Outline

1. Rigorous Definition of Syntax of S
2. Computable Functions
3. More about Macros
The symbols

\[X_1 \; X_2 \; X_3 \; \ldots \]

are called *input variables*;

the symbols

\[Z_1 \; Z_2 \; Z_3 \; \ldots \]

are called *local variables*;

\(Y \) is the *output variable*;

the symbols

\[A_1 \; B_1 \; C_1 \; D_1 \; E_1 \; A_2 \; B_2 \; \ldots \]

are the *labels* of \(S \).
A *statement* is one of the following

\[
V \leftarrow V + 1 \\
V \leftarrow V - 1 \\
V \leftarrow V \\
\text{IF } V \neq 0 \text{ GOTO } L,
\]

where V may be any variable and L may be any label.

An *instruction* is either a statement (also called unlabeled instruction) or [L] followed by a statement.
A *program* is a finite sequence of instructions. The length of this list is called the *length* of the program. The *empty program* is the program of length 0.

Definition

A *state of a program* \mathcal{P} is a list of equations of the form $X = m$, where X is a variable and $m \in \mathbb{N}$ such that

- the list includes an equation for each variable that occurs in \mathcal{P}, and
- no two equations involve the same variable.
Example

| [A] | IF $X \neq 0$ GOTO B
| | $Z \rightarrow Z + 1$
| | IF $Z \neq 0$ GOTO E
| [B] | $X \leftarrow X - 1$
| | $Y \leftarrow Y + 1$
| | $Z \rightarrow Z + 1$
| | IF $Z \neq 0$ GOTO A

STATES:

\[X = 4, \ Y = 3, \ Z = 3 \]

A state need not be attained by the program.

\[X_1 = 4, \ X_2 = 5, \ Y = 4, \ Z = 4 \]

Variables that do not occur may also be included.

\[X = 3, \ Z = 3 \] is not a state because Y is not included.

\[X = 3, \ X = 4, \ Y = 2, \ Z = 2 \]

is not a state because X appears twice.
Definition

Let σ be a state of a program \mathcal{P} and let V be a variable that occurs in σ.
The value of V is the unique number q such that the equation $V = q$ is one of the equations that make up σ.

Example

The value of X at the state $X = 4, Y = 3, Z = 3$ is 4.
Definition

A *snapshot* or *instantaneous description* of a program \(\mathcal{P} \) of length \(n \) is a pair \((i, \sigma)\), where \(1 \leq i \leq n + 1 \), and \(\sigma \) is a state of \(\mathcal{P} \).

Intuition: \(i \) indicates that it is the \(i^{\text{th}} \) instruction that is about to be executed; \(i = n + 1 \) corresponds to a “stop” instruction and the snapshot \((n + 1, \sigma)\) is said to be a *terminal snapshot*.
The successor snapshot

The successor snapshot of \((i, \sigma)\) is the snapshot \((j, \tau)\) defined as follows:

- if the \(i^{\text{th}}\) instruction of \(P\) is \(V \leftarrow V + 1\) and \(\sigma\) contains the equation \(V = m\), then \(j = i + 1\) and \(\tau\) is obtained from \(\sigma\) by replacing \(V = m\) by \(V = m + 1\);

- if the \(i^{\text{th}}\) instruction of \(P\) is \(V \leftarrow V - 1\) and \(\sigma\) contains the equation \(V = m\), then \(j = i + 1\) and \(\tau\) is obtained from \(\sigma\) by replacing \(V = m\) by \(V = m - 1\) if \(m \neq 0\); if \(m = 0\), then \(\tau = \sigma\);

- if the \(i^{\text{th}}\) instruction of \(P\) is \(V \leftarrow V\) then \(\tau = \sigma\) and \(j = i + 1\);
The successor snapshot cont’d

- if the i^{th} instruction of \mathcal{P} is IF $V \neq 0$ GOTO L, then $\tau = \sigma$
 and we may have two subcases:
 - if σ contains the equation $V = 0$, then $j = i + 1$;
 - if σ contains the equation $V = m$ where $m \neq 0$, then if there
 is an instruction of \mathcal{P} labeled L, then j is the least number
 such that the j^{th} instruction is labeled L; otherwise, $j = n + 1$.
Example

Consider again the program shown in Slide 6:

[A] IF $X \neq 0$ GOTO B
 $Z \rightarrow Z + 1$
 IF $Z \neq 0$ GOTO E

[B] $X \leftarrow X - 1$
 $Y \leftarrow Y + 1$
 $Z \rightarrow Z + 1$
 IF $Z \neq 0$ GOTO A

