Let F be the field of real numbers \mathbb{R} or the field of complex numbers \mathbb{C}. An F-linear space is a set L on which two operations are defined: the addition $x + y$ of elements x and y of L and the multiplication of an element x of L with a member a of F, denoted by ax, such that the following conditions are satisfied:

I. Additive Conditions:
- addition is associative, that is, $x + (y + z) = (x + y) + z$;
- addition is commutative, that is, $x + y = y + x$;
- for every $x \in L$ there is an element $(-x)$ in L such that $x + (-x) = 0_L$.

II. Multiplicative Conditions:
- L contains an element 0_L such that $0x = 0_L$;
- $(a + b)x = ax + bx$;
- $a(x + y) = ax + ay$;
- $(ab)x = a(bx)$;
- $1x = x$

for every $a, b \in F$ and $x, y \in L$.

The elements of the field \mathbb{F} are referred to as *scalars* while the elements of L are referred to as *vectors*.

If the field \mathbb{F} is irrelevant, or it is clearly designated from the context we refer to an \mathbb{F}-linear space just as a linear space. On another hand if \mathbb{F} is the real field \mathbb{R} or the complex field \mathbb{C} we designate an \mathbb{R}-linear space as a *real linear space* and a \mathbb{C}-linear space as a *complex linear space*.
Example

If F is a field, then the one-element linear space $L = \{0_L\}$, where $a0_L = 0_L$ for every $a \in F$ is the zero F-linear space, or, for short, the zero linear space.

The field F itself is an F-linear space, where the Abelian group is $(F, \{0, +, -\})$ and scalar multiplication coincides with the scalar multiplication of F.

Note that the zero F-linear space is the smallest linear space.
Example

The set of all sequences of real numbers, $\text{Seq}(\mathbb{R})$ is a real linear space, where the sum of two sequences $\mathbf{x} = (x_0, x_1, \ldots)$ and $\mathbf{y} = (y_0, y_1, \ldots)$ is the sequence $\mathbf{x} + \mathbf{y}$ defined by $\mathbf{x} + \mathbf{y} = (x_0 + y_0, x_1 + y_1, \ldots)$ and the multiplication of \mathbf{x} by a scalar a is $a\mathbf{x} = (ax_0, ax_1, \ldots)$.

A related real linear space is the set $\text{Seq}_n(\mathbb{R})$ of all sequences of real numbers having length n, where the sum and the scalar multiplications are defined in a similar manner. Namely, if $\mathbf{x} = (x_0, x_1, \ldots, x_{n-1})$ and $\mathbf{y} = (y_0, y_1, \ldots, y_{n-1})$, the sequence $\mathbf{x} + \mathbf{y}$ is defined by $\mathbf{x} + \mathbf{y} = (x_0 + y_0, x_1 + y_1, \ldots, x_{n-1} + y_{n-1})$ and the multiplication of \mathbf{x} by a scalar a is $a\mathbf{x} = (ax_0, ax_1, \ldots, ax_{n-1})$. This linear space is denoted by \mathbb{R}^n and its zero element is denoted by 0_n.
Example

If the real field \mathbb{R} is replaced by the complex field \mathbb{C}, we obtain the linear space $\text{Seq}(\mathbb{C})$ of all sequences of complex numbers. Similarly, we have the complex linear space \mathbb{C}^n which consists of all sequences of length n of complex numbers.
Example

Let L be an F-linear space and let S be a non-empty set. The set L^S that consists of all functions of the form $f : S \rightarrow L$ is an F-linear space. The addition of functions is defined by

$$(f + g)(s) = f(s) + g(s),$$

while the multiplication by a scalar is given by $(af)(s) = af(s)$, for $s \in S$ and $a \in F$.
Example

Let $\mathbb{R}[x]$ be the set of polynomials of variable x with coefficients in \mathbb{R}. For example, $p \in \mathbb{R}[x]$, where

$$p(x) = 3x^7 - 5x^3 + x - 6.$$

The sum of two polynomials $p, q \in \mathbb{R}[x]$ belongs to $\mathbb{R}[x]$. Also, for every $a \in \mathbb{R}$, ap is again a polynomial with coefficients in \mathbb{R}.
Definition

Let L be an \mathbb{F}-linear space. A subset U of L is a \textit{linear subspace} of L (or just a subspace of L) if it satisfies the following conditions:

- if $x, y \in U$, then $x + y \in U$;
- if $a \in \mathbb{F}$ and $x \in U$, then $ax \in U$.

If U is a subspace of a linear space L and $x \in L$, we denote the set \{ $x + u \mid u \in U$ \} by $x + U$.
Example

The set of polynomials $P_{\leq k}$ of degree less or equal to k is a subspace of the linear space of polynomials. Indeed, $p, q \in P_{\leq k}$ their sum has degree less or equal to k; also, if $a \in \mathbb{R}$ and $p \in P_{\leq k}$, then $ap \in P_{\leq k}$.
The following statements are immediate for an \mathbb{F}-linear space L:

- the sets L and $\{0_L\}$ are subspaces of L;
- each subspace U of L contains 0_L.
The subset \(\{0_L\} \) of any \(\mathbb{F} \)-linear space \(L \) is a subspace of \(L \) named the \textit{zero subspace}. This is the smallest subspace of \(L \).
Theorem

If \(\mathcal{L} = \{ L_i \mid i \in I \} \) is a collection of subspaces of an \(\mathbb{F} \)-linear space \(L \), then \(\bigcap \mathcal{L} \) is a subspace of \(L \).

Proof.

Suppose that \(\mathbf{x}, \mathbf{y} \in \bigcap \mathcal{L} \). Then, \(\mathbf{x}, \mathbf{y} \in L_i \), so \(\mathbf{x} + \mathbf{y} \in L_i \) and \(a\mathbf{x} \in L_i \) for every \(i \in I \). Thus, \(\mathbf{x} + \mathbf{y} \in \bigcap \mathcal{L} \) and \(a\mathbf{x} \in \bigcap \mathcal{L} \), which allows us to conclude that \(\bigcap \mathcal{L} \) is a subspace of \(L \).

Since \(L \) itself is a subspace of \(L \) it follows that the collection of subspaces of a linear space is a closure system \(\mathcal{C} \). If \(K_{\text{sub}} \) is the closure operator induced by \(\mathcal{C} \), then for every subset \(X \) of \(L \), \(K_{\text{sub}}(X) \) is the smallest subspace of \(L \) that contains \(X \).
Let $\text{SUBSP}(M)$ be the collection of subspaces of a linear space M. If this set is equipped with the inclusion relation \subseteq (which is a partial order), then for any two subspaces K, L both $\sup\{K, L\}$ and $\inf\{K, L\}$ exist and are given by:

\[
\begin{align*}
\sup\{K, L\} &= \{x + y \mid x \in K \text{ and } y \in L\} \\
\inf\{K, L\} &= K \cap L.
\end{align*}
\]
Let $H = \{ x + y \mid x \in K \text{ and } y \in L \}$. Observe that we have both $K \subseteq H$ and $L \subseteq H$ because $\mathbf{0}$ belongs to both K and L.

