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The set Cm×n is a linear space. Therefore, it is natural to consider norms
defined on matrices. We discuss two basic methods for defining norms for
matrices.

The first approach treats matrices as vectors (through the vec
mapping).
The second, regards matrices as representations of linear operators,
and defined norms for matrices starting from operator norms.
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Definition

The (m × n)-vectorization mapping is the mapping vec : Cm×n −→ Cmn

defined by

vec(A) =



a11
...

am1

...
a1n
...

amn


,

obtained by reading A column-wise.
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The following equality is immediate for a matrix A ∈ Cm×n:

vec(A) =


Aeee1
Aeee2
...

Aeeen

 .

The vectorization mapping vec is an isomorphism between the linear space
Cm×n and the linear space Cmn, as can be easily verified.
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Example

For the matrix In we have

vec(In) =


eee1
eee2
...
eeen

 .
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Definition

Let ν be a vector norm on the space Rmn. The vectorial matrix norm
µ(m,n) on Rm×n is the mapping µ(m,n) : Rm×n −→ R⩾0 defined by

µ(m,n)(A) = ν(vec(A)),

for A ∈ Rm×n.

Vectorial norms of matrices are defined without regard for matrix products.
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Theorem

If f : Cm −→ Cn is a linear operator, ν and ν ′ are corms on Cm and Cn,
respectively, there exists a non-negative constant such that

ν ′(f (x)) ⩽ Mν(x)

for every x ∈ Cm.
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Definition

Let f : Cm −→ Cn is a linear operator, and let ν and ν ′ be norms on Cm

and Cn, respectively. The operatorial norm of f is the number

µ(f ) = inf{M ∈ R⩾0 | ν ′(f (x)) ⩽ Mν(x) for every xxx ∈ Cm}.
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Theorem

The mapping ν is a norm on the space of linear operators Hom(Cm,Cn).

Since µ depends on both ν and ν ′ it is denoted by N(ν, ν ′).
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Theorem

Let f : Cm −→ Cn and g : Cn −→ Cp be two linear operators and let
ν, ν ′, ν ′′ be norms on Cm,Cn and Cp, respectively. Define µ = N(ν, ν ′),
µ′ = N(ν ′, ν ′′), and µ′′ = N(ν, ν ′′). We have

µ′′(gf ) ⩽ µ(f )µ′(g).
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Proof

For xxx ∈ Cm we have ν ′(f (x) ⩽ (µ(f ) + ϵ′)ν(xxx) for every ϵ′ > 0/ Similarly,
for yyy ∈ Cn e have ν ′′(g(y)) ⩽ (µ′(g) + ϵ′′)ν ′(yyy) for every ϵ′′ > 0. These
inequalities imply

ν ′′(g(f (xxx))) ⩽ (ν ′(g) + ϵ′′)ν ′(f (x)) ⩽ (ν ′(g) + ϵ′′)(ν(f (x)) + ϵ′)ν(xxx),

hence
µ′′(gf ) ⩽ (µ′(g) + ϵ′′)(µ(f ) + ϵ′)

for every ϵ′ and ϵ′′, hence µ′′(gf ) ⩽ µ(f )µ′(g).
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Definition

A consistent family of matrix norms is a family of functions
µ(m,n) : Cm×n −→ R⩾0, where m, n ∈ P that satisfies the following
conditions:

µ(m,n)(A) = 0 if and only if A = Om,n;
µ(m,n)(A+ B) ⩽ µ(m,n)(A) + µ(m,n)(B) (the subadditivity property);
µ(m,n)(aA) = |a|µ(m,n)(A);
µ(m,p)(AB) ⩽ µ(m,n)(A)µ(n,p)(B) for every matrix A ∈ Rm×n and
B ∈ Rn×p (the submultiplicative property).

If the format of the matrix A is clear from context or is irrelevant, then we
shall write µ(A) instead of µ(m,n)(A).
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Example

Let P ∈ Cn×n be an idempotent matrix, that is, a matrix P such that
P2 = P. If µ is a matrix norm, then either µ(P) = 0 or µ(P) ⩾ 1.
Indeed, since P is idempotent we have µ(P) = µ(P2). By the
submultiplicative property, µ(P2) ⩽ (µ(P))2, so µ(P) ⩽ (µ(P))2.
Consequently, if µ(P) ̸= 0, then µ(P) ⩾ 1.
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Some vectorial matrix norms turn out to be actual matrix norms; others
fail to be matrix norms. This point is illustrated by the next examples.
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Example

