CS724: Topics in Algorithms
Norms and Inner Products - I
Slide Set 4

Prof. Dan A. Simovici
1. Basic Inequalities

2. Metric Spaces

3. Norms
Lemma

Let $p, q \in \mathbb{R} - \{0, 1\}$ such that $\frac{1}{p} + \frac{1}{q} = 1$. Then we have $p > 1$ if and only if $q > 1$. Furthermore, one of the numbers p, q belongs to the interval $(0, 1)$ if and only if the other number is negative.
Lemma

Let $p, q \in \mathbb{R} - \{0, 1\}$ be two numbers such that $\frac{1}{p} + \frac{1}{q} = 1$ and $p > 1$. Then, for every $a, b \in \mathbb{R}_{\geq 0}$, we have

$$ab \leq \frac{a^p}{p} + \frac{b^q}{q},$$

where the equality holds if and only if $a = b^{-\frac{1}{1-p}}$.
Proof

We have $q > 1$. Consider the function $f(x) = \frac{x^p}{p} + \frac{1}{q} - x$ for $x \geq 0$. We have $f'(x) = x^{p-1} - 1$, so the minimum is achieved when $x = 1$ and $f(1) = 0$. Thus,

$$f \left(ab^{\frac{1}{p-1}} \right) \geq f(1) = 0,$$

which amounts to

$$\frac{a^p b^{\frac{p}{p-1}}}{p} + \frac{1}{q} - ab^{\frac{1}{p-1}} \geq 0.$$

By multiplying both sides of this inequality by $b^{\frac{p}{p-1}}$, we obtain the desired inequality.
Observe that if \(\frac{1}{p} + \frac{1}{q} = 1 \) and \(p < 1 \), then \(q < 0 \). In this case, we have the reverse inequality

\[
ab \geq \frac{a^p}{p} + \frac{b^q}{q}.
\] (1)

which can be shown by observing that the function \(f \) has a maximum in \(x = 1 \). The same inequality holds when \(q < 1 \) and therefore \(p < 0 \).
Theorem

(The Hölder Inequality) Let a_1, \ldots, a_n and b_1, \ldots, b_n be $2n$ nonnegative numbers, and let p and q be two numbers such that $\frac{1}{p} + \frac{1}{q} = 1$ and $p > 1$. We have

$$
\sum_{i=1}^{n} a_i b_i \leq \left(\sum_{i=1}^{n} a_i^p \right)^{\frac{1}{p}} \cdot \left(\sum_{i=1}^{n} b_i^q \right)^{\frac{1}{q}}.
$$
Proof

If \(a_1 = \cdots = a_n = 0 \) or if \(b_1 = \cdots = b_n = 0 \), then the inequality is clearly satisfied. Therefore, we may assume that at least one of \(a_1, \ldots, a_n \) and at least one of \(b_1, \ldots, b_n \) is non-zero. Define the numbers

\[
x_i = \frac{a_i}{\left(\sum_{i=1}^n a_i^p \right)^{\frac{1}{p}}} \quad \text{and} \quad y_i = \frac{b_i}{\left(\sum_{i=1}^n b_i^q \right)^{\frac{1}{q}}}
\]

for \(1 \leq i \leq n \). Lemma on Slide 3 applied to \(x_i, y_i \) yields

\[
\frac{a_i b_i}{\left(\sum_{i=1}^n a_i^p \right)^{\frac{1}{p}} \left(\sum_{i=1}^n b_i^q \right)^{\frac{1}{q}}} \leq \frac{1}{p} \frac{a_i^p}{\sum_{i=1}^n a_i^p} + \frac{1}{q} \frac{b_i^p}{\sum_{i=1}^n b_i^p}.
\]

Adding these inequalities, we obtain

\[
\sum_{i=1}^n a_i b_i \leq \left(\sum_{i=1}^n a_i^p \right)^{\frac{1}{p}} \left(\sum_{i=1}^n b_i^q \right)^{\frac{1}{q}}
\]

because \(\frac{1}{p} + \frac{1}{q} = 1 \).
The nonnegativity of the numbers $a_1, \ldots, a_n, b_1, \ldots, b_n$ can be relaxed by using absolute values.

