \]
\[\text{GOTO } E \]

\[A_i \quad X \leftarrow X^- \quad (\text{This group of 3 repeated for } 1 \leq i \leq n) \]
\[Y \leftarrow s_{i+1} Y \]
\[\text{GOTO } C \]

\[A_n \quad X \leftarrow X^- \]
\[Y \leftarrow s_1 Y \]
\[\text{GOTO } B \]

\[C \quad \text{IF } X \text{ ENDS } s_i \text{ GOTO } D_i (1 \leq i \leq n) \]
\[\text{GOTO } E \]

\[D_i \quad X \leftarrow X^- \quad (\text{This group of 3 repeated for } 1 \leq i \leq n) \]
\[Y \leftarrow s_i Y \]
\[\text{GOTO } C \]
The function $x \div 1$ is computed by the following flowchart:
Example

Start with the string $s = s_2 s_1 s_1 s_3 s_2$ having the numerical value 209. The successive values of X and Y are:

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>$s_2 s_1 s_1 s_3$</td>
<td>s_1</td>
</tr>
<tr>
<td>$s_2 s_1 s_1$</td>
<td>$s_3 s_1$</td>
</tr>
<tr>
<td>$s_2 s_1$</td>
<td>$s_1 s_3 s_1$</td>
</tr>
<tr>
<td>s_2</td>
<td>$s_1 s_1 s_3 s_1$</td>
</tr>
<tr>
<td>0</td>
<td>$s_2 s_1 s_1 s_3 s_1$</td>
</tr>
</tbody>
</table>

The numerical equivalent is 208.
Example

Let $s = s_3 s_2 s_1 s_1$ having the numerical equivalent
$3 \cdot 3^3 + 2 \cdot 3^2 + 1 \cdot 3^1 + 1 = 103$.

The successive values of X and Y are:

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>$s_3 s_2 s_1$</td>
<td>0</td>
</tr>
<tr>
<td>$s_3 s_2 s_1$</td>
<td>s_3 (carry is propagated)</td>
</tr>
<tr>
<td>$s_3 s_2$</td>
<td>$s_3 s_3$</td>
</tr>
<tr>
<td>s_3</td>
<td>$s_1 s_3 s_3$ (carry is absorbed)</td>
</tr>
<tr>
<td>0</td>
<td>$s_3 s_1 s_3 s_3$</td>
</tr>
</tbody>
</table>

The numerical equivalent of $s_3 s_1 s_3 s_3$ is 102.
The previous flowchart corresponds to the program

[B] IF X ENDS s_i GOTO A (This is repeated for $1 \leq i \leq n$)
 GOTO E

[A_i] $X \leftarrow X^{-}$ (This group of 3 repeated for $1 \leq i \leq n$)
 $Y \leftarrow s_i Y$
 GOTO C

[A_1] $X \leftarrow X^{-}$
 IF $X \neq 0$ GOTO C_2
 GOTO E

[C_2] $Y \leftarrow s_n Y$
 GOTO B

[C] IF X ENDS s_i GOTO D_i (This group of 2 repeated for $1 \leq i \leq n$)
 GOTO E

[D_i] $X \leftarrow X^{-}$ (This group of 3 repeated for $1 \leq i \leq n$)
 $Y \leftarrow s_i Y$
 GOTO C
In either S or S_n computations are really dealing with numbers and strings on an n letter alphabets are objects being used to represent numbers in the base n.

Theorem

*A function f is partially computable if and only if it is partially computable in S_1.***
Proof.

Note that the languages S and S_1 are the same. Indeed, the effect of the S_1 instructions

$$V \leftarrow s_1 V \text{ and } V \leftarrow V^-$$

is identical to the effect of the S instructions

$$V \leftarrow V + 1 \text{ and } V \leftarrow V - 1.$$

The condition V ENDS s_1 in S_1 is equivalent to $V \neq 0$ in S.

Thus, the results involving S_n can be specialized to $n = 1$ to give results about S.

Theorem

*If a function is partially computable, then it also partially computable in S_n for each n."

Proof.

