1. Rigorous Definition of Syntax of S

2. Computable Functions

3. More about Macros
The symbols

\[X_1 \ X_2 \ X_3 \ \ldots \]

are called *input variables*;

the symbols

\[Z_1 \ Z_2 \ Z_3 \ \ldots \]

are called *local variables*;

\[Y \]

is the *output variable*;

the symbols

\[A_1 \ B_1 \ C_1 \ D_1 \ E_1 \ A_2 \ B_2 \ldots \]

are the *labels* of \(S \).
A *statement* is one of the following

\[V \leftarrow V + 1 \]
\[V \leftarrow V - 1 \]
\[V \leftarrow V \]
\[\text{IF } V \neq 0 \text{ GOTO } L, \]

where \(V \) may be any variable and \(L \) may be any label.

An *instruction* is either a statement (also called unlabeled instruction) or \([L]\) followed by a statement.
A *program* is a finite sequence of instructions. The length of this list is called the *length* of the program. The *empty program* is the program of length 0.

Definition

A *state of a program* \(P\) is a list of equations of the form \(X = m\), where \(X\) is a variable and \(m \in \mathbb{N}\) such that

- the list includes an equation for each variable that occurs in \(P\), and
- no two equations involve the same variable.
Example

[A] IF \(X \neq 0 \) GOTO \(B \)
Z ← \(Z + 1 \)
IF \(Z \neq 0 \) GOTO \(E \)

[B] X ← \(X - 1 \)
Y ← \(Y + 1 \)
Z ← \(Z + 1 \)
IF \(Z \neq 0 \) GOTO \(A \)

\textit{STATES}:
\(X = 4, Y = 3, Z = 3 \)
A state need not be attained by the program.
\(X_1 = 4, X_2 = 5, Y = 4, Z = 4 \)
Variables that do not occur may also be included
\(X = 3, Z = 3 \) is not a state because \(Y \) is not included
\(X = 3, X = 4, Y = 2, Z = 2 \) is not a state because \(X \) appears twice.
Definition

Let σ be a state of a program \mathcal{P} and let V be a variable that occurs in σ. The *value* of V is the unique number q such that the equation $V = q$ is one of the equations that make up σ.

Example

The value of X at the state $X = 4$, $Y = 3$, $Z = 3$ is 4.
Definition

A snapshot or instantaneous description of a program P of length n is a pair (i, σ), where $1 \leq i \leq n + 1$, and σ is a state of P.

Intuition: i indicates that it is the i^{th} instruction that is about to be executed; $i = n + 1$ corresponds to a “stop” instruction and the snapshot $(n + 1, \sigma)$ is said to be a terminal snapshot.
The successor snapshot

The *successor snapshot* of \((i, \sigma)\) is the snapshot \((j, \tau)\) defined as follows:

- if the \(i^{\text{th}}\) instruction of \(P\) is \(V \leftarrow V + 1\) and \(\sigma\) contains the equation \(V = m\), then \(j = i + 1\) and \(\tau\) is obtained from \(\sigma\) by replacing \(V = m\) by \(V = m + 1\);
- if the \(i^{\text{th}}\) instruction of \(P\) is \(V \leftarrow V - 1\) and \(\sigma\) contains the equation \(V = m\), then \(j = i + 1\) and \(\tau\) is obtained from \(\sigma\) by replacing \(V = m\) by \(V = m - 1\) if \(m \neq 0\); if \(m = 0\), then \(\tau = \sigma\);
- if the \(i^{\text{th}}\) instruction of \(P\) is \(V \leftarrow V\) then \(\tau = \sigma\) and \(j = i + 1\);
The successor snapshot cont’d

- if the \(i^{th} \) instruction of \(\mathcal{P} \) is IF \(V \neq 0 \) GOTO \(L \), then \(\tau = \sigma \) and we may have two subcases:
 - if \(\sigma \) contains the equation \(V = 0 \), then \(j = i + 1 \);
 - if \(\sigma \) contains the equation \(V = m \) where \(m \neq 0 \), then if there is an instruction of \(\mathcal{P} \) labeled \(L \), then \(j \) is the least number such that the \(j^{th} \) instruction is labeled \(L \); otherwise, \(j = n + 1 \).
Example

Consider again the program shown in Slide 6:

\[
\begin{align*}
[A] & \quad \text{IF } X \neq 0 \text{ GOTO } B \\
& \quad Z \leftarrow Z + 1 \\
& \quad \text{IF } Z \neq 0 \text{ GOTO } E \\
[B] & \quad X \leftarrow X - 1 \\
& \quad Y \leftarrow Y + 1 \\
& \quad Z \leftarrow Z + 1 \\
& \quad \text{IF } Z \neq 0 \text{ GOTO } A
\end{align*}
\]