If u and v belong to H, then $u = x_1 + y_1$ and $v = x_2 + y_2$, where $x_1, x_2 \in K$ and $y_1, y_2 \in L$. Since $x_1 + x_2 \in K$ and $y_1 + y_2 \in L$ (because K and L are subspaces), it follows that

$$u + v = x_1 + y_1 + (x_2 + y_2) = (x_1 + x_2) + (y_1 + y_2) \in H.$$

We have $au = ax_1 + ax_2 \in H$ because $ax_1 \in K$ and $ax_2 \in L$. Thus, H is a subspace of M and is an upper bound of $\{K, L\}$ in the partially ordered set $(\text{SUBSP}(M), \subseteq)$.

If G is a subspace of M that contains both K and L, then $x + y \in G$ for $x \in K$ and $y \in L$, so $H \subseteq G$. Thus, $H = \sup\{K, L\}$.

We denote $H = \sup\{K, L\}$ by $K + L$.
Next, we prove the *modularity* of $\text{SUBSP}(M)$.

Theorem

Let M be an \mathbb{F}-linear space. For any $P, Q, R \in \text{SUBSP}(M)$ such that $Q \subseteq P$ we have $P \cap (Q + R) = Q + (P \cap R)$.

Proof.

Note that $Q \subseteq P \cap (Q + R)$, $P \cap R \subseteq P \cap (Q + R)$. Therefore, we have the inclusion $Q + (P \cap R) \subseteq P \cap (Q + R) =$, which leaves us with the reverse inclusion to prove.

Let $z \in P \cap (Q + R)$. This implies $z \in P$ and $z = x + y$, where $x \in Q \subseteq P$ and $y \in R$. Therefore, $y = z - x \in P$, so $y \in P \cap R$. Consequently, $z \in Q + (P \cap R)$, so $P \cap (Q + R) \subseteq Q + (P \cap R)$. \square
Definition

If L is an \mathbb{F}-linear space, and X is a subset of L, an X-linear combination is an element \mathbf{w} of L that can be written as

$$\mathbf{w} = \sum_{i=1}^{n} c_i \mathbf{x}_i,$$

where $\mathbf{x}_i \in X$.

A linear combination of L is an X-linear combination, where X is a subset of L.

The set of all X-linear combinations is denoted by $\langle X \rangle$ and is referred to as the set spanned by X.
Theorem

Let L be an \mathbb{F}-linear space. If $X \subseteq L$, then $\langle X \rangle$ is the smallest subspace of L that contains the set X. In other words, we have:

- $\langle X \rangle$ is a subspace of L;
- $X \subseteq \langle X \rangle$;
- if $X \subseteq M$, where M is a subspace of L, then $\langle X \rangle \subseteq M$.
Proof

It is clear that if u and v are two X-linear combinations, then $u + v$ and au are also X-linear combinations, so $\langle X \rangle$ is a subspace of L.

For $x \in X$ we can write $1x = x$, so $X \subseteq \langle X \rangle$.

Finally, suppose that $X \subseteq M$, where M is a subspace of L and $a_1x_1 + \cdots + a_nx_n \in \langle X \rangle$, where $x_1, \ldots, x_n \in X$. Since $X \subseteq M$, we have $x_1, \ldots, x_n \in M$, hence $a_1x_1 + \cdots + a_nx_n \in M$ because M is a subspace. Thus, $\langle X \rangle \subseteq M$.
Let \(L \) be an \(\mathbb{F} \)-linear space. A finite subset \(U = \{x_1, \ldots, x_n\} \) of \(L \) is **linearly dependent** if \(a_1x_1 + \cdots + a_nx_n = 0_L \), where at least one element \(a_i \) of \(\mathbb{F} \) is not equal to 0.

If this condition is not satisfied then \(U \) is said to be **linearly independent**.

A set \(U \) that consists of one vector \(x \neq 0_L \) is linearly independent.
$U = \{x_1, \ldots, x_n\}$ of L is linearly independent if $a_1x_1 + \cdots + a_nx_n = 0_L$ implies $a_1 = \cdots = a_n = 0$. Also, note that a set U that is linearly independent does not contain 0_L.

Example

Let L be an \mathbb{F}-linear space. If $u \in L$, then the set $L_u = \{au \mid a \in \mathbb{F}\}$ is a linear subspace of L. Moreover, if $u \neq 0_L$, then the set $\{u\}$ is linearly independent. Indeed, if $au = 0_L$ and $a \neq 0$, then multiplying both sides of the above equality by a^{-1} we obtain $(a^{-1}a)u = a^{-1}0$, or equivalently, $u = 0_L$, which contradicts the initial assumption. Thus, $\{u\}$ is a linearly independent set.
Definition

Let \(L \) be an \(\mathbb{F} \)-linear space. A subset \(W \) of \(L \) is \textit{linearly dependent} if it contains a finite subset \(U \) that is linearly dependent. A subset \(W \) is \textit{linearly independent} if it is not linearly dependent.

Thus, \(W \) is linearly independent if every finite subset of \(W \) is linearly independent. Further, any subset of a linearly independent subset is linearly independent and any superset of a linearly dependent set is linearly dependent.
Example

For every \mathbb{F}-linear space L the set $\{0_L\}$ is linearly dependent because we have $10_L = 0_L$.
Theorem

Let L be an \mathbb{F}-linear space and let W be a linearly independent subset of L. If y is a linear combination

$$y = a_1x_1 + \cdots + a_nx_n,$$

for some finite subset $\{x_1, \ldots, x_n\}$ of W, then the coefficients a_1, \ldots, a_n are uniquely determined.
Proof

Suppose that y can be alternatively written as

$$y = b_1x_1 + \cdots + b_nx_n,$$

for some $b_1, \ldots, b_n \in \mathbb{F}$. Since W is linearly independent this implies

$$(a_1 - b_1)x_1 + \cdots + (a_n - b_n)x_n = 0_L,$$

which, in turn, yields $a_1 - b_1 = \cdots = a_n - b_n = 0$. This, we have $a_i = b_i$ for $1 \leq i \leq n$.
Definition

Let \mathbb{F} be a field and let L and M be two \mathbb{F}-linear spaces. A **linear mapping** is a function $h : L \rightarrow M$ such that

$$h(ax + by) = ah(x) + bh(y)$$

for every scalars $a, b \in \mathbb{F}$ and $x, y \in L$.

