Finite Automata and Regular Languages (part II)

Prof. Dan A. Simovici

UMB
Nondeterministic Automata
Definition

A nondeterministic finite automaton (ndfa) is a quintuple \(M = (A, Q, \delta, q_0, F) \), where \(A \) is the input alphabet of \(M \), \(Q \) is a finite set of states, \(\delta : Q \times A \rightarrow P(Q) \) is the transition function, \(q_0 \in Q \) is the initial state, and \(F \subseteq Q \) is the set of final states of \(M \). We assume \(A \cap Q = \emptyset \).
Example
Consider the ndfa

\[\mathcal{M} = (\{ a, b \}, \{ q_0, q_1, q_2, q_3, q_4 \}, \delta, q_0, \{ q_1, q_3 \}) \]

whose transition function is defined by the table:

<table>
<thead>
<tr>
<th>Input</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(q_0)</td>
</tr>
<tr>
<td>(a)</td>
<td>{ (q_1, q_2) }</td>
</tr>
<tr>
<td>(b)</td>
<td>{ (q_0) }</td>
</tr>
</tbody>
</table>

Note the presence of pairs \((q, a)\) such that \(\delta(q, a) = \emptyset\). We refer to such pairs as blocking situations of \(\mathcal{M}\). For instance, \((q_1, a)\) is a blocking situation of \(\mathcal{M}\).
As in the case of the dfa, we can extend the ndfa’s transition function δ, defined on single characters, to δ^*, defined on words. Starting from the transition function δ, we define the function $\delta^* : Q \times A^* \rightarrow \mathcal{P}(Q)$ as follows:

$$
\delta^*(q, \lambda) = \{ q \}
$$

$$
\delta^*(q, xa) = \bigcup_{q' \in \delta^*(q, x)} \delta(q', a)
$$
If $M = (A, Q, \delta, q_0, F)$ is an ndfa, then the graph of M is the marked, directed multigraph $\mathcal{G}(M)$, whose set of vertices is the set of states Q.

- The set of edges of $\mathcal{G}(M)$ consists of all pairs (q, q') such that $q' \in \delta(q, a)$ for some $a \in A$; an edge (q, q') is labeled by the input symbol a, where $q' \in \delta(q, a)$.
- The initial state q_0 is denoted by an incoming arrow with no source, and the final states are circled.

If $q' \in \delta^*(q, x)$, then there is a path in the graph $\mathcal{G}(M)$ labeled by x that leads from q to q'.
Comparing dfas and ndfas

- In the graph of a dfa $M = (A, Q, \delta, q_0, F)$ you must have exactly one edge emerging from every state q and for every input symbol $a \in A$.

- In the graph of an ndfa $M = (A, Q, \delta, q_0, F)$ you may have states where no arrow emerges, or states where several arrow labeled with the same symbol emerge. Also, not every symbol needs to appear as a label of an emerging edge.
Definition

The language accepted by the ndfa $M = (A, Q, \delta, q_0, F)$ is

$$L(M) = \{ x \in A^* \mid \delta^*(q_0, x) \cap F \neq \emptyset \}.$$

In other words, $x \in L(M)$ if there exists a path in the graph of M labeled by x that leads from the initial state into one of the final states. Note that it is not necessary that all paths labeled by x lead to a final state; the existence of one such path suffices to put x into the language $L(M)$.
Example

Note that $ab \in L(M)$ because of the existence of the path (q_0, q_1, q_3) labeled by this word and the fact that q_3 is a final state. On the other hand, (q_0, q_2, q_4) is another path labeled by x but $q_4 \notin F$.
Example (cont’d)

This ndfa is simple enough to allow an easy identification of all types of words in $L(M)$:

1. The final state q_1 can be reached by applying an arbitrary number of bs followed by an a.
2. The final state q_3 can be reached by a path of the form $(q_0, \ldots, q_0, q_1, q_3)$, that is by a word of the form $b^k ab$ for $k \in \mathbb{N}$.
3. The same final state q_3 can be reached via q_2. Input words that allow this transition have the form $b^k aa$ for $k \in \mathbb{N}$.