Consider the vectorial matrix norm µ1 induced by the vector norm ν1. We have
µ1(A) =

∑n
i=1

∑m
j=1 |aij | for A ∈ Rm×n. Actually, this is a matrix norm. To prove

this fact consider the matrices A ∈ Rm×p and B ∈ Rp×n. We have:

µ1(AB) =
m∑
i=1

n∑
j=1

∣∣∣∣∣
p∑

k=1

aikbkj

∣∣∣∣∣ ⩽
m∑
i=1

n∑
j=1

p∑
k=1

|aikbkj |

⩽
m∑
i=1

n∑
j=1

p∑
k′=1

p∑
k′′=1

|aik′ ||bk′′j |

(because we added extra non-negative terms to the sums)

=

(
m∑
i=1

p∑
k′=1

|aik′ |

)
·

 n∑
j=1

p∑
k′′=1

|bk′′j |


= µ1(A)µ1(B).

We denote this vectorial matrix norm by the same notation as the corresponding
vector norm, that is, by ∥ A ∥1.
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The vectorial norm µ2 (also known as the Frobenius norm) is induced by
the vector norm ν2. It is also a matrix norm. Indeed, we have

(µ2(AB))
2 =

m∑
i=1

n∑
j=1

∣∣∣∣∣
p∑

k=1

aikb
kj

∣∣∣∣∣
2

⩽
m∑
i=1

n∑
j=1

(
p∑

k=1

|aik |2
p∑

ℓ=1

|bℓj |2
)

(by Cauchy-Schwarz Inequality)

⩽ (µ2(A))
2(µ2(B))

2.

µ2(A) is denoted also by ∥ A ∥F (F from Frobenius).
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Example

For real matrices we have ∥ A ∥2F= trace(AA′) = trace(A′A).
For complex matrices the corresponding equality is

∥ A ∥2F= trace(AAH) = trace(AHA).

Note that ∥ AH ∥2F=∥ A ∥2F for every A.

Prof. Dan A. Simovici CS724: Topics in Algorithms Norms and Inner Products - II Slide Set 5 17 / 117



Example

The vectorial norm µ∞ induced by the vector norm ν∞ is denoted by
∥ A ∥∞ and is given by

∥ A ∥∞= max
i ,j

|aij |

for A ∈ Cn×n. This is not a matrix norm. Indeed, let a, b be two positive
numbers and consider the matrices

A =

(
a a
a a

)
and B =

(
b b
b b

)
.

We have ∥ A ∥∞= a and ∥ B ∥∞= b. However, since

AB =

(
2ab 2ab
2ab 2ab

)
,

we have ∥ AB ∥∞= 2ab and the submultiplicative property of matrix
norms is violated.
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Theorem

Let µ be the matrix norm on Cn×n induced by the vector norm ν. We
have ν(Auuu) ⩽ µ(A)ν(uuu) for every uuu ∈ Cn.

Proof.

The inequality is obviously satisfied when uuu = 000n. Therefore, we may
assume that uuu ̸= 000n and let xxx = 1

ν(uuu)uuu. Clearly, ν(xxx) = 1 and

ν

(
A

1

ν(uuu)
uuu

)
⩽ µ(A)

for every uuu ∈ Cn − {000n}. This implies immediately the desired
inequality.
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If µ is a matrix norm induced by a vector norm on Rn, then
µ(In) = sup{ν(Inxxx) | ν(xxx) ⩽ 1} = 1. This necessary condition can be
used for identifying matrix norms that are not induced by vector norms.

The operator matrix norm induced by the vector norm ∥ · ∥p is denoted by
||| · |||p.
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Example

To compute |||A|||1 = sup{∥ Axxx ∥1 | ∥ xxx ∥1⩽ 1}, where A ∈ Rn×n, suppose that the
columns of A are the vectors aaa1, . . . ,aaan, that is

aaaj =


a1j
a2j
...
anj

 .

Let xxx ∈ Rn be a vector whose components are x1, . . . , xn. Then,
AAAxxx = x1aaa1 + · · ·+ xnaaan, so

∥ Axxx ∥1 = ∥ x1aaa1 + · · ·+ xnaaan ∥1

⩽
n∑

j=1

|xj | ∥ aaaj ∥1

⩽ max
j

∥ aaaj ∥1
n∑

j=1

|xj |

= max
j

∥ aaaj ∥1 · ∥ xxx ∥1 .