An **affine mapping** is a function $f : L \rightarrow M$ such that there exists a linear mapping $h : L \rightarrow M$ and $b \in M$ such that $f(x) = h(x) + b$ for $x \in L$.

Linear mappings are also referred to as **linear spaces homomorphisms**, as **linear morphisms**, or as **linear operators**.

The set of morphisms between two \mathbb{F}-linear spaces L and M is denoted by $\text{Hom}(L, M)$. The set of affine mappings between two \mathbb{F}-linear spaces L and M is denoted by $\text{Aff}(L, M)$.
Example

Let $h : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ be the transformation defined by

$$h \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_2 \\ x_1 \end{pmatrix}$$

This is a linear mapping $h : \mathbb{R}^2 \rightarrow \mathbb{R}^2$.
Define the mapping \(h : \mathbb{R}[x] \rightarrow \mathbb{R}[x] \) as

\[
h(p)(x) = \int_0^x p(t) \, dt.
\]

For example, for \(p(x) = x^2 + \frac{1}{3}x \) we have

\[
h(p)(x) = \int_0^x \left(t^2 + \frac{1}{3}t \right) \, dt = \frac{1}{3}x^3 + \frac{1}{6}x^2.
\]

It is easy to see that \(h(p_1 + p_2) = h(p_1) + h(p_2) \) and \(h(ap) = ah(p) \), which means that \(h \) is indeed a linear mapping.
The notion of subspace is closely linked to the notion of linear mapping as we show next.

Theorem

Let L, M be two \mathbb{F}-linear spaces. If $h : L \rightarrow M$ is a linear mapping than the sets

$$Im(h) = \{ h(x) \mid x \in L \},$$

and

$$Ker(h) = \{ x \in L \mid h(x) = 0_M \}$$

are subspaces of the linear spaces M and L, respectively.
Proof

Let \(u \) and \(v \) be two elements of \(\text{Im}(h) \). There exist \(x, y \in L \) such that \(u = h(x) \) and \(v = h(y) \). Since \(h \) is a linear mapping we have

\[
 u + v = h(x) + h(y) = h(x + y).
\]

Thus, \(u + v \in \text{Im}(h) \). Further, if \(a \in \mathbb{F} \), then \(au = ah(x) = h(ax) \), so \(au \in \text{Im}(h) \). Thus, \(\text{Im}(h) \) is indeed a subspace of \(M \).

Suppose now that \(s \) and \(t \) belong to \(\text{Ker}(h) \), that is \(h(s) = h(t) = 0_M \).

Then, \(h(s + t) = h(s) + h(t) = 0_M \), so \(s + t \in \text{Ker}(h) \). Also, \(h(as) = ah(s) = a0_M = 0_M \), which allows us to conclude that \(\text{Ker}(h) \) is a subspace of \(L \).
We refer to $\text{Im}(h)$ as the \textit{image} of h, and to $\text{Ker}(h)$ as the \textit{kernel} of h.
Definition

Let \(h, g \in \text{Hom}(L, M) \) be two linear mappings between the \(\mathbb{F} \)-linear spaces \(L \) and \(M \). The \textit{sum} of \(h \) and \(g \) is the mapping \(h + g \) defined by
\[
(h + g)(x) = h(x) + g(x)
\]
for \(x \in L \).

If \(a \in \mathbb{F} \), the product \(af \) is defined as \((af)(x) = af(x) \) for \(x \in L \).

If \(L, M \) are two \(\mathbb{F} \)-linear spaces, then the set \(\text{Hom}(L, M) \) is never empty because the zero morphism \(0_{L,M} : L \to M \) defined as \(0_{L,M}(x) = 0_M \) for \(x \in L \) is always an element of \(\text{Hom}(L, M) \).
Note that

\[(f + g)(ax + by) = f(ax + by) + g(ax + by)\]
\[= af(x) + bf(y) + ag(x) + bg(y)\]
\[= f(ax + by) + g(ax + by),\]

for all \(a, b \in F\) and \(x, y \in L\). This shows that the sum of two linear mappings is also a linear mapping.

Theorem

Hom(\(L, M\)) equipped with the sum and product defined above is an \(\mathbb{F}\)-linear space.

Proof: The zero element of *Hom*(\(L, M\)) is the mapping \(0_{L,M}\).
Definition

Let L be an F-linear space. A linear form on L is a morphism in $\text{Hom}(L, F)$, where the field F is regarded as a linear space.
Definition

A *basis* of an \(\mathbb{F} \)-linear space \(L \) is a linearly independent subset \(W \) such that \(\langle W \rangle = L \).

If an \(\mathbb{F} \)-linear space \(L \) has a finite basis, then we say that \(L \) is a *linear space of finite type*.

Theorem

Every non-zero \(\mathbb{F} \)-linear space \(L \) has a basis.
Corollary

(Independent Set Extension Corollary) Let L be an \mathbb{F}-linear space. If W is a linearly independent set, then there exists a basis T of L such that $W \subseteq T$.

Proof: Since W is a linearly independent set, if $\langle T \rangle = L$, then $W \cup T$ is also generating L.
If an \mathbb{F}-linear space L has a finite basis, then we say that L is a linear space of finite type.

Lemma

Let L be a finite type \mathbb{F}-linear space and let T be a finite subset of L that is not linearly independent. If $k = |T| \geq 2$ and (t_1, \ldots, t_k) is a list of the vectors in T, then there exists a number j such that $2 \leq j \leq m$ and t_j is a linear combination of its predecessors in the sequence. Furthermore, we have $\langle T - \{t_j\} \rangle = \langle T \rangle$.
Proof

Suppose that T is linearly dependent. Then there exists a linear combination $\sum_{i=1}^{k} a^i t_i = 0_L$ such that some of the scalars a^1, \ldots, a^k are different from 0. Let j the largest number such that $1 \leq j \leq k$ and $a_j \neq 0$. The definition of j implies that $a^1 t_1 + \cdots + a^j t_j = 0_L$, so

$$t_j = -\sum_{i=1}^{j-1} \frac{a^i}{a^j} t_i,$$

which shows that t_j is a linear combination of its predecessors in the list. Consequently, the set of linear combinations of the vectors in $T - \{t_j\}$ equals $\langle T \rangle$.
Theorem

(The Replacement Theorem) Let L be a finite type \mathbb{F}-linear space such that the set W spans the linear space L and $|W| = n$. If U is a linearly independent set in V such that $|U| = m$, then $m \leq n$ and there exists a subset W' of W such that W' contains $n - m$ vectors and $U \cup W'$ spans the space L.
Proof