Theorem

Let a_1, \ldots, a_n and b_1, \ldots, b_n be $2n$ numbers and let p and q be two numbers such that $\frac{1}{p} + \frac{1}{q} = 1$ and $p > 1$. We have

$$\left| \sum_{i=1}^{n} a_i b_i \right| \leq \left(\sum_{i=1}^{n} |a_i|^p \right)^{\frac{1}{p}} \cdot \left(\sum_{i=1}^{n} |b_i|^q \right)^{\frac{1}{q}}.$$
Proof

By a previous theorem, we have:

\[
\sum_{i=1}^{n} |a_i||b_i| \leq \left(\sum_{i=1}^{n} |a_i|^p\right)^{\frac{1}{p}} \cdot \left(\sum_{i=1}^{n} |b_i|^q\right)^{\frac{1}{q}}.
\]

The needed equality follows from the fact that

\[
\left|\sum_{i=1}^{n} a_i b_i\right| \leq \sum_{i=1}^{n} |a_i||b_i|.
\]
Corollary

(The Cauchy-Schwarz Inequality for \mathbb{R}^n) Let a_1, \ldots, a_n and b_1, \ldots, b_n be $2n$ real numbers. We have

$$\left| \sum_{i=1}^{n} a_i b_i \right| \leq \sqrt{\sum_{i=1}^{n} a_i^2} \cdot \sqrt{\sum_{i=1}^{n} b_i^2}.$$

Proof.

The inequality follows immediately by taking $p = q = 2$. □
Theorem

(Minkowski’s Inequality) Let a_1, \ldots, a_n and b_1, \ldots, b_n be $2n$ nonnegative real numbers. If $p \geq 1$, we have

$$\left(\sum_{i=1}^{n} (a_i + b_i)^p \right)^{\frac{1}{p}} \leq \left(\sum_{i=1}^{n} a_i^p \right)^{\frac{1}{p}} + \left(\sum_{i=1}^{n} b_i^p \right)^{\frac{1}{p}}.$$

If $p < 1$, the inequality sign is reversed.
Proof

For $p = 1$, the inequality is immediate. Therefore, we can assume that $p > 1$. Note that

$$
\sum_{i=1}^{n} (a_i + b_i)^p = \sum_{i=1}^{n} a_i (a_i + b_i)^{p-1} + \sum_{i=1}^{n} b_i (a_i + b_i)^{p-1}.
$$

By Hölder’s inequality for p, q such that $p > 1$ and $\frac{1}{p} + \frac{1}{q} = 1$, we have

$$
\sum_{i=1}^{n} a_i (a_i + b_i)^{p-1} \leq \left(\sum_{i=1}^{n} a_i^p \right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} (a_i + b_i)^{(p-1)q} \right)^{\frac{1}{q}}
$$

$$
= \left(\sum_{i=1}^{n} a_i^p \right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} (a_i + b_i)^p \right)^{\frac{1}{q}}.
$$
Proof cont’d

Similarly, we can write

\[\sum_{i=1}^{n} b_i(a_i + b_i)^{p-1} \leq \left(\sum_{i=1}^{n} b_i^p \right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} (a_i + b_i)^p \right)^{\frac{1}{q}}. \]

Adding the last two inequalities yields

\[\sum_{i=1}^{n} (a_i + b_i)^p \leq \left(\left(\sum_{i=1}^{n} a_i^p \right)^{\frac{1}{p}} + \left(\sum_{i=1}^{n} b_i^p \right)^{\frac{1}{p}} \right) \left(\sum_{i=1}^{n} (a_i + b_i)^p \right)^{\frac{1}{q}}, \]

which is equivalent to inequality

\[\left(\sum_{i=1}^{n} (a_i + b_i)^p \right)^{\frac{1}{p}} \leq \left(\sum_{i=1}^{n} a_i^p \right)^{\frac{1}{p}} + \left(\sum_{i=1}^{n} b_i^p \right)^{\frac{1}{p}}. \]
Definition

A function $d : S^2 \rightarrow \mathbb{R}_{\geq 0}$ is a *metric* if it has the following properties:

- $d(x, y) = 0$ if and only if $x = y$ for $x, y \in S$;
- $d(x, y) = d(y, x)$ for $x, y \in S$;
- $d(x, y) \leq d(x, z) + d(z, y)$ for $x, y, z \in S$.