Thus, |||A|||1 ⩽ maxj ∥ aaaj ∥1.
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Example cont’d

Example

Let eee j be the vector whose components are 0 with the exception of its j th

component that is equal to 1. Clearly, we have ∥ eee j ∥1= 1 and aaaj = Aeee j .
This, in turn implies ∥ aaaj ∥1=∥ Aeee j ∥1⩽ |||A|||1 for 1 ⩽ j ⩽ n. Therefore,
maxj ∥ aaaj ∥1⩽ |||A|||1, so

|||A|||1 = max
j

∥ aaaj ∥1= max
j

n∑
i=1

|aij |.

In other words, |||A|||1 equals the maximum column sum of the absolute
values.
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Example

Consider now a matrix A ∈ Rn×n. We have

∥ Axxx ∥∞ = max
1⩽i⩽n

∣∣∣∣∣∣
n∑

j=1

aijxj

∣∣∣∣∣∣
⩽ max

1⩽i⩽n

n∑
j=1

|aijxj |

⩽ max
1⩽i⩽n

∥ xxx ∥∞
n∑

j=1

|aij |.

Consequently, if ∥ xxx ∥∞⩽ 1 we have ∥ Axxx ∥∞⩽ max1⩽i⩽n
∑n

j=1 |aij |.
Thus, |||A|||∞ ⩽ max1⩽i⩽n

∑n
j=1 |aij |.
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Example cont’d

Example

The converse inequality is immediate if A = On,n. Therefore, assume that
A ̸= On×n, and let (ap1, . . . , apn) be any row of A that has at least one element
distinct from 0. Define the vector zzz ∈ Rn by

zj =

{ |apj |
apj

if apj ̸= 0,

1 otherwise,

for 1 ⩽ j ⩽ n. It is clear that zj ∈ {−1, 1} for every j , 1 ⩽ j ⩽ n and, therefore,
∥ zzz ∥∞= 1. Moreover, we have |apj | = apjzj for 1 ⩽ j ⩽ n. Therefore, we can
write:

n∑
j=1

|apj | =
n∑

j=1

apjzj ⩽

∣∣∣∣∣∣
n∑

j=1

apjzj

∣∣∣∣∣∣ ⩽ max
1⩽i⩽n

∣∣∣∣∣∣
n∑

j=1

aijzj

∣∣∣∣∣∣
= ∥ Azzz ∥∞⩽ max{∥ Axxx ∥∞ | ∥ xxx ∥∞⩽ 1} = |||A|||∞.
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Example cont’d

Example

Since this holds for every row of A, it follows that
max1⩽i⩽n

∑n
j=1 |aij | ⩽ |||A|||∞, which proves that

|||A|||∞ = max
1⩽i⩽n

n∑
j=1

|aij |.

In other words, |||A|||∞ equals the maximum row sum of the absolute values.
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Example

Let D = diag(d1, . . . , dn) ∈ Cn×n be a diagonal matrix. If xxx ∈ Cn we have

Dxxx =

d1x1
...

dnxn

 ,

so

|||D|||2 = max{∥ Dxxx ∥2 | ∥ xxx ∥2= 1}

= max{
√
(d1x1)2 + · · ·+ (dnxn)2 | x21 + · · ·+ x2n = 1}

= max{|di | | 1 ⩽ 1 ⩽ n}.
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Certain norms are invariant with respect to multiplication by unitary
matrices. We refer to these norms as unitarily invariant norms.

Theorem

Let U ∈ Cn×n be a unitary matrix. The following statements hold:
∥ Uxxx ∥2=∥ xxx ∥2 for every xxx ∈ Cn;
|||UA|||2 = |||A|||2 for every A ∈ Cn×p;
∥ UA ∥F=∥ A ∥F for every A ∈ Cn×p.
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Proof

For the first part of the theorem note that

∥ Uxxx ∥22= (Uxxx)HUxxx = xxxHUHUxxx = xxxHxxx =∥ xxx ∥22,

because UHA = In.
The second part of the theorem is shown next:

|||UA|||2 = max{∥ (UA)xxx ∥2 | ∥ xxx ∥2= 1}
= max{∥ U(Axxx) ∥2 | ∥ xxx ∥2= 1}
= max{∥ Axxx ∥2 | ∥ xxx ∥2= 1}

(by Part (i))

= |||A|||2.
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Proof cont’d

For the Frobenius norm note that

∥ UA ∥F=
√
trace((UA)HUA) =

√
trace(AHUHUA) =

√
trace(AHA) =∥ A ∥F .
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Corollary

If U ∈ Cn×n is a unitary matrix, then |||U|||2 = 1.