Let \(\sigma \) be the state \(X = 4, Y = 0, Z = 0 \).
For \(i = 1 \), the successor is \((4, \sigma)\)
For \(i = 2 \), the successor is \((3, \tau)\)
where \(\tau \) consists of
\(X = 4, Y = 0, Z = 1 \).
For \(i = 7 \) the successor is \((8, \sigma)\) which is terminal.
Definition

A *computation* of a program \mathcal{P} is defined as a sequence (s_1, s_2, \ldots, s_k) of snapshots of \mathcal{P} such that s_{i+1} is a successor of s_i for $1 \leq i \leq k - 1$ and s_k is terminal.
A program may contain more than one instruction having the same label. The definition of the successor snapshot implies that a branch instruction as always referring to the FIRST statement of the program having the label in question.
Example

The program

\[
\begin{align*}
[A] & \quad X \leftarrow X - 1 \\
 & \quad \text{IF } X \neq 0 \text{ GOTO A} \\
[A] & \quad X \leftarrow X + 1
\end{align*}
\]

is equivalent to the program

\[
\begin{align*}
[A] & \quad X \leftarrow X - 1 \\
 & \quad \text{IF } X \neq 0 \text{ GOTO A} \\
 & \quad X \leftarrow X + 1
\end{align*}
\]
Let \mathcal{P} be a program in the language S and let r_1, \ldots, r_m be m given numbers. Form the state σ of \mathcal{P} that consists of:

- the equations $X_1 = r_1, X_2 = r_2, \ldots, X_m = r_m, Y = 0$,
- and of equations of the form $V = 0$ for each variable V in \mathcal{P} other than X_1, \ldots, X_n and Y.

This is the initial state σ of \mathcal{P} and $(1, \sigma)$ is the initial snapshot.
Definition

The *m-argument function* \(\psi_{\mathcal{P}}^{(m)} \) computed by the program \(\mathcal{P} \) is:

- If there is a computation \(s_1, \ldots, s_k \) of \(\mathcal{P} \) beginning with the initial snapshot \(s_1 \) then \(\psi_{\mathcal{P}}^{(m)}(r_1, \ldots, r_m) \) is the value of \(Y \) at the terminal snapshot.

- If there is no such finite computation, that is if there is an infinite computation \(s_1, s_2, \ldots \) then \(\psi_{\mathcal{P}}^{(m)}(r_1, \ldots, r_m) \) is undefined.
Very important: a program may be used with any number of inputs.

- If a program has \(n \) input variables but only \(m < n \) are specified, the remaining input variables are set to 0 and the computation proceeds.
- If \(m > n \) the extra input variables are ignored.
Example

Consider again the program with explicit line numbers:

\[
\begin{align*}
 & [A] \quad \text{IF } X \neq 0 \text{ GOTO } B \quad (1) \\
 & \quad Z \leftarrow Z + 1 \quad (2) \\
 & \quad \text{IF } Z \neq 0 \text{ GOTO } E \quad (3) \\
 & [B] \quad X \leftarrow X - 1 \quad (4) \\
 & \quad Y \leftarrow Y + 1 \quad (5) \\
 & \quad Z \leftarrow Z + 1 \quad (6) \\
 & \quad \text{IF } Z \neq 0 \text{ GOTO } A \quad (7)
\end{align*}
\]

Snapshots

\[
\begin{align*}
 & (1, \{X = 3, Y = 0, Z = 0\}) \\
 & (4, \{X = 3, Y = 0, Z = 0\}) \\
 & (5, \{X = 2, Y = 0, Z = 0\}) \\
 & (6, \{X = 2, Y = 1, Z = 0\}) \\
 & (7, \{X = 3, Y = 1, Z = 1\}) \\
 & (1, \{X = 3, Y = 1, Z = 1\}) \\
 & \vdots \\
 & (1, \{X = 0, Y = 3, Z = 3\}) \\
 & (2, \{X = 0, Y = 3, Z = 3\}) \\
 & (3, \{X = 0, Y = 3, Z = 4\}) \\
 & (8, \{X = 0, Y = 3, Z = 4\})
\end{align*}
\]
As previously mentioned, we are permitting each program to be used with any number of inputs.

If a program has n input variables, but only $m < n$ are specified, the remaining input variables are set to 0 and the computation proceeds.

If m values are specified, where $m > n$, the extra input variables are ignored.
For any program P and any positive integer m, the function $\psi^{(m)}_P(x_1, \ldots, x_m)$ is said to be computed by P.

A partial function g is said to be partially computable if it is computed by some program. That is, g is partially computable if there exists a program P such that

$$g(r_1, \ldots, r_m) = \psi^{(m)}_P(r_1, \ldots, r_m)$$

When one side of this equation is undefined, then so is the other side.
A function g of m variables is **total** if $g(r_1, \ldots, r_m)$ is defined for all r_1, \ldots, r_m.