Suppose that $W = \{w_1, \ldots, w_n\}$ and $U = \{u_1, \ldots, u_m\}$. The argument is by induction on m. The basis case, $m = 0$, is immediate. Suppose the statement holds for m and let $U = \{u_1, \ldots, u_m, u_{m+1}\}$ be a linearly independent set that contains $m + 1$ vectors. The set $\{u_1, \ldots, u_m\}$ is linearly independent, so by the inductive hypothesis $m \leq n$ and there exists a subset W' of W that contains $n - m$ vectors such that $\{u_1, \ldots, u_m\} \cup W'$ spans the space L. Without loss of generality we may assume that $W' = \{w_1, \ldots, w_{n-m}\}$. Thus, u_{m+1} is a linear combination of the vectors of $\{u_1, \ldots, u_m, w_1, \ldots, w_{n-m}\}$, so we have

$$u_{m+1} = a^1 u_1 + \cdots + a^m u_m + b^1 w_1 + \cdots + b^{n-m} w_{n-m}.$$
Proof (cont’d)

We have $m + 1 \leq n$ because, otherwise, $m + 1 = n$ and u_{m+1} would be a linear combination of u_1, \ldots, u_m, thereby contradicting the linear independence of the set U.

The set $\{u_1, \ldots, u_m, u_{m+1}, w_1, \ldots, w_{n-m}\}$ is not linearly independent. Let v be the first member of the sequence $(u_1, \ldots, u_m, u_{m+1}, w_1, \ldots, w_{n-m})$ that is a linear combination of its predecessors. Then, v cannot be one of the u_i (with $1 \leq i \leq m$) because this would contradict the linear independence of the set U. Therefore, there exists k such that w_k is a linear combination of its predecessors and $1 \leq k \leq n - m$. By a previous lemma we can remove this element from the set $\{u_1, \ldots, u_m, u_{m+1}, w_1, \ldots, w_{n-m}\}$ without affecting the set spanned.
Corollary

Let \(L \) be a finite type \(\mathbb{F} \)-linear space and let \(U, W \) be two bases of \(L \). Then \(|U| = |W|\).

Proof.

Since \(U \) is a linearly independent set and \(\langle W \rangle = L \) we have \(|U| \leq |V|\). The reverse inequality, \(|V| \leq |U|\), is obtain by asserting that \(W \) is linearly independent and \(\langle U \rangle = L \). Thus, \(|U| = |W|\).

This allows the introduction of the notion of dimension for a linear space.

Definition

The *dimension* of a finite type linear space \(L \) is the number of elements of any basis of \(L \). The dimension of \(L \) is denoted by \(\dim(L) \).
If a linear space L is not of finite type than we say that $\dim(L)$ is infinite.

Theorem

Let L be an \mathbb{F}-linear space of finite type having the basis $B = \{x_1, \ldots, x_n\}$ and let $\{y_1, \ldots, y_n\}$ be a subset of an \mathbb{F}-linear space M. There exists a unique linear mapping $f : L \rightarrow M$ such that $f(x_i) = y_i$ for $1 \leq i \leq n$.

Proof: If $x \in L$ we have $x = a_1x_1 + \cdots + a_nx_n$ because $\{x_1, \ldots, x_n\}$ is a basis of L. Define $f(x)$ as $f(x) = \sum_{i=1}^{n} a_iy_i$. The uniqueness of the expression of x as a linear combination of the elements of B makes f well-defined. The linearity of f is immediate. For uniqueness, note that the value of f is determined by the values of $f(x_i)$.
Theorem

Let L, M be two linear spaces of finite type with $\dim(L) = p$ and $\dim(M) = q$. Then, $\dim(\text{Hom}(L, M)) = pq$.
Proof

Suppose that \(\{\mathbf{x}_1, \ldots, \mathbf{x}_p\} \) is a basis in \(L \) and \(\{\mathbf{y}_1, \ldots, \mathbf{y}_q\} \) is a basis in \(M \). For every \(i \) such that \(1 \leq i \leq p \) and \(j \) such that \(1 \leq j \leq q \) there exists a unique linear mapping \(f_{ij} : \{\mathbf{x}_1, \ldots, \mathbf{x}_p\} \rightarrow M \) such that:

\[
f_{ij}(\mathbf{x}_k) = \begin{cases} \mathbf{y}_j & \text{if } i = k, \\ 0_M & \text{otherwise,} \end{cases}
\]

for \(1 \leq k \leq p \).

Note that if \(\mathbf{x} = \sum_{k=1}^{p} a_k \mathbf{x}_k \), the linearity of \(f_{ij} \) implies:

\[
f_{ij}(\mathbf{x}) = f_{ij} \left(\sum_{k=1}^{p} a_k \mathbf{x}_k \right) = \sum_{k=1}^{p} a_k f_{ij}(\mathbf{x}_k) = a_i f_{ij}(\mathbf{x}_i).
\]

We claim that the set \(\{f_{ij} \mid 1 \leq i \leq p, 1 \leq j \leq q\} \) is a basis for \(\text{Hom}(L, M) \).
Proof cont’d

Let \(f : L \rightarrow M \) be a linear mapping. If \(x \in L \) we can write
\[
x = \sum_{i=1}^{p} a_i x_i,
\]
so
\[
f(x) = \sum_{i=1}^{p} a_i f(x_i).
\]
In turn, since \(\{y_1, \ldots, y_q\} \) is a basis in \(M \),
\[
f(x_i) = \sum_{j=1}^{q} b_{ij} y_j,
\]
for some \(b_{ij} \in F \). This allows us to write:
\[
f(x) = \sum_{i=1}^{p} a_i \sum_{j=1}^{q} b_{ij} y_j = \sum_{i=1}^{p} \sum_{j=1}^{q} a_i b_{ij} y_j = \sum_{i=1}^{p} \sum_{j=1}^{q} a_i b_{ij} f_{ij}(x),
\]
which shows that each linear mapping in \(\text{Hom}(L, M) \) is a linear combination of functions \(f_{ij} \).
Furthermore, the set \(\{ f_{ij} \mid 1 \leq i \leq p, 1 \leq j \leq p \} \) is linearly independent in \(\text{Hom}(L, M) \). Indeed, suppose that \(\sum_{i=1}^{p} \sum_{j=1}^{q} c_{ij} f_{ij}(x) = 0_M \). Then, for \(x = x_i \) we have \(\sum_{j=1}^{q} c_{ij} y_j = 0_M \), which implies \(c_{ij} = 0 \). We may conclude that \(\dim(\text{Hom}(L, M)) = \dim(L) \dim(M) \).
Theorem

If W is a subspace of a finite type linear space L, then $\dim(W) \leq \dim(L)$.

Proof.

If U is a linearly independent set in the subspace W, then it is clear that U is linearly independent in L. There exists a basis V of L such that $U \subseteq V$ and $|V| = \dim(L)$. Therefore, $\dim(W) \leq \dim(L)$.
The notion of subspace is closely linked to the notion of linear mapping as we show next.