The pair (S, d) will be referred to as a *metric space*.
If property (i) is replaced by the weaker requirement that \(d(x, x) = 0 \) for \(x \in S \), then we refer to \(d \) as a *semimetric* on \(S \). Thus, if \(d \) is a semimetric \(d(x, y) = 0 \) does not necessarily imply \(x = y \) and we can have for two distinct elements \(x, y \) of \(S \), \(d(x, y) = 0 \). If \(d \) is a semimetric, then we refer to the pair \((S, d)\) as a *semimetric space*.
Example

Let S be a nonempty set. Define the mapping $d : S^2 \rightarrow \mathbb{R}_{\geq 0}$ by

$$d(u, v) = \begin{cases} 1 & \text{if } u \neq v, \\ 0 & \text{otherwise,} \end{cases}$$

for $x, y \in S$. It is easy to see that d satisfies the definiteness property. To prove that d satisfies the triangular inequality, we need to show that

$$d(x, y) \leq d(x, z) + d(z, y)$$

for all $x, y, z \in S$. This is clearly the case if $x = y$. Suppose that $x \neq y$, so $d(x, y) = 1$. Then, for every $z \in S$, we have at least one of the inequalities $x \neq z$ or $z \neq y$, so at least one of the numbers $d(x, z)$ or $d(z, y)$ equals 1. Thus d satisfies the triangular inequality. The metric d introduced here is the \textit{discrete metric} on S.
Example

Consider the mapping \(d : (\text{Seq}_n(S))^2 \rightarrow \mathbb{R}_{\geq 0} \) defined by

\[
d(p, q) = |\{i \mid 0 \leq i \leq n - 1 \text{ and } p(i) \neq q(i)\}|
\]

for all sequences \(p, q \) of length \(n \) on the set \(S \).

It is easy to see that \(d \) is a metric. We justify here only the triangular inequality. Let \(p, q, r \) be three sequences of length \(n \) on the set \(S \). If \(p(i) \neq q(i) \), then \(r(i) \) must be distinct from at least one of \(p(i) \) and \(q(i) \). Therefore,

\[
\{i \mid 0 \leq i \leq n - 1 \text{ and } p(i) \neq q(i)\} \\
\subseteq \{i \mid 0 \leq i \leq n - 1 \text{ and } p(i) \neq r(i)\} \cup \{i \mid 0 \leq i \leq n - 1 \text{ and } r(i) \neq q(i)\}
\]

which implies the triangular inequality.
Example

For \(x \in \mathbb{R}^n \) and \(y \in \mathbb{R}^n \) the *Euclidean metric* is the mapping

\[
 d_2(x, y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}.
\]

The first two conditions of Definition 7 are obviously satisfied. To prove the third inequality, let \(x, y, z \in \mathbb{R}^n \). Choosing \(a_i = x_i - y_i \) and \(b_i = y_i - z_i \) for \(1 \leq i \leq n \) in Minkowski’s inequality implies

\[
 \sqrt{\sum_{i=1}^{n} (x_i - z_i)^2} \leq \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2} + \sqrt{\sum_{i=1}^{n} (y_i - z_i)^2},
\]

which amounts to \(d(x, z) \leq d(x, y) + d(y, z) \). Thus, we conclude that \(d \) is indeed a metric on \(\mathbb{R}^n \).
We use frequently use the notions of closed sphere and open sphere.

Definition

Let \((S, d)\) be a metric space. The **closed sphere** centered in \(x \in S\) of radius \(r\) is the set

\[
B_d[x, r] = \{y \in S | d(x, y) \leq r\}.
\]

The **open sphere** centered in \(x \in S\) of radius \(r\) is the set

\[
B_d(x, r) = \{y \in S | d(x, y) < r\}.
\]
Definition

Let \((S, d)\) be a metric space. The *diameter* of a subset \(U\) of \(S\) is the number \(\text{diam}_{S,d}(U) = \sup\{d(x, y) \mid x, y \in U\}\). The set \(U\) is *bounded* if \(\text{diam}_{S,d}(U)\) is finite.