Proof.

Since |||U|||2 = sup{∥ Uxxx ∥2 | ∥ xxx ∥2⩽ 1}, we have

|||U|||2 = sup{∥ xxx ∥2 | ∥ xxx ∥2⩽ 1} = 1.
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Corollary

Let A,U ∈ Cn×n. If U is an unitary matrix, then

∥ UHAU ∥F=∥ A ∥F .

Proof.

Since U is a unitary matrix, so is UH. By a previous Theorem,

∥ UHAU ∥F=∥ AU ∥F=∥ UHAH ∥2F=∥ AH ∥2F=∥ A ∥2F ,

which proves the corollary.
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Example

Let S = {xxx ∈ Rn | ∥ xxx ∥2= 1} be the surface of the sphere in Rn. The
image of S under the linear transformation hU that corresponds to the
unitary matrix U is S itself. Indeed, ∥ hU(xxx) ∥2=∥ xxx ∥2= 1, so hU(xxx) ∈ S
for every xxx ∈ S . Also, note that hU restricted to S is a bijection because
hUH(hU(xxx)) = xxx for every xxx ∈ Rn.
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Theorem

Let A ∈ Rn×n. We have |||A|||2 ⩽∥ A ∥F .

Proof.

Let xxx ∈ Rn. We have

Axxx =

rrr1xxx
...

rrrnxxx

 ,

where rrr1, . . . , rrrn are the rows of the matrix A. Thus,

∥ Axxx ∥2
∥ xxx ∥2

=

√∑n
i=1(rrr ixxx)

2

∥ xxx ∥2
.

By Cauchy-Schwarz inequality we have: (rrr ixxx)
2 ⩽∥ rrr i ∥22∥ xxx ∥22, so

∥Axxx∥2
∥xxx∥2 ⩽

√∑n
i=1 ∥ rrr i ∥22 =∥ A ∥F . This implies |||A|||2 ⩽∥ A ∥F .
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Definition

Let L be a C-linear space. An inner product on L is a function
f : L× L −→ C that has the following properties:

f (axxx + byyy ,zzz) = af (xxx ,zzz) + bf (yyy ,zzz) (linearity in the first argument);
f (xxx ,yyy) = f (yyy ,xxx) for yyy ,xxx ∈ L (conjugate symmetry);
if xxx ̸= 000, then f (xxx ,xxx) is a positive real number (positivity),
f (xxx ,xxx) = 0 if and only if xxx = 000 (definiteness),

for every xxx ,yyy ,zzz ∈ L and a, b ∈ C.
The pair (L, f ) is called an inner product space.

An alternative terminology for real inner product spaces is Euclidean
spaces, and Hermitian spaces for complex inner product spaces.
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For the second argument of an inner product we have the property of
conjugate linearity, that is,

f (zzz , axxx + byyy) = āf (zzz ,xxx) + b̄f (zzz ,yyy)

for every xxx ,yyy ,zzz ∈ L and a, b ∈ C. Indeed, by the conjugate symmetry
property we can write

f (zzz , axxx + byyy) = f (axxx + byyy ,zzz)

= af (xxx ,zzz) + bf (yyy ,zzz)

= āf (xxx ,zzz) + b̄f (yyy ,zzz)

= āf (zzz ,xxx) + b̄f (zzz ,yyy).
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Observe that conjugate symmetry property on inner products implies that
for xxx ∈ L, f (xxx ,xxx) is a real number because f (xxx ,xxx) = f (xxx ,xxx).
When L is a real linear space the definition of the inner product becomes
simpler because the conjugate of a real number a is a itself. Namely, for
real linear spaces, the conjugate symmetry is replaced by the plain
symmetry property,

f (xxx ,yyy) = f (yyy ,xxx),

for xxx ,yyy ∈ L and f is linear in both arguments.
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Let W = {www1, . . . ,wwwn} be a basis in the complex n-dimensional inner
product space L. If xxx =

∑n
i=1 x

iwww i and yyy =
∑n

j=1 y
jwww j , then

f (xxx ,yyy) =
n∑

i=1

n∑
j=1

x iy j f (www i ,www j),

due to the bilinearity of the inner product. If we denote f (www i ,www j) by gij ,
then f (xxx ,yyy) can be written as

f (xxx ,yyy) =
n∑

i=1

n∑
j=1

x iy jgij (1)

for xxx ,yyy ∈ L.
If L is a real inner product space L, then

f (xxx ,yyy) =
n∑

i=1

n∑
j=1

x iy jgij

To simplify notations, if there is no risk of confusion, we denote the inner
product f (uuu,vvv) as (uuu,vvv).
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Definition