Theorem

Let L, M be two \mathbb{F}-linear spaces. If $h : L \rightarrow M$ is a linear mapping then $\text{Im}(h)$ is a subspace of M and $\text{Ker}(h)$ is a subspace of L.
Proof

Let \(u \) and \(v \) be two elements of \(\text{Im}(h) \). There exist \(x, y \in L \) such that \(u = h(x) \) and \(v = h(y) \). Since \(h \) is a linear mapping we have

\[
u - v = h(x) - h(y) = h(x - y).
\]

Thus, \(u - v \in \text{Im}(h) \). Further, if \(a \in S \), then \(au = ah(x) = h(ax) \), so \(au \in \text{Im}(h) \). Thus, \(\text{Im}(h) \) is indeed a subspace of \(P \).

Suppose now that \(s \) and \(t \) belong to \(\text{Ker}(h) \), that is \(h(s) = h(t) = 0_M \). Then, \(h(s - t) = h(s) - h(t) = 0_M \), so \(s - t \in \text{Ker}(h) \). Also, \(h(as) = ah(s) = a0_M = 0_M \), which allows us to conclude that \(\text{Ker}(h) \) is a subspace of \(h \).
Theorem

Let L and M be two linear spaces, where $\dim(L) = n$, and let $h : L \longrightarrow M$ be a linear mapping. Then, we have

$$\dim(\ker(h)) + \dim(\text{Im}(h)) = n.$$
Proof

Suppose that \(\{ e_1, \ldots, e_m \} \) is a basis for the subspace \(\text{Ker}(h) \) of \(L \). Each such basis can be extended to a basis

\[
\{ e_1, \ldots, e_m, e_{m+1}, \ldots, e_n \}
\]

of the space \(L \). Any \(v \in L \) can be written as

\[
v = \sum_{i=1}^{n} a_i e_i.
\]

Since \(\{ e_1, \ldots, e_m \} \subseteq \text{Ker}(h) \) we have \(h(e_i) = 0_M \) for \(1 \leq i \leq m \), so

\[
h(v) = \sum_{i=m+1}^{n} a_i h(e_i).
\]

This means that the set \(\{ h(e_{m+1}), \ldots, h(e_n) \} \) spans the subspace \(\text{Im}(h) \) of \(M \).
We show now that this set is linearly independent. Indeed, suppose that \(\sum_{i=m+1}^{n} b^i h(e_i) = 0 \). This implies \(h(\sum_{i=m+1}^{n} b^i e_i) = 0 \), that is, \(\sum_{i=m+1}^{n} b^i e_i \in \text{Ker}(h) \). Since \(\{e_1, \ldots, e_m\} \) is a basis for \(\text{Ker}(h) \) there exist \(m \) scalars \(c^1, \ldots, c^m \) such that

\[
\sum_{i=m+1}^{n} b^i e_i = c^1 e_1 + \cdots + c^m e_m.
\]

The fact that \(\{e_1, \ldots, e_m, e_{m+1}, \ldots, e_n\} \) is a basis for \(L \) implies that \(c^1 = \cdots = c^m = b^{m+1} = \cdots = b^n = 0 \), so the set \(\{h(e_{m+1}), \ldots, h(e_n)\} \) is linearly independent and, therefore, a basis for \(\text{Im}(h) \). Thus, \(\dim(\text{Im}(h)) = n - m \), which concludes the argument.
Definition

Let L and M be two \mathbb{F}-linear spaces and let $h \in \text{Hom}(L, M)$. The rank of h is $\text{rank}(h) = \dim(\text{Im}(h))$; the nullity of h is $\text{nullity}(h) = \dim(\text{Ker}(h))$.

If $h : L \to M$ is a linear mapping and L is a linear space of finite type, then

$$\dim(L) = \text{rank}(h) + \text{nullity}(h).$$
Theorem

Let \(h : L \rightarrow M \) be a linear mapping between two linear spaces. Then, \(\text{rank}(h) \leq \min\{\text{dim}(L), \text{dim}(M)\} \).

Proof.

It is clear that \(\text{rank}(h) \leq \text{dim}(L) \). On the other hand, \(\text{rank}(h) = \text{dim}(\text{Im}(h)) \leq \text{dim}(M) \) because \(\text{Im}(h) \) is a subspace of \(M \), so the inequality of the theorem follows.
Example

Let L, M be two \mathbb{F}-linear spaces. For $h \in L^*$ and $y \in M$ define the mapping $\ell_{h,y}$ as $\ell_{h,y}(x) = h(x)y$ for $x \in L$. It is easy to verify that $\ell_{h,y}$ is a linear mapping, that is, $\ell_{h,y} \in \text{Hom}(L, M)$. Furthermore, we have $\text{rank}(\ell_{h,y}) = 1$ because $\text{Im}(\ell_{h,y})$ consists of the multiples of the vector y.
Definition

Let L and M two \mathbb{F}-linear spaces. An *isomorphism* between these linear spaces is a linear mapping $h : L \rightarrow M$ that is a bijection. If an isomorphism exists between two \mathbb{F}-linear spaces L and M we say that these linear spaces are *isomorphic* and we write $L \cong M$.

Two \mathbb{F}-linear spaces that are isomorphic are indiscernible from an algebraic point of view.
If L_1, L_2 are subspaces of an \mathbb{F}-linear space L, then their intersection is non-empty because $0_L \in L_1 \cap L_2$. Moreover, it is easy to see that $L_1 \cap L_2$ is also a subspace of L.

Let L_1, L_2 be two subspaces of a linear space L. Their sum is the subset $L_1 + L_2$ of L defined by

$$L_1 + L_2 = \{x + y \mid x \in L_1 \text{ and } y \in L_2\}.$$

It is immediate to verify that $L_1 + L_2$ is a subspace of L and that $0_L \in L_1 \cap L_2$.
Theorem

Let L_1, L_2 be two subspaces of the \mathbb{F}-linear space L. If $L_1 \cap L_2 = \{0_L\}$, then any vector $x \in L_1 + L_2$ can be uniquely written as $x = x_1 + x_2$, where $x_1 \in L_1$ and $x_2 \in L_2$.

Proof.

By the definition of the sum $L_1 + L_2$ it is clear that any vector $x \in L_1 + L_2$ can be written as $x = x_1 + x_2$. We need to prove only the uniqueness of x_1 and x_2.