The *diameter* of the metric space \((S, d)\) is the number

\[
\text{diam}_{S,d} = \sup\{d(x, y) \mid x, y \in S\}.
\]

If the metric space is clear from the context, then we denote the diameter of a subset \(U\) just by \(\text{diam}(U)\).

If \((S, d)\) is a finite metric space, then \(\text{diam}_{S,d} = \max\{d(x, y) \mid x, y \in S\}\).
A mapping \(d : S \times S \rightarrow \mathbb{R}_{\geq 0} \) can be extended to the set of subsets of \(S \) by defining \(d(U, V) \) as

\[
d(U, V) = \inf \{ d(u, v) \mid u \in U \text{ and } v \in V \}
\]

for \(U, V \in \mathcal{P}(S) \).

Observe that, even if \(d \) is a metric, then its extension is not, in general, a metric on \(\mathcal{P}(S) \) because it does not satisfy the triangular inequality. Instead, we can show that for every \(U, V, W \) we have

\[
d(U, W) \leq d(U, V) + \text{diam}(V) + d(V, W).
\]
Indeed, by the definition of $d(U, V)$ and $d(V, W)$, for every $\epsilon > 0$, there exist $u \in U$, $v, v' \in V$, and $w \in W$ such that

\[
\begin{align*}
\quad\quad\quad\quad\quad\quad d(U, V) & \leq d(u, v) \leq d(U, V) + \frac{\epsilon}{2}, \\
\quad d(V, W) & \leq d(v', w) \leq d(V, W) + \frac{\epsilon}{2}.
\end{align*}
\]

By the triangular axiom, we have

\[
d(u, w) \leq d(u, v) + d(v, v') + d(v', w).
\]

Hence,

\[
d(u, w) \leq d(U, V) + diam(V) + d(V, W) + \epsilon,
\]

which implies

\[
d(U, W) \leq d(U, V) + diam(V) + d(V, W) + \epsilon
\]

for every $\epsilon > 0$. This yields the needed inequality.
Definition

Let (S, d) be a metric space. The sets $U, V \in \mathcal{P}(S)$ are separate if $d(U, V) > 0$.

We denote the number $d(\{u\}, V) = \inf\{d(u, v) \mid v \in V\}$ by $d(u, V)$. It is clear that $u \in V$ implies $d(u, V) = 0$.
The notion of dissimilarity is a generalization of the notion of metric.

Definition

A **dissimilarity on a set** S is a function $d : S^2 \rightarrow \mathbb{R}_{\geq 0}$ satisfying the following conditions:

- $d(x, x) = 0$ for all $x \in S$;
- $d(x, y) = d(y, x)$ for all $x, y \in S$.

The pair (S, d) is a **dissimilarity space**.
A related concept is the notion of similarity.

Definition

A *similarity on a set* S is a function $s : S^2 \rightarrow \mathbb{R}_{\geq 0}$ satisfying the following conditions:

- $s(x, y) \leq s(x, x) = 1$ for all $x, y \in S$;
- $s(x, y) = s(y, x)$ for all $x, y \in S$.

The pair (S, s) is a *similarity space*.
Example

Let \(d : S^2 \rightarrow \mathbb{R}_{\geq 0} \) be a metric on the set \(S \). Then \(s : S^2 \rightarrow \mathbb{R}_{\geq 0} \) defined by \(s(x, y) = 2^{-d(x,y)} \) for \(x, y \in S \) is a dissimilarity, such that \(s(x, x) = 1 \) for every \(x, y \in S \).
Definition

A *seminorm* on an F-linear space V is a mapping $\nu : V \rightarrow \mathbb{R}$ that satisfies the following conditions:

- $\nu(x + y) \leq \nu(x) + \nu(y)$ (subadditivity), and
- $\nu(ax) = |a|\nu(x)$ (positive homogeneity),

for $x, y \in V$ and $a \in F$.

By taking $a = 0$ in the second condition of the definition we have $\nu(0) = 0$ for every seminorm on a real or complex space.
Theorem

If V is a real or complex linear space and $\nu : V \to \mathbb{R}$ is a seminorm on V, then

$$\nu(x - y) \geq |\nu(x) - \nu(y)|,$$

for $x, y \in V$.