Two vectors uuu,vvv ∈ Cn are said to be orthogonal with respect to an inner
product if (uuu,vvv) = 0. This is denoted by x ⊥ y .
An orthogonal set of vectors in an inner product space L equipped with an
inner product is a subset W of L such that for every uuu,vvv ∈ W we have
uuu ⊥ vvv .
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Theorem

Any inner product on a linear space L generates a norm on that space
defined by ∥ xxx ∥=

√
(xxx ,xxx) for xxx ∈ L.
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Proof

Let L be a C-linear space. We need to verify that the norm satisfies the
conditions of Definition. Applying the properties of the inner product we
have

∥ xxx + yyy ∥2 = (xxx + yyy ,xxx + yyy)

= (xxx ,xxx) + 2(xxx ,yyy) + (yyy ,yyy)

= ∥ xxx ∥2 +2(xxx ,yyy)+ ∥ yyy ∥2

⩽ ∥ xxx ∥2 +2 ∥ xxx ∥∥ yyy ∥ + ∥ yyy ∥2

= (∥ xxx ∥ + ∥ yyy ∥)2.

Because ∥ xxx ∥⩾ 0 it follows that ∥ xxx + yyy ∥⩽∥ xxx ∥ + ∥ yyy ∥, which is the
subadditivity property.
If a ∈ C, then
∥ axxx ∥=

√
(axxx , axxx) =

√
aā(xxx ,xxx) =

√
|a|2(xxx ,xxx) = |a|

√
(xxx ,xxx) = |a| ∥ xxx ∥.

From the definiteness property of the inner product it follows that
∥ xxx ∥= 0 if and only if xxx = 000.
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The norm induced by the inner product f (xxx ,yyy) = x iy jgij is

∥ xxx ∥2= f (xxx ,xxx) = x ix jgij .
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Theorem

If W is a set of orthogonal vectors in a n-dimensional C-linear space L and
000 ̸∈ W, then W is linearly independent.

Proof.

Let ccc = a1www1 + · · ·+ anwwwn a linear combination in L such that
a1www1 + · · ·+ anwwwn = 000. Since (ccc ,www i ) = ai ∥ www i ∥2= 0, we have ai = 0
because ∥ www i ∥2 ̸= 0, and this holds for every i , where 1 ⩽ i ⩽ n. Thus, W
is linearly independent.
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Definition

An orthonormal set of vectors in an inner product space L equipped with
an inner product is an orthogonal subset W of L such that for every uuu we
have ∥ uuu ∥= 1, where the norm is induced by the inner product.

Corollary

If W is an orthonormal set of vectors in an n-dimensional C-linear space L
and |W | = n, then W is a basis in L.
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If W = {www1, . . . ,wwwn} is an orthonormal basis in Cn we have

gij = (www i ,www j) =

{
0 if i ̸= j ,

1 if i = j ,

which means that the inner product of the vectors xxx = x iwww i and yyy = y jwww j

is given by:
(xxx ,yyy) = x iy j(www i ,www j) = x iy i . (2)

Consequently, ∥ xxx ∥2=
∑n

i=1 |x i |2.
The inner product of xxx ,yyy ∈ Rn is

(xxx ,yyy) = x iy j(www i ,www j) = x iy i . (3)
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Not every norm can be induced by an inner product. A characterization of
this type of norms in linear spaces is presented next.
This equality shown in the next theorem is known as the parallelogram
equality.

Theorem

Let L be a real linear space. A norm ∥ · ∥ is induced by an inner product if
and only if

∥ xxx + yyy ∥2 + ∥ xxx − yyy ∥2= 2(∥ xxx ∥2 + ∥ yyy ∥2),

for every xxx ,yyy ∈ L.

Prof. Dan A. Simovici CS724: Topics in Algorithms Norms and Inner Products - II Slide Set 5 45 / 117



Proof

Suppose that the norm is induced by an inner product. In this case we can
write for every xxx and yyy :

∥ xxx + yyy ∥2= (xxx + yyy ,xxx + yyy) = (xxx ,xxx) + 2(xxx ,yyy) + (yyy ,yyy),

∥ xxx − yyy ∥2= (xxx − yyy ,xxx − yyy) = (xxx ,xxx)− 2(xxx ,yyy) + (yyy ,yyy).

