THEORY OF COMPUTATION
Primitive Recursive Predicates and Minimalization - 6

Prof. Dan A. Simovici

UMB
Outline

1. Bounded Minimalization

2. Unbounded Minimalization

3. Conclusion
Theorem

Let $P(t, x_1, \ldots, x_n)$ be a predicate that belongs to some PRC class \mathcal{C}. Define the function $f(y, x_1, \ldots, x_n)$ as having the least value t such that $t \leq y$ for which $P(t, x_1, \ldots, x_n)$ is TRUE, if such a value exists. Otherwise, this value is 0. The function f belongs to the same PRC class \mathcal{C}.

The function f is denoted as

$$f(y, x_1, \ldots, x_n) = \min_{t \leq y} P(t, x_1, \ldots, x_n)$$

and the construction of f is \textit{bounded minimalization}.
Proof.

Let $g(y, x_1, \ldots, x_n)$ be the function defined by:

$$g(y, x_1, \ldots, x_n) = \sum_{u=0}^{y} \prod_{t=0}^{u} \alpha(P(t, x_1, \ldots, x_n)).$$

This function belongs to C by a previous theorem.

We claim that $g(y, x_1, \ldots, x_n)$ is the least value of t for which $P(t, x_1, \ldots, x_n) = 1$ (that is, $P(t, x_1, \ldots, x_n) = 1$ is TRUE).

Indeed, suppose that for some value of $t_0 \leq y$ we have:

- $P(t, x_1, \ldots, x_n) = 0$ for $t < t_0$, and
- $P(t_0, x_1, \ldots, x_n) = 1.$
Proof.

In other words, t_0 is the least value of $t \leq y$ for which $P(t, x_1, \ldots, x_n)$ is TRUE.

Note that

$$\prod_{t=0}^{u} \alpha(P(t, x_1, \ldots, x_n)) = \begin{cases} 1 & \text{if } u < t_0, \\ 0 & \text{if } u \geq t_0. \end{cases}$$

Therefore,

$$g(y, x_1, \ldots, x_n) = \sum_{u<t_0} 1 = t_0,$$

hence $g(y, x_1, \ldots, x_n)$ is the least value of t for which $P(t, x_1, \ldots, x_n)$ is TRUE.
Proof cont’d

Proof.

Now we define

\[
\min_{t \leq y} P(t, x_1, \ldots, x_n) = \begin{cases}
 g(y, x_1, \ldots, x_n) & \text{if } (\exists t)_{\leq y} P(t, x_1, \ldots, x_n) \\
 0 & \text{otherwise.}
\end{cases}
\]

This shows that \(\min_{t \leq y} P(t, x_1, \ldots, x_n) \) belongs to \(C \).
The bounded minimalization allows the definition of further primitive recursive functions.

Example

\[\lfloor x/y \rfloor \] is the integer part of the quotient \(x/y \). For example, \(\lfloor 7/2 \rfloor = 3 \) and \(\lfloor 3/3 \rfloor = 0 \). We also define the “special case” \(\lfloor x/0 \rfloor = 0 \).

This function is primitive recursive because

\[\lfloor x/y \rfloor = \min_{t \leq x} [(t + 1) \cdot y > x]. \]
Example

The remainder of the division of x by y, $R(x, y)$: Note that $R(x, 0) = x$.
Since

$$
\frac{x}{y} = \lfloor x/y \rfloor + \frac{R(x, y)}{y},
$$

we can write $R(x, y) = x \div (y \cdot \lfloor x/y \rfloor)$, so R is primitive recursive.
The n^{th} prime number is denoted by p_n. For example,

$$p_0 = 0 \text{ (special case)} , \ p_1 = 2, \ p_2 = 3, \ p_3 = 5, \ldots$$

The function p_n is primitive recursive. Begin by verifying the inequality

$$p_{n+1} \leq (p_n)! + 1.$$

Note that for $0 < i \leq n$ we have

$$\frac{p_n! + 1}{p_i} = K + \frac{1}{p_i},$$

where K is an integer. Therefore, $p_n! + 1$ is not divisible by any of the primes p_1, \ldots, p_n. So, either $p_n! + 1$ is a prime itself, or it is divisible by a prime greater than p_n. In either case, there is a prime q such that $p_n < q \leq p_n! + 1$, which implies $p_{n+1} \leq (p_n)! + 1$.

Example

The function p_n is primitive recursive.
Consider the primitive recursive function

$$h(y, z) = \min_{t \leq z} \left[\text{Prime}(t) \& t > y \right].$$

Then, we define $k(x) = h(x, x! + 1)$, which is again primitive recursive. This allows us to define p_n as

$$p_0 = 0,$$
$$p_{n+1} = k(p_n),$$

so p_n is primitive recursive.
Definition

Let \(P(x_1, \ldots, x_n, y) \) be a predicate. The least value of \(y \) for which the predicate \(P(x_1, \ldots, x_n, y) \) is TRUE is denoted by \(\min_y P(x_1, \ldots, x_n, y) \) if such a value exists. If there is no value for which \(P(x_1, \ldots, x_n, y) \) is TRUE, then \(\min_y P(x_1, \ldots, x_n, y) \) is undefined.

The unbounded minimalization defines a partial function \(y = f(x_1, \ldots, x_n) = \min_y P(x_1, \ldots, x_n, y) \).
Example

Note that

\[x - y = \min_z[y + z = x] \]

This is a partial function that is undefined if \(x < y \).
Theorem

If $P(x_1, \ldots, x_n, y)$ is a computable predicate and if

$$f(x_1, \ldots, x_n) = \min_y P(x_1, \ldots, x_n, y),$$

then f is a partially computable function.
Proof.

The following program obviously computes f:

\[
\begin{align*}
[A] & \quad \text{IF } P(X_1, \ldots, X_n, Y) \text{ GOTO E} \\
& \quad Y \leftarrow Y + 1 \\
& \quad \text{GOTO A}
\end{align*}
\]
Bounded minimalization begins with a primitive recursive predicate $P(t, x_1, \ldots, x_n)$ with $1 + n$ arguments and produces a primitive recursive function $f : \mathbb{N}^{1+n} \rightarrow \mathbb{N}$.

$$f(y, x_1, \ldots, x_n) = \min_{t \leq y} P(t, x_1, \ldots, x_n)$$

of $1 + n$ arguments.
In contrast, unbounded minimalization begins with a computable predicate $P(x_1, \ldots, x_n, y)$ with $n + 1$ arguments and produces a computable function $f : \mathbb{N}^n \rightarrow \mathbb{N}$

$$f(x_1, \ldots, x_n) = \min_y P(x_1, \ldots, x_n, y),$$

of n arguments.