Proof.

We have $\nu(x) \leq \nu(x - y) + \nu(y)$, so

$$\nu(x) - \nu(y) \leq \nu(x - y). \quad (2)$$

Since $\nu(x - y) = |-1|\nu(y - x) \geq \nu(y) - \nu(x)$ we have

$$-(\nu(x) - \nu(y)) \leq \nu(x) - \nu(y). \quad (3)$$

The Inequalities (2) and (3) give the desired inequality.
Corollary

If \(p : V \rightarrow \mathbb{R} \) is a seminorm on \(V \), then \(p(x) \geq 0 \) for \(x \in V \).

Proof.
By choosing \(y = 0 \) we have \(\nu(x) \geq |\nu(x)| \geq 0 \).
Definition

Let $\mathcal{F} = (F, \{0, 1, +, -, \cdot\})$ be the real or the complex field. A norm on an F-linear space V is a seminorm $\nu : V \to \mathbb{R}$ such that $\nu(x) = 0$ implies $x = 0$ for $x \in V$.

The pair (V, ν) is referred to as a normed linear space.
Example

The set of real-valued continuous functions defined on the interval \([-1, 1]\) is a real linear space. The addition of two such functions \(f, g\), is defined by
\[(f + g)(x) = f(x) + g(x)\] for \(x \in [-1, 1]\); the multiplication of \(f\) by a scalar \(a \in \mathbb{R}\) is
\[(af)(x) = af(x)\] for \(x \in [-1, 1]\).

Define \(\nu(f) = \sup\{|f(x)| \mid x \in [-1, 1]\}\). Since \(|f(x)| \leq \nu(f)\) and
\(|g(x)| \leq \nu(g)\) for \(x \in [-1, 1]\), it follows that
\[|(f + g)(x)| \leq |f(x)| + |g(x)| \leq \nu(f) + \nu(g)\]. Thus,
\[\nu(f + g) \leq \nu(f) + \nu(g)\].

We denote \(\nu(f)\) by \(\|f\|\).
Theorem

For $p \geq 1$, the function $\nu_p : \mathbb{R}^n \rightarrow \mathbb{R}_{\geq 0}$ defined by

$$
\nu_p(x_1, \ldots, x_n) = \left(\sum_{i=1}^{n} |x_i|^p \right)^{\frac{1}{p}},
$$

where $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$, is a norm on \mathbb{R}^n.

Proof

We must prove that \(\nu_p \) satisfies the conditions of the definition of norms and that \(\nu_p(x) = 0 \) implies \(x = 0 \).

Let \(x = (x_1, \ldots, x_n), \ y = (y_1, \ldots, y_n) \in \mathbb{R}^n \). Minkowski’s inequality applied to the nonnegative numbers \(a_i = |x_i| \) and \(b_i = |y_i| \) amounts to

\[
\left(\sum_{i=1}^{n} (|x_i| + |y_i|)^p \right)^{\frac{1}{p}} \leq \left(\sum_{i=1}^{n} |x_i|^p \right)^{\frac{1}{p}} + \left(\sum_{i=1}^{n} |y_i|^p \right)^{\frac{1}{p}}.
\]

Since \(|x_i + y_i| \leq |x_i| + |y_i| \) for every \(i \), we have

\[
\left(\sum_{i=1}^{n} (|x_i + y_i|)^p \right)^{\frac{1}{p}} \leq \left(\sum_{i=1}^{n} |x_i|^p \right)^{\frac{1}{p}} + \left(\sum_{i=1}^{n} |y_i|^p \right)^{\frac{1}{p}},
\]

that is, \(\nu_p(x + y) \leq \nu_p(x) + \nu_p(y) \). Thus, \(\nu_p \) is a norm on \(\mathbb{R}^n \).
Example

The mapping $\nu_1 : \mathbb{R}^n \rightarrow \mathbb{R}$ given by

$$\nu_1(x) = |x_1| + |x_2| + \cdots + |x_n|,$$

for $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$. ν_1 is a norm on \mathbb{R}^n.
Example

A special norm on \mathbb{R}^n is the function $\nu_\infty : \mathbb{R}^n \rightarrow \mathbb{R}_{\geq 0}$ given by

$$\nu_\infty(x) = \max\{|x_i| \mid 1 \leq i \leq n\}$$

for $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$.