A function is **computable** if it is both partially computable and total.

Example

The functions $x, x + y, x \cdot y$ are computable; the function $x - y$ is partially computable.
Example

For the program

\[
[A] \quad X \leftarrow X + 1 \\
\text{IF } X \neq 0 \text{ GOTO } A
\]

the one-argument function $\psi^1_P(x)$ is **undefined** for all x. So, the nowhere defined function must be included in the class of partially computed functions.
Let f be a partially computable function computed by a program \mathcal{P}. We make the following assumptions:

- the variables in \mathcal{P} belong to the list $Y, X_1, \ldots, X_n, Z_1, \ldots, Z_k$;
- the labels in \mathcal{P} are included in the list E, A_1, \ldots, A_ℓ;
- for each instruction IF $V \neq 0$ GOTO A there is an instruction in \mathcal{P} labeled A (that is, E is the single exit label).

Then \mathcal{P} is written as:

$$\mathcal{P} = \mathcal{P}(Y, X_1, \ldots, X_n, Z_1, \ldots, Z_k; E, A_1, \ldots, A_\ell).$$
The notation

\[P = P(Y, X_1, \ldots, X_n, Z_1, \ldots, Z_k; E, A_1, \ldots, A_\ell) \]

can be used to write:

\[Q = P(Z_m, Z_{m+1}, \ldots, Z_{m+n}, Z_{m+n+1}, \ldots, Z_{m+n+k};
E_m, A_{m+1}, \ldots, A_{m+\ell}) \]

to denote a program obtained from \(P \) by replacing the variables
and labels by others.
To use a macro like $W \leftarrow f(V_1, \ldots, V_n)$ is regarded as an abbreviation of:

$$
\begin{align*}
Z_m & \leftarrow 0 \\
Z_{m+1} & \leftarrow V_1 \\
& \vdots \\
Z_{m+n} & \leftarrow V_n \\
Z_{m+n+1} & \leftarrow 0 \\
Z_{m+n+2} & \leftarrow 0 \\
& \vdots \\
Z_{m+n+k} & \leftarrow 0 \\
Q_m \\
\end{align*}
$$

$[E_m] \quad W \leftarrow Z_m$

m is chosen so large that none of the variables or labels used in Q_m occur in the main program that contains Q_m.
Note that:

- the expansion sets the variables corresponding to the output variable Y and to the local variables of \mathcal{P}, $Z_{m+n+1}, \ldots, Z_{m+n+k}$ to 0;
- the variables corresponding to X_1, \ldots, X_n are set to the values of V_1, \ldots, V_n;
- setting the variables equal to 0 is necessary because the expansion may be part of a loop in the main program;
- when Q_m terminates the value of Z_m is $f(V_1, \ldots, V_n)$.
If $f(V_1, \ldots, V_n) \uparrow$ (is undefined), Q_m never terminates. Thus, f is not total and the macro

$$W \leftarrow f(V_1, \ldots, V_n)$$

is encountered in a program, the main program will never terminate.
Example

The program

\[Z \leftarrow X_1 - X_2 \]
\[Y \leftarrow Z + X_3 \]

computes the function \(f(x_1, x_2, x_3) \) defined as

\[f(x_1, x_2, x_3) = \begin{cases} (x_1 - x_2) + x_3 & \text{if } x_1 \geq x_2, \\ \uparrow & \text{otherwise.} \end{cases} \]

Note that \(f(2, 5, 6) \) is undefined! The computation never gets past the attempt to compute \(2 - 5 \).
Augmenting the language to include macros of the form

$$\text{IF } P(V_1, \ldots, V_n) \text{ GOTO } L$$

where $P(x_1, \ldots, x_n)$ is a computable predicate. Recall the convention that TRUE = 1 and FALSE = 0. This regards predicate as total functions whose values are always 0 or 1.
The macro expansion of

\[\text{IF } P(V_1, \ldots, V_n) \text{ GOTO } L \]

is

\[Z \leftarrow P(V_1, \ldots, V_n) \]
\[\text{IF } Z \neq 0 \text{ GOTO } L \]
Note that the predicate $P(x)$ defined by

$$P(x) = \begin{cases} \text{TRUE} & \text{if } x = 0, \\ \text{FALSE} & \text{otherwise} \end{cases}$$

is computable by the program

\begin{align*}
\text{IF } X \neq 0 & \text{ GOTO } E \\
Y & \leftarrow Y + 1
\end{align*}
Example

An instruction used frequently is

\[\text{IF } V = 0 \text{ GOTO } L \]

This is legitimate because we can compute \(V = 0 \).