Suppose f is computed by P in S. P is translated into a program in S_n by replacing instructions in P by a macro in S_n:

- $V \leftarrow V + 1$ is replaced by the macro $V \leftarrow V + 1$ in S_n;
- $V \leftarrow V - 1$ is replaced by the macro $V \leftarrow V - 1$ in S_n;
- IF $V \neq 0$ GOTO L by the macro IF $V \neq 0$ GOTO L in S_n.
\(\mathcal{T} \) is another programming language for string manipulation named the **Post-Turing** language.

- there is a unique variable and its content is placed on a **tape**;
- the tape is divided into **cells**; each cell is able to contain a symbol of the alphabet \(A = \{s_1, \ldots, s_n\} \);
- there is a special symbol \(s_0 \) (also denoted by \(B \) and referred to as **blank**);
- only one symbol is observed at any given time.
- All **but a finite number of cells** contain B. The content of the tape is shown by exhibiting a finite portion of the tape containing the non-blank symbols.
- At any given moment only one tape symbol is being scanned by a head. This is indicated by an arrow.
- The head can move one square to the left or to the right of the square that is currently scanned.
This is indicated by writing

\[a_2 B a_3 a_1 \]
There are four types of instructions in the Post-Turing Language:

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRINT$_\sigma$</td>
<td>replace the symbol on the square being scanned by σ</td>
</tr>
<tr>
<td>IF σ GOTO L</td>
<td>goto the first instruction labeled L if the symbol currently scanned is σ; otherwise continue to the next instruction.</td>
</tr>
<tr>
<td>RIGHT</td>
<td>scan the square to the right of the current square.</td>
</tr>
<tr>
<td>LEFT</td>
<td>scan the square to the left of the current square.</td>
</tr>
</tbody>
</table>
To compute a partial function \(f(x_1, \ldots, x_m) \) of \(m \) variables we start with the initial tape configuration

\[
B \ x_1 \ B \ x_2 \ \cdots \ x_m
\]

↑

The inputs are separated by single blanks, and the symbol initially scanned is the blank immediately at left of \(x_1 \).
Example

If $n = 1$, the alphabet is \{s_1\}. We want to compute a function $f(x_1, x_2)$ and the initial values are $x_1 = s_1s_1$, $x_2 = s_1$. Then, the initial configuration is:

$$
\begin{array}{c}
B & s_1 & s_1 & B & s_1 \\
\uparrow
\end{array}
$$
Example

$n = 2, x_1 = s_1 s_2, x_2 = s_2 s_1$. The initial configuration is

\[B \ s_1 \ s_2 \ B \ s_2 \ s_1 \]
Example

Suppose $n = 2$, $x_1 = 0$, $x_2 = s_1 s_1$, $x_3 = s_2$. The tape configuration is

$$B B s_1 s_1 B s_2$$

↑
Example

For $n = 2$, $x_1 = s_1 S_2$, $x_2 = s_2 s_1$, $x_3 = 0$ the tape configuration is initially

\[
\begin{array}{ccccccc}
B & s_1 & s_2 & B & s_2 & s_1 & B \\
\uparrow
\end{array}
\]

The number of arguments placed on tape must be provided externally.
An example of a Post-Turing program that begins with the input x and outputs s_2s_1x is

```
PRINT $s_1$
LEFT
PRINT $s_2$
LEFT
```

The program starts with

```
B x
↑
```

and ends with

```
B s_2 s_1 x
↑
```
Example

Suppose now that the alphabet is \{s_1, s_2, s_3\} and let \(x \in \{s_1, s_2, s_3\}^*\). Beginning with

\[
B \ x
\]

\[
\uparrow
\]

the program needs to halt with the tape configuration

\[
B \ x \ s_1 \ s_1
\]

\[
\uparrow
\]

The computation proceeds by first moving right until the blank to the right of \(x\) is located. Then, \(s_1\) is printed twice and then the computation moves to the left until first \(B\) is located.
Example cont’d

Example

[A] RIGHT
 IF \(s_1 \) GOTO A
 IF \(s_2 \) GOTO A
 IF \(s_3 \) GOTO A
 PRINT\(s_1 \)
 RIGHT
 PRINT\(s_1 \)

[C] LEFT
 IF \(s_1 \) GOTO C
 IF \(s_2 \) GOTO C
 IF \(s_3 \) GOTO C
Example

The alphabet is \(\{s_1, s_2\} \) and the next program aims to erase all occurrences of \(s_2 \) in the input string (that is, replace \(s_2 \) by \(B \)). For the purpose of reading output values from the tape, additional \(B \)s are ignored.
Example cont’d

