1. Function Composition

2. Recursion

3. Primitive Recursively Closed Classes

4. Building the Class of Primitive Recursive Functions
Definition

Let f be a function of k variables and let g_1, \ldots, g_k be functions of n variables. The function h defined as

$$h(x_1, \ldots, x_n) = f(g_1(x_1, \ldots, x_n), \ldots, g_k(x_1, \ldots, x_n))$$

is said to be obtained from f and g_1, \ldots, g_k by \textit{composition}.

The functions f, g_1, \ldots, g_k need not be total. $h(x_1, \ldots, x_n)$ is defined when all of $z_1 = g_1(x_1, \ldots, x_n), \ldots, z_k = g(x_1, \ldots, x_n)$ are defined and $f(z_1, \ldots, z_n)$ is defined.
Theorem

If h is obtained from the computable functions f, g_1, \ldots, g_k by composition, then h is computable.

Proof.

The following program computes h:

$$
Z_1 \leftarrow g_1(X_1, \ldots, X_n) \\
\vdots \\
Z_k \leftarrow g_k(X_1, \ldots, X_n) \\
Y \leftarrow f(Z_1, \ldots, Z_k)
$$
Example

We saw that the functions

\[x, x + y, x \cdot y, x - y \]

are partially computable. Therefore, \(2x = x + x \) and \(4x^2 = (2x) \cdot (2x) \) are partially computable. So are \(4x^2 + 2x \) and \(4x^2 - 2x \). Note that \(4x^2 - 2x \) is total although is obtained from a non-total function \(x - y \) by composition with \(4x^2 \) and \(2x \).
Recursion is a modality of constructing a new function from a given one.

Definition

Suppose that g is a total function of two variables and k is a fixed number, $k \in \mathbb{N}$.

The function $h : \mathbb{N} \rightarrow \mathbb{N}$ is obtained from g by primitive recursion if

\[
\begin{align*}
 h(0) &= k, \\
 h(t + 1) &= g(t, h(t)).
\end{align*}
\]
Theorem

If h is obtained from the computable function g by primitive recursion, then h is also computable.

Proof.

Note that the constant function $f(x) = k$ is computed by the program

```
Y ← Y + 1
Y ← Y + 1
... Y ← Y + 1
```

that contains k lines.
Proof cont’d

Proof.

This shows that we can use the macro $Y \leftarrow k$. The following is a program that computed $h(x)$:

\[
Y \leftarrow k \\
[A] \quad \text{IF } X = 0 \text{ GOTO } E \\
Y \leftarrow g(Z, Y) \\
Z \leftarrow Z + 1 \\
X \leftarrow X - 1 \\
\text{GOTO } A
\]

Note that if Y has the value $h(z)$ before executing instruction labeled A, then it has the value $g(z, h(z)) = h(z + 1)$ after executing $Y \leftarrow g(Z, Y)$.

A slightly more complicated kind of recursion

The function $h : \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ is defined starting from the functions $f : \mathbb{N}^n \rightarrow \mathbb{N}$ and $g : \mathbb{N}^{n+2} \rightarrow \mathbb{N}$ as

$$h(x_1, \ldots, x_n, 0) = f(x_1, \ldots, x_n),$$
$$h(x_1, \ldots, x_n, t + 1) = g(t, h(x_1, \ldots, x_n, t), x_1, \ldots, x_n).$$

This modality of constructing h is known as **primitive recursion**.
The functions f and g are total.
Theorem

Let $f : \mathbb{N}^n \rightarrow \mathbb{N}$ and $g : \mathbb{N}^{n+2} \rightarrow \mathbb{N}$ be two computable functions. The function h defined from f and g by primitive recursion is computable.
Proof.

The following program computes \(h(x_1, \ldots, x_n, x_{n+1}) \):

\[
\begin{align*}
Y & \leftarrow f(X_1, \ldots, X_n) \\
[A] & \text{ IF } X_{n+1} = 0 \text{ GOTO } E \\
Y & \leftarrow g(Z, Y, X_1, \ldots, X_n) \\
Z & \leftarrow Z + 1 \\
X_{n+1} & \leftarrow X_{n+1} - 1 \\
\text{GOTO } A
\end{align*}
\]
Definition

The set of *initial functions* consists of the following:

- **the successor function** $s : \mathbb{N} \rightarrow \mathbb{N}$ defined by $s(x) = x + 1$ for $x \in \mathbb{N}$;
- **the null function** $n : \mathbb{N} \rightarrow \mathbb{N}$ defined by $n(x) = 0$ for $x \in \mathbb{N}$;
- **the projection functions** $u^n_i : \mathbb{N}^n \rightarrow \mathbb{N}$ given by $u^n_i(x_1, \ldots, x_n) = x_i$ for $1 \leq i \leq n$.