We start from the inequality

$$|x_i + y_i| \leq |x_i| + |y_i| \leq \nu_\infty(x) + \nu_\infty(y)$$

for every i, $1 \leq i \leq n$. This implies

$$\nu_\infty(x + y) = \max\{|x_i + y_i| \mid 1 \leq i \leq n\} \leq \nu_\infty(x) + \nu_\infty(y),$$

which gives the desired inequality.
Example

This norm can be regarded as a limit case of the norms ν_p. Indeed, let $\mathbf{x} \in \mathbb{R}^n$ and let $M = \max \{|x_i| \mid 1 \leq i \leq n\} = |x_{\ell_1}| = \cdots = |x_{\ell_k}|$ for some ℓ_1, \ldots, ℓ_k, where $1 \leq \ell_1, \ldots, \ell_k \leq n$. Here $x_{\ell_1}, \ldots, x_{\ell_k}$ are the components of \mathbf{x} that have the maximal absolute value and $k \geq 1$. We can write

$$\lim_{p \to \infty} \nu_p(\mathbf{x}) = \lim_{p \to \infty} M \left(\sum_{i=1}^{n} \left(\frac{|x_i|}{M} \right)^p \right)^{\frac{1}{p}} = \lim_{p \to \infty} M(k)^{\frac{1}{p}} = M,$$

which justifies the notation ν_∞.
We use the alternative notation $\| x \|_p$ for $\nu_p(x)$. We refer $\| x \|_2$ as the \textit{Euclidean norm} of x and we denote this norm simply by $\| x \|$ when there is no risk of confusion.
Example

For $p \geq 1$, let ℓ_p be the set that consists of sequences of real numbers $x = (x_0, x_1, \ldots)$ such that the series $\sum_{i=0}^{\infty} |x_i|^p$ is convergent. We can show that ℓ_p is a linear space.

Let $x, y \in \ell_p$ be two sequences in ℓ_p. Using Minkowski’s inequality we have

$$
\sum_{i=0}^{n} |x_i + y_i|^p \leq \sum_{i=0}^{n} (|x_i| + |y_i|)^p \leq \sum_{i=0}^{n} |x_i|^p + \sum_{i=0}^{n} |y_i|^p,
$$

which shows that $x + y \in \ell_p$. It is immediate that $x \in \ell_p$ implies $ax \in \ell_p$ for every $a \in \mathbb{R}$ and $x \in \ell_p$.
The following statement shows that any norm defined on a linear space generates a metric on the space.

Theorem

Each norm $\nu : V \rightarrow \mathbb{R}_{\geq 0}$ on a real linear space V generates a metric on the set V defined by $d_\nu(x, y) = \nu(x - y)$ for $x, y \in V$.

Proof.

Note that if $d_\nu(x, y) = \nu(x - y) = 0$, it follows that $x - y = 0$; that is, $x = y$.

The symmetry of d_ν is obvious and so we need to verify only the triangular axiom. Let $x, y, z \in L$. Applying the subaditivity of norms we have

$$
\nu(x - z) = \nu(x - y + y - z) \leq \nu(x - y) + \nu(y - z)
$$

or, equivalently, $d_\nu(x, z) \leq d_\nu(x, y) + d_\nu(y, z)$, for every $x, y, z \in L$, which concludes the argument.
Observe that the norm ν can be expressed using d_ν as

$$\nu(x) = d_\nu(x, 0)$$

for $x \in V$.

For $p \geq 1$, then d_p denotes the metric d_{ν_p} induced by the norm ν_p on the linear space \mathbb{R}^n known as the Minkowski metric.

If $p = 2$, we have the Euclidean metric on \mathbb{R}^n given by

$$d_2(x, y) = \sqrt{\sum_{i=1}^{n} |x_i - y_i|^2} = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}.$$
For $p = 1$, we have

$$d_1(x, y) = \sum_{i=1}^{n} |x_i - y_i|.$$

This metric is known also as the \textit{city-block metric}.