Example

[C] RIGHT
 IF B GOTO E
 IF s_2 GOTO A
 IF s_1 GOTO C

[A] PRINT B
 IF B GOTO C

The function computed by this program satisfies

\[f(s_2 s_1 s_2) = s_1, \]
\[f(s_1 s_2 s_1) = s_1 s_1. \]
Example

The previous program achieves the following computation:

\[B \ s_1 \ s_2 \ s_1 \]
\[\uparrow \]
\[B \ s_1 \ s_2 \ s_1 \]
\[\uparrow \]
\[B \ s_1 \ s_2 \ s_1 \]
\[\uparrow \]
\[B \ s_1 \ B \ s_1 \]
\[\uparrow \]

ending with \(Bs_1 Bs_1 B \) on the tape.
Example

The next program uses three symbols: s_1 from the input alphabet $\{s_1\}$, B, and a \textbf{marker symbol} M. Beginning with the tape $B \ u$

\begin{align*}
\uparrow
\end{align*}

where u is a string in $\{s_1\}^*$, the program terminates with a tape $B \ u \ B \ u$

\begin{align*}
\uparrow
\end{align*}
Example cont’d

Example

[A] RIGHT
 IF B GOTO E
 PRINT M

[B] RIGHT
 IF s₁ GOTO B

[C] RIGHT
 IF s₁ GOTO C
 PRINT s₁

[D] LEFT
 IF s₁ GOTO D
 IF B GOTO D
 PRINT s₁
 IF s₁ GOTO A
Definition

A program P in T computes a function $f(x_1, \ldots, x_m)$ on the alphabet $\{s_1, \ldots, s_n\}$ if when started with a tape configuration

$$B \ x_1 \ B \ \cdots \ B \ x_m \uparrow$$

it eventually halts if and only if $f(x_1, \ldots, x_m)$ is defined and if, on halting, the string $f(x_1, \ldots, x_m)$ can be read off the tape by ignoring all symbols other than s_1, \ldots, s_n.

Note that in the final configuration all markers and blanks are ignored.
A program \mathcal{P} computes f strictly if two additional conditions are met:

- no instruction in \mathcal{P} mentions other symbol than $s_0 = B, s_1, \ldots, s_n$, and
- whenever \mathcal{P} halts, the tape configuration is

$$\cdots \ B \ B \ y \ B \ \cdots$$

↑

where $y = f(x_1, \ldots, x_m)$.
Thus, when \mathcal{P} computes f strictly, the output is available in a consecutive block of cells.
Theorem

If \(f(x_1, \ldots, x_m) \) is a partially computable function in \(S_n \), then there is a Post-Turing program that computes \(f \) strictly.

Proof.

Let \(\mathcal{P} \) be a program in \(S_n \) that computes \(f \) using \(\ell = m + 1 + k \) variables that include the input variables \(X_1, \ldots, X_m \), the output variable \(Y \), and the local variables \(Z_1, \ldots, Z_k \). \(\square \)
Proof cont’d

Proof.

Let Q be a Post-Turing program that simulates P step by step. We must allocate space on the tape to accommodate the values of the ℓ variables. At the beginning of each simulated step the tape configuration is

$$B \ x_1 \ B \ x_2 \ B \ \cdots \ B \ x_m \ B \ z_1 \ B \ \cdots \ z_k \ B \ y$$

where $x_1, \ldots, x_m, z_1, \ldots, z_k, y$ are the current values of $X_1, \ldots, X_m, Z_1, \ldots, Z_k, Y$.

\square
Proof cont’d

Note that the initial tape configuration

\[B \ x_1 \ B \ x_2 \ B \ \cdots \ B \ x_m \]

\[\uparrow \]

is already in correct form because the remaining variables are initialized to 0.
Next, we show how to program the effect of each instruction in \(S \) in \(\mathcal{T} \).

