1. Function Composition

2. Recursion

3. Primitive Recursively Closed Classes

4. Building the Class of Primitive Recursive Functions
Definition

Let \(f \) be a function of \(k \) variables and let \(g_1, \ldots, g_k \) be functions of \(n \) variables. The function \(h \) defined as

\[
h(x_1, \ldots, x_n) = f(g_1(x_1, \ldots, x_n), \ldots, g_k(x_1, \ldots, x_n))
\]

is said to be obtained from \(f \) and \(g_1, \ldots, g_k \) by composition.

The functions \(f, g_1, \ldots, g_k \) need not be total. \(h(x_1, \ldots, x_n) \) is defined when all of \(z_1 = g_1(x_1, \ldots, x_n), \ldots, z_k = g(x_1, \ldots, x_n) \) are defined and \(f(z_1, \ldots, z_n) \) is defined.
Theorem

If \(h \) *is obtained from the computable functions* \(f, g_1, \ldots, g_k \) *by composition, then* \(h \) *is computable.*

Proof.

The following program computes \(h \):

\[
\begin{align*}
Z_1 & \leftarrow g_1(X_1, \ldots, X_n) \\
& \quad \vdots \\
Z_k & \leftarrow g_k(X_1, \ldots, X_n) \\
Y & \leftarrow f(Z_1, \ldots, Z_k)
\end{align*}
\]
Example

We saw that the functions

$$x, x + y, x \cdot y, x - y$$

are partially computable. Therefore, $2x = x + x$ and $4x^2 = (2x) \cdot (2x)$ are partially computable. So are $4x^2 + 2x$ and $4x^2 - 2x$. Note that $4x^2 - 2x$ is total although is obtained from a non-total function $x - y$ by composition with $4x^2$ and $2x$.
Recursion is a modality of constructing a new function from a given one.

Definition

Suppose that g is a total function of two variables and k is a fixed number, $k \in \mathbb{N}$.

The function $h : \mathbb{N} \rightarrow \mathbb{N}$ is obtained from g by **primitive recursion** if

\[
\begin{align*}
 h(0) &= k, \\
 h(t + 1) &= g(t, h(t)).
\end{align*}
\]
Theorem

If h *is obtained from the computable function* g *by primitive recursion, then* h *is also computable.*

Proof.

Note that the constant function $f(x) = k$ is computed by the program

\[
Y \leftarrow Y + 1 \\
Y \leftarrow Y + 1 \\
\vdots \\
Y \leftarrow Y + 1
\]

that contains k lines.
Proof cont’d

Proof.

This shows that we can use the macro $Y \leftarrow k$. The following is a program that computed $h(x)$:

$$
Y \leftarrow k \\
[A] \quad \text{IF } X = 0 \text{ GOTO } E \\
Y \leftarrow g(Z, Y) \\
Z \leftarrow Z + 1 \\
X \leftarrow X - 1 \\
\text{GOTO } A
$$

Note that if Y has the value $h(z)$ before executing instruction labeled A, then it has the value $g(z, h(z)) = h(z + 1)$ after executing $Y \leftarrow g(Z, Y)$.
A slightly more complicated kind of recursion

The function $h : \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ is defined starting from the functions $f : \mathbb{N}^n \rightarrow \mathbb{N}$ and $g : \mathbb{N}^{n+2} \rightarrow \mathbb{N}$ as

$$h(x_1, \ldots, x_n, 0) = f(x_1, \ldots, x_n),$$
$$h(x_1, \ldots, x_n, t + 1) = g(t, h(x_1, \ldots, x_n, t), x_1, \ldots, x_n).$$

This modality of constructing h is known as *primitive recursion*. The functions f and g are total.
Theorem

Let $f : \mathbb{N}^n \rightarrow \mathbb{N}$ and $g : \mathbb{N}^{n+2} \rightarrow \mathbb{N}$ be two computable functions. The function h defined from f and g by primitive recursion is computable.
Proof.

The following program computes \(h(x_1, \ldots, x_n, x_{n+1}) \):

\[
Y \leftarrow f(X_1, \ldots, X_n) \\
[A] \quad \text{IF } X_{n+1} = 0 \text{ GOTO } E \\
Y \leftarrow g(Z, Y, X_1, \ldots, X_n) \\
Z \leftarrow Z + 1 \\
X_{n+1} \leftarrow X_{n+1} - 1 \\
\text{GOTO } A
\]
The set of *initial functions* consists of the following:

- the *successor function* $s : \mathbb{N} \rightarrow \mathbb{N}$ defined by $s(x) = x + 1$ for $x \in \mathbb{N}$;
- the *null function* $n : \mathbb{N} \rightarrow \mathbb{N}$ defined by $n(x) = 0$ for $x \in \mathbb{N}$;
- the *projection functions* $u^n_i : \mathbb{N}^n \rightarrow \mathbb{N}$ given by $u^n_i(x_1, \ldots, x_n) = x_i$ for $1 \leq i \leq n$.