The norm ν_∞ generates the metric d_∞ given by

$$d_\infty(x, y) = \max\{|x_i - y_i| \mid 1 \leq i \leq n\},$$

also known as the \textit{Chebyshev metric}.
A representation of these metrics can be seen below for the special case of \mathbb{R}^2. If $\mathbf{x} = (x_0, x_1)$ and $\mathbf{y} = (y_0, y_1)$, then $d_2(\mathbf{x}, \mathbf{y})$ is the length of the hypotenuse of the right triangle and $d_1(\mathbf{x}, \mathbf{y})$ is the sum of the lengths of the two legs of the triangle.
Theorem

(Projections on Closed Sets Theorem) Let U be a closed subset of \mathbb{R}^n such that $U \neq \emptyset$ and let $x_0 \in \mathbb{R}^n - U$. Then, there exists $x_1 \in U$ such that $\| x - x_0 \|_2 \geq \| x_1 - x_0 \|_2$ for every $x \in U$.
Proof

Let \(d = \inf \left\{ \| x - x_0 \|_2 \mid x \in U \right\} \) and let \(U_n = U \cap B \left(x_0, d + \frac{1}{n} \right) \). Note that the sets form a descending sequence of bounded and closed sets \(U_1 \supseteq U_2 \supseteq \cdots \supseteq U_n \supseteq \cdots \). Since \(U_1 \) is compact, \(\bigcap_{n \geq 1} U_n \neq \emptyset \). Let \(x_1 \in \bigcap_{n \geq 1} U_n \). Since \(U_n \subseteq U \) for every \(n \), it follows that \(x_1 \in U \).

Note that \(\| x_1 - x_0 \|_2 \leq d + \frac{1}{n} \) for every \(n \) because \(x_1 \in U_n = U \cap B \left(x_0, d + \frac{1}{n} \right) \). This implies \(\| x_1 - x_0 \|_2 \leq d \leq \| x - x_0 \|_2 \) for every \(x \in U \).
Lemma

Let a_1, \ldots, a_n be n positive numbers. If p and q are two positive numbers such that $p \leq q$, then

$$(a_1^p + \cdots + a_n^p)^{\frac{1}{p}} \geq (a_1^q + \cdots + a_n^q)^{\frac{1}{q}}.$$

Proof: Let $f : \mathbb{R}^+ \rightarrow \mathbb{R}$ be the function defined by

$$f(r) = (a_1^r + \cdots + a_n^r)^{\frac{1}{r}}.$$

Since

$$\ln f(r) = \frac{\ln (a_1^r + \cdots + a_n^r)}{r},$$

it follows that

$$\frac{f'(r)}{f(r)} = -\frac{1}{r^2} \ln (a_1^r + \cdots + a_n^r) + \frac{1}{r} \cdot \frac{a_1^r \ln a_1 + \cdots + a_n^r \ln a_n}{a_1^r + \cdots + a_n^r}.$$
Proof cont’d

To prove that \(f'(r) < 0 \), it suffices to show that

\[
\frac{a_1^r \ln a_1 + \cdots + a_n^r \ln a_n}{a_1^r + \cdots + a_n^r} \leq \frac{\ln (a_1^r + \cdots + a_n^r)}{r}.
\]

This last inequality is easily seen to be equivalent to

\[
\sum_{i=1}^{n} \frac{a_i^r}{a_1^r + \cdots + a_n^r} \ln \frac{a_i^r}{a_1^r + \cdots + a_n^r} \leq 0,
\]

which holds because

\[
\frac{a_i^r}{a_1^r + \cdots + a_n^r} \leq 1
\]

for \(1 \leq i \leq n \).
Theorem

Let p and q be two positive numbers such that $p \leq q$. For every $\mathbf{u} \in \mathbb{R}^n$, we have $\| \mathbf{u} \|_p \geq \| \mathbf{u} \|_q$.

Proof.
This statement follows immediately from previous Lemma.
Corollary

Let p, q be two positive numbers such that $p \leq q$. For every $x, y \in \mathbb{R}^n$, we have $d_p(x, y) \geq d_q(x, y)$.

Proof.