Thus,
(xxx + yyy ,xxx + yyy) + (xxx − yyy ,xxx − yyy) = 2(xxx ,xxx) + 2(yyy ,yyy),

which can be written in terms of the norm generated as the inner product
as

∥ xxx + yyy ∥2 + ∥ xxx − yyy ∥2= 2(∥ xxx ∥2 + ∥ yyy ∥2).

The proof of the reverse implication is omitted.
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Definition

Let www ∈ Rn − {000} and let a ∈ R. The hyperplane determined by www and a
is the set

Hwww ,a = {xxx ∈ Rn | www ′xxx = a}.
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If xxx0 ∈ Hwww ,a, then www ′xxx0 = a, so Hwww ,a is also described by the equality

Hwww ,a = {xxx ∈ Rn | www ′(xxx − xxx0) = 0}.

Any hyperplane Hwww ,a partitions Rn into three sets:

H>
www ,a = {xxx ∈ Rn | www ′xxx > a},

H0
www ,a = Hwww ,a,

H<
www ,a = {xxx ∈ Rn | www ′xxx < a}.

The sets H>
www ,a and H<

www ,a are the positive and negative open half-spaces
determined by Hwww ,a, respectively. The sets

H⩾
www ,a = {xxx ∈ Rn | www ′xxx ⩾ a},

H⩽
www ,a = {xxx ∈ Rn | www ′xxx ⩽ a}.

are the positive and negative closed half-spaces determined by Hwww ,a,
respectively.
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If xxx1,xxx2 ∈ Hwww ,a we say that the vector xxx1 − xxx2 is located in the hyperplane
Hwww ,a. In this case www ⊥ xxx1 − xxx2. This justifies referring to www as the normal
to the hyperplane Hwww ,a. Observe that a hyperplane is fully determined by
a vector xxx0 ∈ Hwww ,a and by www .
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Let xxx0 ∈ Rn and let Hwww ,a be a hyperplane. We seek xxx ∈ Hwww ,a such that
∥ xxx − xxx0 ∥2 is minimal. Finding xxx amounts to minimizing the function
f (xxx) =∥ xxx − xxx0 ∥22=

∑n
i=1(xi − x0i )

2 subjected to the constraint
www1xxx1 + · · ·+ wnxxxn − a = 0. Using the Lagrangian
Λ(xxx) = f (xxx) + λ(www ′xxx − a) and the multiplier λ we impose the conditions

∂Λ

∂xi
= 0 for 1 ⩽ i ⩽ n

which amount to
∂f

∂xi
+ λwi = 0

for 1 ⩽ i ⩽ n. These equalities yield 2(xi − x0i ) + λwww i = 0, so we have
xi = x0i − 1

2λwww i .
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Consequently, we have xxx = xxx0 − 1
2λwww . Since xxx ∈ Hwww ,a this implies

www ′xxx = www ′xxx0 −
1

2
λwww ′www = a.

Thus,

λ = 2
www ′xxx0 − a

www ′www
= 2

www ′xxx0 − a

∥ www ∥22
.

We conclude that the closest point in Hwww ,a to xxx0 is

xxx = xxx0 −
www ′xxx0 − a

∥ www ∥22
www .
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The smallest distance between xxx0 and a point in the hyperplane Hwww ,a is
given by

∥ xxx0 − xxx ∥= |www ′xxx0 − a|
∥ www ∥2

.

If we define the distance d(Hwww ,a,xxx0) between xxx0 and Hwww ,a as this smallest
distance we have

d(Hwww ,a,xxx0) =
|www ′xxx0 − a|
∥ www ∥2

. (4)
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Lemma

Let A ∈ Cn×n. If xxxHAxxx = 0 for every xxx ∈ Cn, then A = On,n.
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Proof

If xxx = eeek , then xxxHAxxx = akk for every k, 1 ⩽ k ⩽ n, so all diagonal entries
of A equal 0. Choose now xxx = eeek + eee j . Then,

(eeek + eee j)
HA(eeek + eee j)

= eeeH
kAeeek + eeeH

kAeee j + eeeH
j Aeeek + eeeH

j Aeee j

= eeeH
kAeee j + eeeH

j Aeeek

= akj + ajk = 0.
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Proof cont’d

Similarly, if we choose xxx = eeek + ieee j we obtain:

(eeek + ieee j)
HA(eeek + ieee j)

= (eeeH
k − ieeeH

j )A(eeek + ieee j)

= eeeH
kAeeek − ieeeH

j Aeeek + ieeeH
kAeee j + eeeH

j Aeee j

= −iajk + iakj = 0.