Note that because the initial functions contain the projection functions, the class of initial functions contains an infinite number of functions.
Example

The *projection function* $u_2^5 : \mathbb{N}^5 \rightarrow \mathbb{N}$ is given by

$$u_2^5(x_1, x_2, x_3, x_4, x_5) = x_2$$

for $x_1, x_2, x_3, x_4, x_5 \in \mathbb{N}$.
Definition

A *primitive recursively closed class* (a PRC class) is a set of total functions C that satisfies the following conditions:

1. the initial functions belong to C, and
2. a function obtained from functions belonging to C by either composition or recursion belongs to C.

Theorem

The class of computable functions is a PRC class.

Proof.

It suffices to show that the initial functions are computable.

- The function \(s(x) = x + 1 \) is computable by \(Y \leftarrow X + 1 \).
- \(n(x) \) is computed by the empty program, and
- \(u^n_i(x_1, \ldots, x_n) \) is computed by the program

 \[Y \leftarrow X_i \]
Definition

A function is *primitive recursive* if it can be obtained from the initial functions by a finite number of applications of composition and recursion.

It is clear that the class of primitive recursive functions is a PRC class.
Theorem

A function is primitive recursive if and only if it belongs to every PRC class.

Proof.

If a function belongs to every PRC class then, in particular, it belongs to the class of primitive recursive functions. Conversely, let f be a primitive recursive function and let C be some PRC class.

Since f is primitive recursive, there is a list f_1, \ldots, f_n of functions such that $f_n = f$ and each f_i is either an initial function or it can be obtained from preceding functions by composition or recursion. The initial functions belong to C and we saw that the application of composition or recursion to functions in C results in a function in C. Hence any function in f_1, \ldots, f_n belongs to C. In particular, $f_n = f \in C$.

Corollary

Every primitive recursive function is computable.

Proof.

Every primitive recursive function belongs to the PRC class of computable functions.
Example

Let \(f(x, y) = x + y \). We have

\[
 f(x, 0) = x = u_1^1(x),
\]
\[
 f(x, y + 1) = f(x, y) + 1.
\]

The second equality can be written as

\[
 f(x, y + 1) = g(y, f(x, y), x),
\]

where

\[
 g(x_1, x_2, x_3) = 1 + x_2 = s(u_2^3(x_1, x_2, x_3)).
\]

Thus, \(g \) is primitive recursive and \(f \) is primitive recursive because it is obtained by primitive recursion from primitive recursive functions.
Example

Let \(h(x, y) = x \cdot y \). We have:

\[
\begin{align*}
h(x, 0) &= 0, \\
h(x, y + 1) &= h(x, y) + x,
\end{align*}
\]

or

\[
\begin{align*}
h(x, 0) &= n(x), \\
h(x, y + 1) &= g(y, h(x, y), x),
\end{align*}
\]

where

\[
g(x_1, x_2, x_3) = f(u_2^3(x_1, x_2, x_3), u_3^3(x_1, x_2, x_3)) = f(x_2, x_3),
\]

where \(f(x, y) = x + y \) was shown to be primitive recursive on Slide 19.
Example

Let \(\ell : \mathbb{N} \rightarrow \mathbb{N} \) be defined as \(\ell(x) = x! \). The recursion equations are \(\ell(0) = 1 \) and \(\ell(x + 1) = \ell(x) \cdot s(x) \), which represent the equalities:

\[
0! = 1 \text{ and } (x + 1)! = x!(x + 1).
\]

Formally, we have:

\[
\ell(0) = 1, \\
\ell(t + 1) = g(t, \ell(t)),
\]

where \(g(x_1, x_2) = s(x_1) \cdot x_2 \). The function \(g \) is primitive recursive because \(g(x_1, x_2) = s(u_1^2(x_1, x_2)) \cdot u_2^2(x_1, x_2) \) and multiplication is already known to be primitive recursive.
Example

The exponentiation function x^y:
The recursion equations are

$$
\begin{align*}
x^0 &= 1, \\
x^{y+1} &= x^y \cdot x
\end{align*}
$$

Note that for the “special case” 0^0 we have $0^0 = 1$.
Example

The *predecessor function* defined as

\[p(x) = \begin{cases}
 x - 1 & \text{if } x \neq 0, \\
 0 & \text{if } x = 0,
\end{cases} \]

is primitive recursive because we have

\[p(0) = 0, \]
\[p(t + 1) = t. \]
The function \(x \div y \) defined as

\[
x \div y = \begin{cases}
 x - y & \text{if } x \geq y \\
 0 & \text{if } x < y
\end{cases}
\]

should not be confused with the partial function \(x - y \) which is undefined if \(x < y \). The function \(x \div y \) is a total function and is defined by

\[
x \div 0 = 0,
\]
\[
x \div (t + 1) = p(x \div t).
\]

Note: the symbol \(\div \) is read “monus”.
Example

The function $|x - y|$ is primitive recursive because

$$|x - y| = (x \div y) + (y \div x).$$
Example

The function $\alpha(x)$, where

$$\alpha(x) = \begin{cases}
1 & \text{if } x = 0, \\
0 & \text{if } x \neq 0,
\end{cases}$$

is primitive recursive because $\alpha(x) = 1 \div x$.

Alternatively, we can write the recursion equations:

$$\alpha(0) = 1,$$

$$\alpha(t + 1) = 0.$$