Thus, we have

$$L(M) = \{b\}^* a \cup \{b\}^* ab \cup \{b\}^* aa = \{b\}^* \{a, ab, aa\}.$$
Example
Consider an alphabet $A = \{a_0, \ldots, a_{n-1}\}$ and a binary relation $\rho \subseteq A \times A$. The language

$$L_\rho = \{a_{i_0} \cdots a_{i_p} \mid p \in \mathbb{N}, (a_{i_j}, a_{i_{j+1}}) \in \rho \text{ for } 0 \leq j \leq p - 1\}$$

is accepted by the ndfa $M_\rho = (A, Q, \delta, q, F)$, where $Q = \{q, q_0, \ldots, q_{n-1}\}$, $F = \{q_0, \ldots, q_{n-1}\}$, and δ is given by

- $\delta(q, a_i) = \{q_i\}$ for $0 \leq i \leq n - 1$;
- for every i, j such that $0 \leq i, j \leq n - 1$,

$$\delta(q_i, a_j) = \{q_j \in Q \mid (a_i, a_j) \in \rho\}.$$
Example (cont’d)

Note that if \((a_i, a_j) \notin \rho\), then \((q_i, a_j)\) is a blocking situation. The existence of these blocking situations is precisely what makes this device a nondeterministic automaton.
We show that $L_\rho = L(\mathcal{M}_\rho)$. Let $x = a_{i_0} \cdots a_{i_p}$ be a word in L_ρ with $p \geq 0$. We prove by induction on $p = |x| - 1$ that $x \in L(\mathcal{M}_\rho)$ and that $\delta^*(q, x) = \{q_{i_p}\}$. The base case, $p = 0$, is immediate, since the condition $(a_{i_j}, a_{i_{j+1}}) \in \rho$ for $0 \leq j \leq p - 1$ is vacuous.

Suppose that the statement holds for words in L_ρ of length at most p and let $x = a_{i_0} \cdots a_{i_p}$ be a word in L_ρ of length $p + 1$. It is clear that the word $y = a_{i_0} \cdots a_{i_{p-1}}$ belongs to L_ρ. By the inductive hypothesis, $y \in L(\mathcal{M}_\rho)$ and $\delta^*(q, y) = \{q_{i_{p}}\}$. Since $(a_{i_{p-1}}, a_{i_p}) \in \rho$ (by the definition of L_ρ), we have $\delta(q_{i_{p-1}}, a_{i_p}) = \{q_{i_p}\}$, so

$$q_{i_p} \in \bigcup_{q' \in \delta(q, y)} \delta(q', a_{i_p}) = \delta^*(q, ya_{i_p}) = \delta^*(q, x).$$

Therefore, $x \in L(\mathcal{M}_\rho)$.

To prove the converse inclusion $L(M_{\rho}) \subseteq L_{\rho}$ we use an argument by induction on $|x| \geq 1$, where x is a word from $L(M_{\rho})$, to show that if $x = a_{i_0} \cdots a_{i_p} \in L(M_{\rho})$, then $\delta^*(q, x) = \{q_{i_p}\}$ and $x \in L_{\rho}$. Again, the base case is immediate.

Suppose that the statement holds for words in $L(M_{\rho})$ of length less than $p + 1$ that belong to L_{ρ}, and let $x = a_{i_0} \cdots a_{i_p}$ be a word in $L(M_{\rho})$ of length $p + 1$. If $y = a_{i_0} \cdots a_{i_{p-1}}$, it is easy to see that $y \in L(M_{\rho})$ because no blocking situation may arise in M_{ρ} while the symbols of y are read. Therefore, by the inductive hypothesis, $y \in L_{\rho}$ and $\delta^*(q, y) = \{q_{i_{p-1}}\}$.

Further, since $\delta(q_{i_{p-1}}, a_{i_p}) \neq \emptyset$, it follows that $(a_{i_{p-1}}, a_{i_p}) \in \rho$, so $x \in L_{\rho}$, and $\delta^*(q, x) = q_{i_p}$.

Thus, L_{ρ} is accepted by the ndfa M_{ρ}.
Let \(M = (A, Q, \delta, q_0, F) \) be a nondeterministic automaton, and let \(\Delta : \mathcal{P}(Q) \times A \rightarrow \mathcal{P}(Q) \) be defined by

\[
\Delta(S, a) = \bigcup_{q \in S} \delta(q, a)
\]

for every \(S \subseteq Q \) and \(a \in A \). Starting from \(\Delta \), we define \(\Delta^* : \mathcal{P}(Q) \times A^* \rightarrow \mathcal{P}(Q) \) in the manner used for the transition functions of deterministic automata. Namely, we define

\[
\Delta^*(S, \lambda) = S
\]

\[
\Delta^*(S, xa) = \Delta(\Delta^*(S, x), a)
\]

for every \(S \subseteq Q \) and \(a \in A \).
Lemma

The functions Δ and Δ^* defined above satisfy the following properties:

1. For every family of sets $\{S_0, \ldots, S_{n-1}\}$ and every $a \in A$, we have:

\[\Delta \left(\bigcup_{0 \leq i \leq n-1} S_i, a \right) = \bigcup_{0 \leq i \leq n-1} \Delta(S_i, a). \]

2. For every set $S \subseteq Q$ and $x \in A^*$ we have

\[\Delta^*(S, x) = \bigcup_{q \in S} \delta^*(q, x). \]
The first part of the lemma is immediate, because

\[\Delta(\bigcup_{0 \leq i \leq n-1} S_i, a) = \bigcup \{ \delta(q, a) \mid q \in \bigcup_{0 \leq i \leq n-1} S_i \} = \bigcup_{0 \leq i \leq n-1} \{ \delta(q, a) \mid q \in S_i \} = \bigcup_{0 \leq i \leq n-1} \Delta(S_i, a). \]
The argument for the second part of the lemma is by induction on $|x|$. For the basis step, we have $|x| = 0$, so $x = \lambda$, and $\Delta^*(S, \lambda) = S$,
$$
\bigcup_{q \in S} \delta^*(q, \lambda) = \bigcup_{q \in S} \{q\} = S.
$$
Suppose that the argument holds for words of length n, and let $x = za$ be a word of length $n + 1$. We have

$$
\Delta^*(S, x) = \Delta^*(S, za) \\
= \Delta(\Delta^*(S, z), a) \\
= \Delta\left(\bigcup_{q \in S} \delta^*(q, z), a\right) \text{(by ind. hyp.)} \\
= \bigcup_{q \in S} \Delta\left(\delta^*(q, z), a\right) \\
= \bigcup_{q \in S} \bigcup_{r \in \delta^*(q, z)} \delta(r, a) = \bigcup_{q \in S} \delta^*(q, za) = \bigcup_{q \in S} \delta^*(q, x).
$$
Nondeterministic automata can be regarded as generalizations of deterministic automata in the following sense. If $\mathcal{M} = (A, Q, \delta, q_0, F)$ is a deterministic automaton, consider a nondeterministic automaton $\mathcal{M}' = (A, Q, \delta', q_0, F)$, where $\delta'(q, a) = \{\delta(q, a)\}$. It is easy to verify that for every $q \in Q$ and $x \in A^*$ we have $\delta'^*(q, x) = \{\delta^*(q, x)\}$. Therefore,

\[
L(\mathcal{M}') = \{x \in A^* \mid \delta'^*(q_0, x) \cap F \neq \emptyset\} = \{x \in A^* \mid \{\delta^*(q_0, x)\} \cap F \neq \emptyset\} = \{x \in A^* \mid \delta^*(q_0, x) \in F\} = L(\mathcal{M}).
\]

In other words, for every deterministic finite automaton there exists a nondeterministic one that recognizes the same language.
Theorem

For every nondeterministic automaton, there exists a deterministic automaton that accepts the same language.
Proof

Let \(\mathcal{M} = (A, Q, \delta, q_0, F) \) be a nondeterministic automaton. Define the function \(\Delta \) as in the equality

\[
\Delta(S, a) = \bigcup_{q \in S} \delta(q, a),
\]

and consider the deterministic automaton

\[
\mathcal{M}' = (A, \mathcal{P}(Q), \Delta, \{q_0\}, \{S \mid S \subseteq Q \text{ and } S \cap F \neq \emptyset\}).
\]

For every \(x \in A^* \) we have the following equivalent statements:

1. \(x \in L(\mathcal{M}) \);
2. \(\delta^*(q_0, x) \cap F \neq \emptyset \);
3. \(\Delta^*(\{q_0\}, x) \cap F \neq \emptyset \);
4. \(x \in L(\mathcal{M}') \).

This proves that \(L(\mathcal{M}) = L(\mathcal{M}') \).
Example
Consider the nondeterministic finite automaton

\[\mathcal{M} = (\{a, b\}, \{q_0, q_1, q_2\}, \delta, q_0, \{q_2\}) \]

whose graph is given below.
It is easy to see that the language accepted by this automaton is A^*bbA^*, that is the language that consists of all words that contain two consecutive b symbols.

The graph of the nondeterministic automaton is simpler than the graph of the previous deterministic automaton; this simplification is made possible by the nondeterminism.
Graph of the Equivalent ndfa