The equalities akj + ajk = 0 and −ajk + akj = 0 imply akj = ajk = 0. Thus,
all off-diagonal elements of A are also 0, hence A = On,n.
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Theorem

A matrix U ∈ Cn×n is unitary if ∥ Uxxx ∥2=∥ xxx ∥2 for every xxx ∈ Cn.
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Proof

If U is unitary we have

∥ Uxxx ∥22= (Uxxx)HUxxx = xxxHUHUxxx =∥ xxx ∥22

because UHU = In. Thus, ∥ Uxxx ∥2=∥ xxx ∥2.

Conversely, let U be a matrix such that ∥ Uxxx ∥2=∥ xxx ∥2 for every xxx ∈ Cn.
This implies xxxHUHUxxx = xxxHxxx , hence xxxH(UHU − In)xxx = 0 for xxx ∈ Cn. This
implies UHU = In, so U is a unitary matrix.
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Corollary

The following statements that concern a matrix U ∈ Cn×n are equivalent:
U is unitary;
∥ Uxxx − Uyyy ∥2=∥ xxx − yyy ∥2 for xxx ,yyy ∈ Cn;
(Uxxx ,Uyyy) = (xxx ,yyy) for xxx ,yyy ∈ Cn.

Prof. Dan A. Simovici CS724: Topics in Algorithms Norms and Inner Products - II Slide Set 5 58 / 117



The counterpart of unitary matrices in the set of real matrices are
introduced next.

Definition

A matrix A ∈ Rn×n is orthogonal or orthonormal if it is unitary.

In other words, a real matrix A ∈ Rn×n is orthogonal if and only if
A′A = AA′ = In. Clearly, A is orthogonal if and only if A′ is orthogonal.
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Theorem

If A ∈ Rn×n is an orthogonal matrix, then det(A) ∈ {−1, 1}.

Proof.

By a previous Corollary, | det(A)| = 1. Since det(A) is a real number, it
follows that det(A) ∈ {−1, 1}.
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Corollary

Let A be a matrix in Rn×n. The following statements are equivalent:
A is orthogonal;
A is invertible and A−1 = A′;
A′ is invertible and (A′)−1 = A;
A′ is orthogonal.

Thus, a matrix A is orthogonal if and only if it preserves the length of
vectors.
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Definition

A rotation matrix is an orthogonal matrix R ∈ Rn×n such that det(R) = 1.

A reflection matrix is an orthogonal matrix R ∈ Rn×n such that
det(R) = −1.
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In the bidimensional case, n = 2, a rotation is a an orthogonal matrix
R ∈ R2×2. For

R =

(
r11 r12
r21 r22

)
we have:

RR ′ =

(
r11 r12
r21 r22

)(
r11 r21
r12 r22

)
=

(
r211 + r212 r11r21 + r12r22

r11r21 + r12r22 r221 + r222

)
=

(
1 0
0 1

)
.
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The above equalities imply:

r211 + r212 = 1,

r221 + r222 = 1,

r11r21 + r12r22 = 0.

Also, the orthogonality implies

r11r22 − r12r21 = 1.
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The equality r11r22 − r12r21 = 1 implies:

r22(r11r12 + r21r22)− r12(r11r22 − r12r21) = −r12,

or
r21(r

2
22 + r212) = −r12,

so r21 = −r12.
If r21 = −r21 = 0, the above equalities imply that either r11 = r22 = 1 or
r11 = r22 = −1. Otherwise, the equality r11r12 + r21r22 = 0 implies
r11 = r22.
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Since r211 ⩽ 1 it follows that there exists θ such that r11 = cos θ. This
implies that R has the form

R =

(
cos θ − sin θ
sin θ cos θ

)
Its effect on a vector

xxx =

(
x1
x2

)
∈ R2

is to produce the vector yyy = Rxxx , where

yyy =

(
x1 cos θ − x2 sin θ
x1 sin θ + x2 cos θ

)
,

which is obtained from xxx by a counterclockwise rotation by the angle θ.
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It is easy to see that det(R) = 1, so the term “rotation matrix” is clearly
justified for R. To mark the dependency of R on θ we will use the notation

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
.
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If the angle of the vector xxx =

(
x1
x2

)
with the x1 axis is α and xxx is rotated

counterclockwise by θ to yield the vector yyy = y1eee1 + y2eee2, then
x1 = r cosα, x2 = r sinα, and

y1 = r cos(α+ θ) = r cosα cos θ − r sinα sin θ = x1 cos θ − x2 sin θ,

y2 = r sin(α+ θ) = r sinα cos θ + r cosα sin θ = x1 sin θ + x2 cos θ,

which are the formulas that describe the transformation of xxx into yyy .