Let σ be the state $X = 4, Y = 0, Z = 0$.
For $i = 1$, the successor is $(4, \sigma)$
For $i = 2$, the successor is $(3, \tau)$
where τ consists of
$X = 4, Y = 0, Z = 1$.
For $i = 7$ the successor is $(8, \sigma)$ which is terminal.
Definition

A *computation* of a program \mathcal{P} is defined as a sequence (s_1, s_2, \ldots, s_k) of snapshots of \mathcal{P} such that s_{i+1} is a successor of s_i for $1 \leq i \leq k - 1$ and s_k is terminal.
A program may contain more than one instruction having the same label.
The definition of the successor snapshot implies that a branch instruction as always referring to the FIRST statement of the program having the label in question.
Example

The program

\[
[A] \quad X \leftarrow X - 1 \\
\text{IF } X \neq 0 \text{ GOTO } A \\
[A] \quad X \leftarrow X + 1
\]

is equivalent to the program

\[
[A] \quad X \leftarrow X - 1 \\
\text{IF } X \neq 0 \text{ GOTO } A \\
X \leftarrow X + 1
\]
Let \mathcal{P} be a program in the language \mathcal{S} and let r_1, \ldots, r_m be m given numbers. Form the state σ of \mathcal{P} that consists of:

- the equations $X_1 = r_1, X_2 = r_2, \ldots, X_m = r_m, Y = 0,$
- and of equations of the form $V = 0$ for each variable V in \mathcal{P} other than X_1, \ldots, X_n and Y.

This is the *initial state* σ of \mathcal{P} and $(1, \sigma)$ is the *initial snapshot*.
Definition

The *m-argument function* \(\psi_P^{(m)} \) computed by the program \(P \) is:

- If there is a computation \(s_1, \ldots, s_k \) of \(P \) beginning with the initial snapshot \(s_1 \) then \(\psi_P^{(m)}(r_1, \ldots, r_m) \) is the value of \(Y \) at the terminal snapshot.

- If there is no such finite computation, that is if there is an infinite computation \(s_1, s_2, \ldots \) then \(\psi_P^{(m)}(r_1, \ldots, r_m) \) is undefined.
Very important: a program may be used with any number of inputs.

- If a program has n input variables but only $m < n$ are specified, the remaining input variables are set to 0 and the computation proceeds.
- If $m > n$ the extra input variables are ignored.
Example

Consider again the program with explicit line numbers:

[A] IF X ≠ 0 GOTO B (1)
 Z → Z + 1 (2)
 IF Z ≠ 0 GOTO E (3)
[B] X ← X − 1 (4)
 Y ← Y + 1 (5)
 Z → Z + 1 (6)
 IF Z ≠ 0 GOTO A (7)

Snapshots
(1, {X = 3, Y = 0, Z = 0})
(4, {X = 3, Y = 0, Z = 0})
(5, {X = 2, Y = 0, Z = 0})
(6, {X = 2, Y = 1, Z = 1})
(7, {X = 3, Y = 1, Z = 1})
(1, {X = 3, Y = 1, Z = 1})
:
(1, {X = 0, Y = 3, Z = 3})
(2, {X = 0, Y = 3, Z = 3})
(3, {X = 0, Y = 3, Z = 4})
(8, {X = 0, Y = 3, Z = 4})
As previously mentioned, we are permitting each program to be used with any number of inputs.

If a program has n input variables, but only $m < n$ are specified, the remaining input variables are set to 0 and the computation proceeds.

If m values are specified, where $m > n$, the extra input variables are ignored.
For any program \mathcal{P} and any positive integer m, the function $\psi^{(m)}_{\mathcal{P}}(x_1, \ldots, x_m)$ is said to be computed by \mathcal{P}.

A partial function g is said to be partially computable if it is computed by some program. That is, g is partially computable if there exists a program \mathcal{P} such that

$$g(r_1, \ldots, r_m) = \psi^{(m)}_{\mathcal{P}}(r_1, \ldots, r_m)$$

When one side of this equation is undefined, then so is the other side.
A function g of m variables is **total** if $g(r_1, \ldots, r_m)$ is defined for all r_1, \ldots, r_m.

A function is **computable** if it is both partially computable and total.