Note that because the initial functions contain the projection functions, the class of initial functions contains an infinite number of functions.
Example

The *projection function* $u_2^5 : \mathbb{N}^5 \to \mathbb{N}$ is given by

$$u_2^5(x_1, x_2, x_3, x_4, x_5) = x_2$$

for $x_1, x_2, x_3, x_4, x_5 \in \mathbb{N}$.
Definition

A *primitive recursively closed class* (a PRC class) is a set of total functions C that satisfies the following conditions:

1. the initial functions belong to C, and
2. a function obtained from functions belonging to C by either composition or recursion belongs to C.

Theorem

The class of computable functions is a PRC class.

Proof.

It suffices to show that the initial functions are computable.

- The function $s(x) = x + 1$ is computable by $Y \leftarrow X + 1$.
- $n(x)$ is computed by the empty program, and
- $u^n_i(x_1, \ldots, x_n)$ is computed by the program

 $Y \leftarrow X_i$
Definition

A function is *primitive recursive* if it can be obtained from the initial functions by a finite number of applications of composition and recursion.

It is clear that the class of primitive recursive functions is a PRC class.
Theorem

A function is primitive recursive if and only if it belongs to every PRC class.

Proof.

If a function belongs to every PRC class then, in particular, it belongs to the class of primitive recursive functions. Conversely, let f be a primitive recursive function and let C be some PRC class. Since f is primitive recursive, there is a list f_1, \ldots, f_n of functions such that $f_n = f$ and each f_i is either an initial function or it can be obtained from preceding functions by composition or recursion. The initial functions belong to C and we saw that the application of composition or recursion to functions in C results in a function in C. Hence any function in f_1, \ldots, f_n belongs to C. In particular, $f_n = f \in C$.

\[\square\]
Corollary

Every primitive recursive function is computable.

Proof.

Every primitive recursive function belongs to the PRC class of computable functions.
Example

Let \(f(x, y) = x + y \). We have

\[
\begin{align*}
 f(x, 0) &= x = u_1^1(x), \\
 f(x, y + 1) &= f(x, y) + 1.
\end{align*}
\]

The second equality can be written as

\[
f(x, y + 1) = g(y, f(x, y), x),
\]

where

\[
g(x_1, x_2, x_3) = 1 + x_2 = s(u_2^3(x_1, x_2, x_3)).
\]

Thus, \(g \) is primitive recursive and \(f \) is primitive recursive because it is obtained by primitive recursion from primitive recursive functions.
Example

Let \(h(x, y) = x \cdot y \). We have:

\[
\begin{align*}
h(x, 0) &= 0, \\
h(x, y + 1) &= h(x, y) + x,
\end{align*}
\]

or

\[
\begin{align*}
h(x, 0) &= n(x), \\
h(x, y + 1) &= g(y, h(x, y), x),
\end{align*}
\]

where

\[
g(x_1, x_2, x_3) = f(u_2^3(x_1, x_2, x_3), u_3^3(x_1, x_2, x_3)) = f(x_2, x_3),
\]

where \(f(x, y) = x + y \) was shown to be primitive recursive on Slide 19.
Example

Let $\ell : \mathbb{N} \rightarrow \mathbb{N}$ be defined as $\ell(x) = x!$. The recursion equations are $\ell(0) = 1$ and $\ell(x + 1) = \ell(x) \cdot s(x)$, which represent the equalities:

$$0! = 1 \text{ and } (x + 1)! = x!(x + 1).$$

Formally, we have:

$$\ell(0) = 1,$$
$$\ell(t + 1) = g(t, \ell(t)),$$

where $g(x_1, x_2) = s(x_1) \cdot x_2$. The function g is primitive recursive because $g(x_1, x_2) = s(u_1^2(x_1, x_2)) \cdot u_2^2(x_1, x_2)$ and multiplication is already known to be primitive recursive.
Example

The exponentiation function x^y:
The recursion equations are

\[
x^0 = 1, \\
x^{y+1} = x^y \cdot x
\]

Note that for the "special case" 0^0 we have $0^0 = 1$.
Example

The *predecessor function* defined as

\[p(x) = \begin{cases}
 x - 1 & \text{if } x \neq 0, \\
 0 & \text{if } x = 0,
\end{cases} \]

is primitive recursive because we have

\[p(0) = 0, \]
\[p(t + 1) = t. \]
The function $x \downarrow y$ defined as

$$x \downarrow y = \begin{cases} x - y & \text{if } x \geq y \\ 0 & \text{if } x < y \end{cases}$$

should not be confused with the partial function $x - y$ which is undefined if $x < y$. The function $x \downarrow y$ is a total function and is defined by

$$x \downarrow 0 = x,$$
$$x \downarrow (t + 1) = p(x \downarrow t).$$

Note: the symbol \downarrow is read “monus”.

Example

The function $|x - y|$ is primitive recursive because

$$|x - y| = (x \div y) + (y \div x).$$
Example

The function $\alpha(x)$, where

$$\alpha(x) = \begin{cases}
1 & \text{if } x = 0, \\
0 & \text{if } x \neq 0,
\end{cases}$$

is primitive recursive because $\alpha(x) = 1 \div x$.

Alternatively, we can write the recursion equations:

$$\alpha(0) = 1,$$

$$\alpha(t + 1) = 0.$$