Proof cont’d

We discuss a number of macros in T.
The T macro $\text{GOTO } L$ has the expansion

\[
\text{IF } s_0 \text{ GOTO } L \\
\text{IF } s_1 \text{ GOTO } L \\
\vdots \\
\text{IF } s_n \text{ GOTO } L
\]
Proof cont’d

The \mathcal{T} macro **RIGHT TO NEXT BLANK** has the expansion

$$[A] \text{ RIGHT}
\text{ IF } B \text{ GOTO } E
\text{ GOTO } A$$

Similarly, **LEFT TO NEXT BLANK** has the expansion

$$[A] \text{ LEFT}
\text{ IF } B \text{ GOTO } E
\text{ GOTO } A$$
Proof cont’d

The macro **MOVE BLOCK RIGHT** has the expansion

\[
\begin{align*}
[C] & \quad \text{LEFT} \\
& \quad \text{IF } s_0 \text{ GOTO } A_0 \\
& \quad \text{IF } s_1 \text{ GOTO } A_1 \\
& \quad \vdots \\
& \quad \text{IF } s_n \text{ GOTO } A_n \\
[A_i] & \quad \text{RIGHT (This group of 4} \\
& \quad \text{PRINT} s_i \\
& \quad \text{LEFT} \\
& \quad \text{GOTO } C \text{ repeated for } 1 \leq i \leq n) \\
[A_0] & \quad \text{RIGHT} \\
& \quad \text{PRINT} B \\
& \quad \text{LEFT}
\end{align*}
\]
The macro **ERASE A BLOCK** causes the head to move to the right with everything erased between the square at which it begins and the first blank to the right. Its expansion is

\[
\begin{align*}
[A] & \quad \text{RIGHT} \\
& \quad \text{IF } B \text{ GOTO } E \\
& \quad \text{PRINT } B \\
& \quad \text{GOTO } A
\end{align*}
\]
Convention: a non-negative number between brackets after the name of a macro indicates that the macro is repeated that number of times.

Example

RIGHT TO NEXT BLANK[3]

is short for

RIGHT TO NEXT BLANK
RIGHT TO NEXT BLANK
RIGHT TO NEXT BLANK
Simulation rules:

- every simulation of an instruction of S_n begins and ends on the first blank;
- the value of V_i is written between the i^{th} blank and the $i + 1^{st}$ blank;
- if V_i is 0 we have two consecutive blanks: the i^{th} blank and the $i + 1^{st}$ blank.
Simulation of $V_j \leftarrow s_i V_j$:

To place s_i at the left of the j^{th} variable on the tape, the values of V_j, \ldots, V_ℓ must be all moved one square to the right to make room.

After s_i was inserted, the head must go back at the left of the value of V_1 to be ready for the next simulated instruction.

RIGHT TO NEXT BLANK [ℓ]
MOVE BLOCK RIGHT [$\ell - j + 1$]
RIGHT
PRINTs_i
LEFT TO NEXT BLANK [j]
Simulation of $V_j \leftarrow V_j^-$: difficulty is that if the value is 0 we need to leave it unchanged. By moving one square to the left we find two consecutive blanks.

RIGHT TO THE NEXT BLANK $[j]$
LEFT
IF B GOTO C
MOVE BLOCK RIGHT $[j]$
RIGHT
GOTO E
[C] LEFT TO NEXT BLANK $[j - 1]$
Finally, to simulate

\[
\text{IF } V_j \text{ ENDS } s_i \text{ GOTO } L
\]

we use

\[
\begin{align*}
\text{RIGHT TO NEXT BLANK } [j] \\
\text{LEFT} \\
\text{IF } s_i \text{ GOTO } C \\
\text{GOTO } D \\
[C] \text{ LEFT TO NEXT BLANK } [j] \\
\text{GOTO } L \\
[D] \text{ RIGHT} \\
\text{LEFT TO NEXT BLANK } [j]
\end{align*}
\]
When simulation ends the tape configuration is

\[\cdots B B B x_1 \cdots x_n B z_1 B \cdots z_k y B B \cdots \]

↑

At the end of the computation we need to have the tape configuration

\[\cdots B B B y B B B \cdots B B \cdots \]

↑

To reach this configuration we put at the end of the Post-Turing program the following:

ERASE A BLOCK \([\ell - 1]\)

Thus, the program computes the function \(f \) strictly.
Consider the following statements:

1. \(f \) is partially computable;
2. \(f \) is partially computable in \(S_n \);
3. \(f \) is strictly computed by a Post-Turing Program;
4. \(f \) is computed by a Post-Turing program.