Example

The functions $x, x + y, x \cdot y$ are computable; the function $x - y$ is partially computable.
Example

For the program

```
[A] X ← X + 1
    IF X ≠ 0 GOTO A
```

the one-argument function $\psi_{P}^{1}(x)$ is undefined for all x. So, the nowhere defined function must be included in the class of partially computed functions.
Let f be a partially computable function computed by a program \mathcal{P}. We make the following assumptions:

- the variables in \mathcal{P} belong to the list $Y, X_1, \ldots, X_n, Z_1, \ldots, Z_k$;
- the labels in \mathcal{P} are included in the list E, A_1, \ldots, A_ℓ;
- for each instruction $\text{IF } V \neq 0 \text{ GOTO } A$ there is an instruction in \mathcal{P} labeled A (that is, E is the single exit label).

Then \mathcal{P} is written as:

$$\mathcal{P} = \mathcal{P}(Y, X_1, \ldots, X_n, Z_1, \ldots, Z_k; E, A_1, \ldots, A_\ell).$$
The notation

\[P = \mathcal{P}(Y, X_1, \ldots, X_n, Z_1, \ldots, Z_k; E, A_1, \ldots, A_\ell) \]

can be used to write:

\[Q = \mathcal{P}(Z_m, Z_{m+1}, \ldots, Z_{m+n}, Z_{m+n+1}, \ldots, Z_{m+n+k}; E_m, A_{m+1}, \ldots, A_{m+\ell}) \]

to denote a program obtained from \(\mathcal{P} \) by replacing the variables and labels by others.
To use a macro like $W \leftarrow f(V_1, \ldots, V_n)$ is regarded as an abbreviation of:

\[
\begin{array}{l}
Z_m \leftarrow 0 \\
Z_{m+1} \leftarrow V_1 \\
\vdots \\
Z_{m+n} \leftarrow V_n \\
Z_{m+n+1} \leftarrow 0 \\
Z_{m+n+2} \leftarrow 0 \\
\vdots \\
Z_{m+n+k} \leftarrow 0 \\
Q_m
\end{array}
\]

$W \rightarrow Z_m$

m is chosen so large that none of the variables or labels used in Q_m occur in the main program that contains Q_m.

\[[E_m] \quad W \rightarrow Z_m \]
Note that:

- the expansion sets the variables corresponding to the output variable Y and to the local variables of P, $Z_{m+n+1}, \ldots, Z_{m+n+k}$ to 0;
- the variables corresponding to X_1, \ldots, X_n are set to the values of V_1, \ldots, V_n;
- setting the variables equal to 0 is necessary because the expansion may be part of a loop in the main program;
- when Q_m terminates the value of Z_m is $f(V_1, \ldots, V_n)$.
If \(f(V_1, \ldots, V_n) \uparrow \) (is undefined), \(Q_m \) never terminates. Thus, \(f \) is not total and the macro

\[
W \leftarrow f(V_1, \ldots, V_n)
\]

is encountered in a program, the main program will never terminate.
Example

The program

\[
\begin{align*}
Z & \leftarrow X_1 - X_2 \\
Y & \leftarrow Z + X_3
\end{align*}
\]

computes the function \(f(x_1, x_2, x_3) \) defined as

\[
f(x_1, x_2, x_3) = \begin{cases}
(x_1 - x_2) + x_3 & \text{if } x_1 \geq x_2, \\
\uparrow & \text{otherwise}.
\end{cases}
\]

Note that \(f(2, 5, 6) \) is undefined! The computation never gets past the attempt to compute \(2 - 5 \).
Augmenting the language to include macros of the form

\[
\text{IF } P(V_1, \ldots, V_n) \text{ GOTO } L
\]

where \(P(x_1, \ldots, x_n) \) is a computable predicate. Recall the convention that TRUE = 1 and FALSE = 0. This regards predicate as total functions whose values are always 0 or 1.
More about Macros

The macro expansion of

\[\text{IF } P(V_1, \ldots, V_n) \text{ GOTO } L \]

is

\[Z \gets P(V_1, \ldots, V_n) \]
\[\text{IF } Z \neq 0 \text{ GOTO } L \]
Note that the predicate $P(x)$ defined by

$$P(x) = \begin{cases} \text{TRUE} & \text{if } x = 0, \\ \text{FALSE} & \text{otherwise} \end{cases}$$

is computable by the program

IF $X \neq 0$ GOTO E
Y ← Y + 1
Example

An instruction used frequently is

\[\text{IF } V = 0 \text{ GOTO } L \]

This is legitimate because we can compute \(V = 0 \).