Suppose that $x = x_1 + x_2 = y_1 + y_2$, where $x_1, y_1 \in L_1$ and $x_2, y_2 \in L_2$. This implies $x_1 - y_1 = y_2 - x_2$ and, since $x_1 - y_1 \in L_1$ and $y_2 - x_2 \in L_2$, it follows that $x_1 - y_1 = y_2 - x_2 = 0_L$ by hypothesis. Therefore, $x_1 = y_1$ and $x_2 = y_2$.\qed
Theorem

Let L_1, L_2 be two subspaces of the \mathbb{F}-linear space L. If every vector $x \in L_1 + L_2$ can be uniquely written as $x = x_1 + x_2$, then $L_1 \cap L_2 = \{0\}$.

Proof.

Suppose that the uniqueness of the expression of x holds but $z \in L_1 \cap L_2$ and $z \neq 0$. If $x = x_1 + x_2$, then we can also write $x = (x_1 + z) + (x_2 - z)$, where $x_1 + z \in L_1$ and $x_2 - z \in L_2$, $x_1 + z \neq x_1$ and $x_2 - z \neq x_2$, and this contradicts the uniqueness property. \square
Let L be an \mathbb{F}-linear space. The set of linear forms defined on L is denoted by L^*. This set has the natural structure of an \mathbb{F}-linear space known as the dual of the space L. The elements of L^* are also referred to as covariant vectors or covectors. Frequently, we will refer to the vectors of the original linear space as contravariant vectors.
Theorem

Let \(B = \{ u_i \in L \mid 1 \leq i \leq n \} \) be a basis in an \(n \)-dimensional \(\mathbb{F} \)-linear space \(L \). If \(\{ a_i \in \mathbb{F} \mid 1 \leq i \leq n \} \) is a set of scalars, then there is a unique covector \(f \in L^* \) such that \(f(u_i) = a_i \) for \(1 \leq i \leq n \).

Proof.

Since \(B \) is a basis in \(L \) we can write \(v = \sum_{i=1}^{n} c_i u_i \) for every \(v \in L \). Thus,

\[
f(v) = f \left(\sum_{i=1}^{n} c_i u_i \right) = \sum_{i=1}^{n} c_i a_i,
\]

which shows that the covector \(f \) is uniquely determined by the \(n \)-tuple of scalars \(a = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} \). \(\square \)
Corollary

Let L be an n-dimensional \mathbb{F}-linear space. Then, its dual L^* is isomorphic to \mathbb{F}^n, and, thus, $\dim(L^*) = \dim(L) = n$.

Proof.

The function $h : \mathbb{F}^n \rightarrow \text{Hom}(L, \mathbb{F})$ that maps the vector

$$a = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}$$

to the function f defined as

$$f(\mathbf{v}) = f \left(\sum_{i=1}^{n} c_i \mathbf{u}_i \right) = \sum_{i=1}^{n} c_i a_i,$$

where $B = \{ \mathbf{u}_i \in L \mid 1 \leq i \leq n \}$ is a basis in L and $\mathbf{v} = \sum_{i=1}^{n} c_i \mathbf{u}_i$ is an isomorphism.
A linear form $f \in L^*$ is uniquely determined by its values on a basis of the space L. This allows us to prove the following extension theorem.

Theorem

Let U be a subspace of a finite-dimensional \mathbb{F}-linear space L. A linear function $g : U \rightarrow \mathbb{F}$ belongs to U^* if and only if there exists a linear form $f \in L^*$ such that g is the restriction of f to U.
Proof

If \(g \) is the restriction of \(f \) to \(U \), then it is immediate that \(g \in U^* \).
Conversely, let \(g \in U^* \) and let \(B = \{u_1, \ldots, u_p\} \) be a basis of \(U \), where \(\dim(U) = p \). Consider an extension of \(B \) to a basis of the entire space \(B_1 = \{u_1, \ldots, u_p, u_{p+1}, \ldots, u_n\} \), where \(n = \dim(L) \) and define the linear form \(f : L \rightarrow \mathbb{F} \) by

\[f(u_i) = \begin{cases} g(u_i) & \text{if } i \leq p, \\ 0 & \text{if } p + 1 \leq i \leq n. \end{cases} \]

Since \(f \) and \(g \) coincide for all members of the basis of \(U \) if follows that \(g \) is the restriction of \(f \) to \(U \).

We refer to \(f \) as the zero-extension of the linear form \(g \) defined on the subspace \(U \).
Theorem

If \(\{u_1, \ldots, u_n\} \) is a basis of the \(\mathbb{F} \)-linear space \(L \), then the set of linear forms \(\{f^j \mid 1 \leq j \leq n\} \) defined by

\[
f^j(u_i) = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{otherwise} \end{cases}
\]

is a basis of the dual linear space \(L^* \).
Proof

The set $F = \{f^1, \ldots, f^n\}$ spans the entire dual space L^*. Indeed, let $f \in L^*$ be defined by $f(u_i) = a_i$ for $1 \leq i \leq n$. Then, we have:

$$f(x) = a_1 f^1(x) + \cdots + a_n f^n(x)$$

for $x \in L$. Indeed, if $x = c^i u_i$, then

$$f(x) = f(c^i u_i) = c^i f(u_i) = c^i a_i.$$

On another hand,

$$a_i f^i(x) = a_i f^i(u_j) = a_i c^j f^i(u_j) = a_i c^i,$$

due to the definition of the linear forms f_1, \ldots, f_n. Therefore, $f = a_1 f^1 + \cdots + a_n f^n$, which shows that $\langle F \rangle = L^*$.
Proof cont’d

To prove that the set F is linearly independent in L^* suppose that

$$a_1f^1 + \cdots + a_nf_n = 0_{L^*}.$$

This implies $a_1f^1(x) + \cdots + a_nf^n(x) = 0_L$ for every $x \in L$. Choosing $x = u_j$ we obtain $a_jf^j(u_j) = 0$, hence $a_j = 0$, and this can be shown for $1 \leq j \leq n$, which implies the linear independence.
The basis $F = \{f^1, \ldots, f^n\}$ of L^* constructed before is the dual basis of the basis $U = \{u_1, \ldots, u_n\}$ of L. We refer to the pair (U, F) as a pair of dual bases.