So far we proved the implications

\[(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4).\]

We are about to prove \((4) \Rightarrow (1)\) thereby showing that all statements are equivalent.
Theorem

If there is a Post-Turing that computes the partial function $f(x_1, \ldots, x_m)$ then f is partially computable.
Proof.

Let \mathcal{P} be a Post-Turing program that computes f. We need to construct a program \mathcal{Q} in the language \mathcal{S} that computes f. \mathcal{Q} consists of three sections:

- BEGINNING
- MIDDLE
- END

- BEGINNING arranges the input in \mathcal{Q} in the appropriate format for MIDDLE.
- MIDDLE simulates \mathcal{P} in a step-by-step manner.
- END extracts the output.
The Post-Turing program makes use of B and perhaps some additional symbols s_{n+1}, \ldots, s_r in this order:

$$s_1, \ldots, s_n, s_{n+1}, \ldots, s_r, B$$

Q simulates P by using the numbers that strings on this alphabet represent in base $r + 1$ as codes for corresponding strings. B represents the number $r + 1$. For this reason, we will write B as s_{r+1}.

The tape configuration at a stage of P is tracked by Q using three numbers L, H, and R:

- the value of H is the numerical value of the symbol currently scanned
- the value of L is the numerical value in base $r + 1$ of a string w such that the content of the tape at the left of the head is $\cdots B B w$;
- the value of R is the numerical value in base $r + 1$ of a string z such that the content of the tape at the right of the head is $z B B \cdots$.
Example

For the tape configuration

\[\cdots B B B B s_2 s_2 B s_3 s_1 s_2 B B \cdots \]

↑

with \(r = 3 \) and the base 4, we have

\[
H = 3,
\]

\[
L = 2 \cdot 4^2 + 1 \cdot 4 + 4 = 40
\]

\[
R = 1 \cdot 4 + 2 = 6.
\]
An instruction PRINTi is simulated by $H ← i$.
An instruction IF s_i GOTO L is simulated by

$$\text{IF } H = i \text{ GOTO } L$$
An instruction RIGHT is simulated by

\[
\begin{align*}
L & \leftarrow \text{CONCAT}_{r+1}(L, H) \\
H & \leftarrow \text{LTEND}_{r+1}(R) \\
R & \leftarrow \text{LTRUNC}_{r+1}(R) \\
\text{IF } R \neq 0 & \text{ GOTO } E \\
R & \leftarrow r + 1
\end{align*}
\]
An instruction LEFT is simulated by

\[R \leftarrow \text{CONCAT}_{r+1}(H, R) \]
\[H \leftarrow \text{RTEND}_{r+1}(L) \]
\[L \leftarrow \text{RTRUNC}_{r+1}(L) \]
\[\text{IF } L \neq 0 \text{ GOTO } E \]
\[L \leftarrow r + 1 \]

The section MIDDLE of \(Q \) can be obtained by replacing each instruction by its simulation.
The BEGINNING and END section must deal with the fact that \(f \) is a function of \(m \) arguments on \(\{s_1, \ldots, s_n\}^* \).

- Initial values of \(X_1, \ldots, X_m \) for \(Q \) are numbers that represent the input strings in base \(n \).

- The BEGINNING section calculates the initial values of \(L, H, R \) that correspond to the tape configuration

\[
B \ x_1 \ B \ x_2 \ B \ \cdots \ B \ x_m
\]

where the numbers \(x_1, \ldots, x_m \) are represented in base \(n \) notation.
the BEGINNING section is:

\[L \leftarrow r + 1 \]
\[H \leftarrow r + 1 \]
\[Z_1 \leftarrow \text{UPCHANGE}_{n,r+1}(X_1) \]
\[Z_2 \leftarrow \text{UPCHANGE}_{n,r+1}(X_2) \]
\[\vdots \]
\[Z_m \leftarrow \text{UPCHANGE}_{n,r+1}(X_m) \]
\[R \leftarrow \text{CONCAT}_{r+1}(Z_1, r + 1, Z_2, r + 1, \ldots, r + 1, Z_m) \]
The END section consists of:

\[Z \leftarrow \text{CONCAT}_{r+1}(L, H, R) \]
\[Y \leftarrow \text{DOWNCHANGE}_{n,r+1}(Z). \]

This concludes the description of the program \(Q \).