This statement follows immediately from the previous Theorem.
Example

For $p = 1$ and $q = 2$ the inequality of the Theorem becomes

$$\sum_{i=1}^{n} |u_i| \leq \sqrt{\sum_{i=1}^{n} |u_i|^2},$$

which is equivalent to

$$\frac{\sum_{i=1}^{n} |u_i|}{n} \leq \sqrt{\frac{\sum_{i=1}^{n} |u_i|^2}{n}}.$$
Theorem

Let $p \geq 1$. For every $x \in \mathbb{R}^n$ we have

$$\| x \|_\infty \leq \| x \|_p \leq n \| x \|_\infty.$$

Proof.

Starting from the definition of ν_p we have

$$\| x \|_p = \left(\sum_{i=1}^{n} |x_i|^p \right)^{\frac{1}{p}} \leq n^\frac{1}{p} \max_{1 \leq i \leq n} |x_i| = n^\frac{1}{p} \| x \|_\infty.$$

The first inequality is immediate.
Corollary

Let p and q be two numbers such that $p, q \geq 1$. There exist two constants $c, d \in \mathbb{R}_{>0}$ such that

$$c \| \mathbf{x} \|_q \leq \| \mathbf{x} \|_p \leq d \| \mathbf{x} \|_q$$

for $\mathbf{x} \in \mathbb{R}^n$.

Proof.

Since $\| \mathbf{x} \|_\infty \leq \| \mathbf{x} \|_p$ and $\| \mathbf{x} \|_q \leq n \| \mathbf{x} \|_\infty$, it follows that $\| \mathbf{x} \|_q \leq n \| \mathbf{x} \|_p$. Exchanging the roles of p and q, we have $\| \mathbf{x} \|_p \leq n \| \mathbf{x} \|_q$, so

$$\frac{1}{n} \| \mathbf{x} \|_q \leq \| \mathbf{x} \|_p \leq n \| \mathbf{x} \|_q$$

for every $\mathbf{x} \in \mathbb{R}^n$. \qed
Corollary

For every \(\mathbf{x}, \mathbf{y} \in \mathbb{R}^n \) and \(p \geq 1 \), we have \(d_\infty(\mathbf{x}, \mathbf{y}) \leq d_p(\mathbf{x}, \mathbf{y}) \leq nd_\infty(\mathbf{x}, \mathbf{y}) \). Further, for \(p, q > 1 \), there exist \(c, d \in \mathbb{R}_{>0} \) such that

\[
 cd_q(\mathbf{x}, \mathbf{y}) \leq d_p(\mathbf{x}, \mathbf{y}) \leq cd_q(\mathbf{x}, \mathbf{y})
\]

for \(\mathbf{x}, \mathbf{y} \in \mathbb{R}^n \).
If $p \leq q$, then the closed sphere $B_{d_p}(x, r)$ is included in the closed sphere $B_{d_q}(x, r)$. For example, we have

$$B_{d_1}(0, 1) \subseteq B_{d_2}(0, 1) \subseteq B_{d_\infty}(0, 1).$$

In (a) - (c) we represent the closed spheres $B_{d_1}(0, 1)$, $B_{d_2}(0, 1)$, and $B_{d_\infty}(0, 1)$.
Theorem

Let x_1, \ldots, x_m and y_1, \ldots, y_m be $2m$ nonnegative numbers such that
\[\sum_{i=1}^{m} x_i = \sum_{i=1}^{m} y_i = 1 \] and let p and q be two positive numbers such that
\[\frac{1}{p} + \frac{1}{q} = 1. \]
We have
\[
\sum_{j=1}^{m} x_j^{\frac{1}{p}} y_j^{\frac{1}{q}} \leq 1.
\]

Proof.

The Hölder inequality applied to $x_1^{\frac{1}{p}}, \ldots, x_m^{\frac{1}{p}}$ and $y_1^{\frac{1}{q}}, \ldots, y_m^{\frac{1}{q}}$ yields the needed inequality
\[
\sum_{j=1}^{m} x_j^{\frac{1}{p}} y_j^{\frac{1}{q}} \leq \sum_{j=1}^{m} x_j \sum_{j=1}^{m} y_j = 1.
\]