Corollary

The dual of an n-dimensional \mathbb{F}-linear space is an n-dimensional linear space.
Example

Let \(P_2[x] \) the linear space of polynomials of degree 2 in \(x \), that consists of polynomials of the form \(p(x) = ax^2 + bx + c \). The set \(\{p_0, p_1, p_2\} \) given by \(p_0(x) = 1, \ p_1(x) = x, \) and \(p_2(x) = x^2 \) is a basis in \(P_2[x] \). Note that we have

\[
\begin{align*}
 c &= p(0), \\
 b &= \frac{1}{2}(p(1) - p(-1)), \\
 a &= \frac{1}{2}(p(1) + p(-1) - 2p(0)).
\end{align*}
\]

If \(f : P_2[x] \rightarrow \mathbb{R} \) is a linear form we have

\[
 f(p) = af(x^2) + bf(x) + cf(0) \\
 = \frac{1}{2}(p(1) + p(-1) - 2p(0))f(x^2) + \frac{1}{2}(p(1) - p(-1))f(x) + p(0)f(1).
\]
Example cont’d

Example

Therefore, a basis in $P_2[x]^*$ consists of the functions

\[
\begin{align*}
 f^0(p) &= p(0), \\
 f^1(p) &= \frac{1}{2}(p(1) - p(-1)), \\
 f^2(p) &= \frac{1}{2}(p(1) + p(-1) - 2p(0)).
\end{align*}
\]
We saw that the dual L^* of a \mathbb{F}-linear space L is an \mathbb{F}-linear space. The construction of the dual may be repeated, and L^{**}, the dual of the dual \mathbb{F}-linear space is an \mathbb{F}-linear space. In the case of finite dimensional linear spaces we have $\dim(L^{**}) = \dim(L^*) = \dim(L)$, and all these spaces are isomorphic.

Theorem

Let L be a finite-dimensional \mathbb{F}-linear space. Then, the dual L^{**} of the dual L^* of L is an \mathbb{F}-linear space isomorphic to L.
The notion of linear mapping can be extended as follows.

Definition

Let L_1, \ldots, L_n, L be real linear spaces and let $L_1 \times \cdots \times L_n$ be the Cartesian product of the sets L_1, \ldots, L_n. An **real multilinear function** is a mapping $f : L_1 \times \cdots \times L_n \to L$ that is linear in each of its components when the other components are held fixed. In other words, f satisfies the conditions:

$$f(x_1, \ldots, x_{i-1}, \sum_{j=1}^{k} a_j x_j^i, x_{i+1}, \ldots, x_n) = \sum_{j=1}^{k} a_j f(x_1, \ldots, x_{i-1}, x_j^i, x_{i+1}, \ldots, x_n),$$

for every $x_i, x_j^i \in L_i$ and $a_1, \ldots, a_k \in \mathbb{R}$.
Definition

Let L, M be two complex linear spaces. A function $f : L \times M \rightarrow \mathbb{C}$ is said to be Hermitian bilinear if it is linear in the first variable and skew-linear in the second, that is, it satisfies the equalities:

\[
\begin{align*}
 f(a_1x_1 + a_2x_2, y) &= a_1f(x_1, y) + a_2f(x_2, y), \\
 f(x, b_1y_1 + b_2y_2) &= \overline{b}_1f(x, y_1) + \overline{b}_2f(x, y_2)
\end{align*}
\]

for $a_1, a_2, b_1, b_2 \in \mathbb{C}$.
The set of real multilinear functions defined on the linear spaces L_1, \ldots, L_n and ranging in the real linear space L is denoted by $\mathcal{M}(L_1, \ldots, L_n; L)$. The set of real multilinear forms is $\mathcal{M}(L_1, \ldots, L_n; \mathbb{R})$.
Example

Multilinearity is distinct from the notion of linearity on a product of linear spaces. For instance, the mapping $h : \mathbb{R}^2 \rightarrow \mathbb{R}$ defined by $h(x, y) = x + y$ is linear but not bilinear. On the other hand, the mapping $g : \mathbb{R}^2 \rightarrow \mathbb{R}$ given by $g(x, y) = xy$ is bilinear but not linear.
Definition

Let L_1, \ldots, L_n, L be real linear spaces.
If $f, g \in \mathcal{M}(L_1, \ldots, L_n; L)$ are two multilinear functions, their sum is the function $f + g$ defined by

$$(f + g)(x_1, \ldots, x_n) = f(x_1, \ldots, x_n) + g(x_1, \ldots, x_n),$$

and the product af, where $a \in \mathbb{F}$ is the function af given by

$$(af)(x_1, \ldots, x_n) = af(x_1, \ldots, x_n)$$

for $x_i \in L_i$ and $1 \leq i \leq n$.

It is immediate to verify that $\mathcal{M}(L_1, \ldots, L_n; L)$ is an \mathbb{R}-linear space relative to these operations.
Let $f : L_1 \times L_2 \rightarrow L$ be a real bilinear function. Observe that for $x \in L_1$ and $y \in L_2$ we have:

\[
f(x, 0_{L_2}) = f(x, 0) = 0f(x, y) = 0_L \quad \text{and} \quad f(0_{L_1}, y) = f(0x, y) = 0f(x, y) = 0_L.
\]
Example

Let L be an \mathbb{R}-linear space and let $\langle \cdot , \cdot \rangle : L^* \times L \rightarrow \mathbb{R}$ be the function given by $\langle h , y \rangle = h(y)$ for $h \in L^*$ and $y \in L$. It is immediate that $\langle \cdot , \cdot \rangle$ is a bilinear function because

\[
\langle ah + bg , y \rangle = a\langle h , y \rangle + b\langle g , y \rangle,
\]
\[
\langle h , ay + bz \rangle = a\langle h , y \rangle + b\langle h , z \rangle,
\]

for $a, b \in \mathbb{R}$, $h, g \in L^*$, and $y, z \in L$.

Moreover, we have $\langle h , y \rangle = 0$ for every $y \in L$ if and only if $h = 0_{L^*}$ and $\langle h , y \rangle = 0$ for every $h \in L^*$ if and only if $y = 0_L$.
Example

Let L_1, \ldots, L_n, L be \mathbb{R}-linear spaces, $a_i \in L_i$ for $1 \leq i \leq n$, and let $g_i \in L_i^*$. Define the function $G : L_1 \times L_n \longrightarrow \mathbb{R}$ as:

$$G(a_1, \ldots, a_n) = g_1(a_1) \cdots g_n(a_n)$$

for $a_i \in L_i$ and $1 \leq i \leq n$.

The function G is multilinear. Indeed, if $a_i, b_i \in L_i$ and $a \in \mathbb{R}$ it is immediate to verify that

$$G(a_1, \ldots, a_i + b_i, \ldots, a_n) = G(a_1, \ldots, a_i, \ldots, a_n) + G(a_1, \ldots, b_i, \ldots, a_n),$$

and

$$G(a_1, \ldots, aa_i, \ldots, a_n) = aG(a_1, \ldots, a_i, \ldots, a_n).$$

Note, however, that G is not a linear function because

$$G(aa_1, \ldots, aa_n) = a^n G(a_1, \ldots, a_n).$$
Example

The function $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ defined by $f(x_1, x_2) = x_1x_2$ is bilinear because it is linear in each of its variables, separately, but is not linear in the ensemble of its arguments. Indeed, we have

$$f(x_1 + y_1, x_2) = f(x_1, x_2) + f(y_1, x_2),$$
$$f(x_1, x_2 + y_2) = f(x_1, x_2) + f(x_1, y_2)$$

for every $x_1, x_2, y_1, y_2 \in \mathbb{R}$, which shows the bilinearity of f. However, we have:

$$f(x_1 + x_2, y_1 + y_2) = x_1y_1 + x_1y_2 + x_2y_1 + x_2y_2$$
$$\neq f(x_1, y_1) + f(x_2, y_2),$$

which means that f is not a linear function.
Theorem

Let U, V be two real linear spaces and let $\mathcal{M}(U, V; \mathbb{R})$ be the linear space of bilinear forms defined on $U \times V$. The linear spaces $\mathcal{M}(U, V; \mathbb{R})$, $	ext{Hom}(U, V^*)$ and $	ext{Hom}(V, U^*)$ are isomorphic.
Proof

It is immediate that Φ is a linear mapping because for $c, d \in \mathbb{R}$ and $h_1, h_2 \in \mathcal{M}(U, V; \mathbb{R})$ we have:

$$\Phi(ch_1 + dh_2)(a)(v) = ((ch_1 + dh_2)^a)(v)$$
$$= (ch_1 + dh_2)(a, v) = ch_1(a, v) + dh_2(a, v)$$
$$= ch_1^a(v) + dh_2^a(v)$$
$$= c\Phi(h_1)(a)(v) + d\Phi(h_2)(a)(v),$$

or

$$\Phi(ch_1 + dh_2) = c\Phi(h_1) + d\Phi(h_2).$$

Note that Φ maps $h : U \rightarrow V$ into the linear form that transforms a into h^a for $a \in U$. Thus, if $\Phi(h_1) = \Phi(h_2)$ we have both h_1 and h_2 yield equal values for $a \in U$, so $h_1 = h_2$, which proves the injectivity of Φ.
Let $f \in \text{Hom}(U, V^*)$. For every $a \in U$ there exists a linear form $g : V \rightarrow \mathbb{R}$ such that $f(a) = g$, or $f(a)(v) = g(v)$ for every $v \in V$. The mapping $h : U \times V \rightarrow \mathbb{R}$ defined by $h(u, bfv) = f(u)(v)$ is bilinear and $\Phi(h)(u)(v) = h^u(v) = h(u, v) = f(u)(v)$, which means that $\Phi(h) = f$. Thus, Φ is also surjective and, therefore, it is an isomorphism between the linear spaces $\mathfrak{M}(U, V; \mathbb{R})$, and $\text{Hom}(U, V^*)$. The existence of an isomorphism between and $\text{Hom}(V, U^*)$ has a similar argument.
The linear space $\mathcal{M}(U, V; \mathbb{R})$ will also be denoted by $U^* \otimes V^*$. We will refer to this space as the tensor product of the spaces U and V.

Corollary

Let U, V be two \mathbb{R}-linear spaces. Then, $\dim(U \otimes V) = \dim(U) \cdot \dim(V)$.

Proof.

Since $\dim(V^*) = \dim(V) = n$, we have $\dim(\text{Hom}(U, V^*)) = mn$. The result follows immediately.
Let U, V, W be three \mathbb{R}-linear spaces of finite dimensions having the bases
\{\textbf{u}_1, \ldots, \textbf{u}_m\}, \{\textbf{v}_1, \ldots, \textbf{v}_n\} and \{\textbf{w}_1, \ldots, \textbf{w}_p\}$, respectively, and let \(f : U \times V \to W\) be a bilinear function. If
\[u = \sum_{i=1}^{m} a_i \textbf{u}_i \in U, \quad v = \sum_{j=1}^{n} b_j \textbf{v}_j,\]
then
\[f(u, v) = \sum_{i=1}^{m} \sum_{j=1}^{n} a_i b_j f(\textbf{u}_i, \textbf{v}_j).\]

Since \(f(\textbf{u}_i, \textbf{v}_j) \in W\) there exist \(c_{ij}^k\) such that
\[f(\textbf{u}_i, \textbf{v}_j) = \sum_{k=1}^{p} c_{ij}^k \textbf{w}_k,\]
hence
\[f(u, v) = \sum_{i=1}^{m} \sum_{j=1}^{n} \sum_{k=1}^{p} a_i b_j c_{ij}^k \textbf{w}_k.\]

Thus, the set \(\{c_{ij}^k \in \mathbb{R} \mid 1 \leq i \leq m, 1 \leq j \leq n, 1 \leq k \leq p\}\) (which contains \(mnp\) elements) determines a bilinear function relative to the chosen bases in U, V and W.
Unlike the case $n = 1$, the set of values of a multilinear function $f : M_1 \times \cdots \times M_n \longrightarrow M$ is not a subspace of M in general. Indeed, consider a two-dimensional \mathbb{R}-linear space U having a basis $\{u_1, u_2\}$, a four-dimensional \mathbb{R}-linear space W having the basis $\{w_1, w_2, w_3, w_4\}$, and the bilinear function $f : U \times U \longrightarrow W$ defined as:

$$f(u, v) = u_1 v_1 w_1 + u_1 v_2 w_2 + u_2 v_1 w_3 + u_2 v_2 w_4,$$

where $u = u_1 u_1 + u_2 u_2$ and $v = v_1 u_1 + v_2 u_2$.
Let S be the set of all vectors of the form $s = f(u, v)$. By the definition of S there exist $u, v \in U$ such that

\[s_1 = u_1 v_1, \ s_2 = u_1 v_2, \ s_3 = u_2 v_1, \ s_4 = u_2 v_2, \]

hence $s_1 s_4 = s_2 s_3$ for any $s \in S$.

Define the vectors z, t in W as

\[z = 2w_1 + 2w_2 + w_3 + w_4, \]
\[t = w_1 + w_3. \]

Note that we have both $z \in S$ and $t \in S$. However,

\[x = z - t = w_1 + 2w_2 + w_4 \]

does not belong to S because $x_1 x_4 = 1$ and $x_2 x_3 = 0$.
Let $f : \mathbb{R}^2 \times \mathbb{R}^2 \rightarrow \mathbb{R}$ be a bilinear form. Since the vectors
\[
e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad \text{and} \quad e_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix},
\]
form a basis in \mathbb{R}^2, f can be written as
\[
f(ae_1 + be_2, ce_1 + de_2) = af(e_1, ce_1 + de_2) + bf(e_2, ce_1 + de_2)
\]
\[
= acf(e_1, e_1) + adf(e_1, e_2) + bcf(e_2, e_1) + bdf(e_2, e_2)
\]
\[
= \alpha f(e_1, e_1) + \beta f(e_1, e_2) + \gamma f(e_2, e_1) + \delta f(e_2, e_2),
\]
where
\[
\alpha = ac, \beta = ad, \gamma = bc, \delta = bd.
\]
Thus, the multilinearity of f implies $\alpha \delta = \beta \gamma$.