x1

x2

yyy

xxx

α

θ
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Definition

Let U be an m-dimensional subspace of Cn and let {uuu1, . . . ,uuum} be an
orthonormal basis of this subspace. The orthogonal projection of the
vector xxx ∈ Cn on the subspace U is the vector projU(xxx) given by:

projU(xxx) = (xxx ,uuu1)uuu1 + · · ·+ (xxx ,uuum)uuum.
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Theorem

Let U be an m-dimensional subspace of Rn and let xxx ∈ Rn. The vector
yyy = xxx − projU(xxx) belongs to the subspace U⊥.

Proof.

Let BU = {uuu1, . . . ,uuum} be an orthonormal basis of U. Note that

(yyy ,uuuj) = (xxx ,uuuj)−

(
m∑
i=1

(xxx ,uuui )uuui ,uuuj

)

= (xxx ,uuuj)−
m∑
i=1

(xxx ,uuui )(uuui ,uuuj) = 0,

due to the orthogonality of the basis BU . Therefore, yyy is orthogonal on
every linear combination of BU , that is on the subspace U.
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Theorem

Let U be an m-dimensional subspace of Cn having the orthonormal basis
{uuu1, . . . ,uuum}.
The orthogonal projection projU is given by projU(xxx) = BUB

H
Uxxx for

xxx ∈ Cn, where BU ∈ Rn×m is the matrix BU = (uuu1 · · · uuum) ∈ Cn×m.

Proof.

We can write

projU(xxx) =
m∑
i=1

uuui (uuu
H
i xxx) = (uuu1 · · · uuum)

uuuH
1
...

uuuH
m

xxx = BUB
H
Uxxx .

Prof. Dan A. Simovici CS724: Topics in Algorithms Norms and Inner Products - II Slide Set 5 71 / 117



Since the basis {uuu1, . . . ,uuum} is orthonormal, we have BH
UBU = Im. Observe

that the matrix BUB
H
U ∈ Cn×n is symmetric and idempotent because

(BUB
H
U)(BUB

H
U) = BU(B

H
UBU)B

H
U = BUB

H
U .

For an m-dimensional subspace U of Cn we denote by
PU = BUB

H
U ∈ Cn×n, where BU is a matrix of an orthonormal basis of U

as defined before. PU is the projection matrix of the subspace U.
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Corollary

For every non-zero subspace U, the matrix PU is a Hermitian matrix, and
therefore, a self-adjoint matrix.

Proof.

Since PU = BUB
H
U where BU is a matrix of an orthonormal basis of the

subspace S , it is immediate that PH
U = PU .

The self-adjointness of PU means that (xxx ,PUyyy) = (PUxxx ,yyy) for every
xxx ,yyy ∈ Cn.
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Corollary

Let U be an m-dimensional subspace of Cn having the orthonormal basis
{uuu1, . . . ,uuum}. If BU = (uuu1 · · · uuum) ∈ Cn×m, then for every xxx ∈ C we have
the decomposition xxx = PUxxx + QUxxx, where PU = BUB

H
U and

QU = In − PU , PUxxx ∈ U and QUxxx ∈ U⊥.
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Observe that

Q2
U = (In − PUP

H
U)(In − PUP

H
U)

= In − PUP
H
U − PUP

H
U + PUP

H
UPUP

H
U = QU ,

so QU is an idempotent matrix. The matrix QU is the projection matrix on
the subspace U⊥. Clearly, we have

PU⊥ = QU = In − PU . (5)

It is possible to give a direct argument for the independence of the
projection matrix PU relative to the choice of orthonormal basis in U.
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It is possible to give a direct argument for the independence of the
projection matrix PU relative to the choice of orthonormal basis in U.

Theorem

Let U be an m-dimensional subspace of Cn having the orthonormal bases
{uuu1, . . . ,uuum} and {vvv1, . . . ,vvvm} and let BU = (uuu1 · · · uuum) ∈ Cn×m and
B̃U = (vvv1 · · · vvvm) ∈ Cn×m. The matrix BH

U B̃U ∈ Cm×m is unitary and
B̃U B̃

H
U = BUB

H
U .
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Proof

Since the both sets of columns of BU and B̃U are bases for U, there exists
a unique square matrix Q ∈ Cm×m such that BU = B̃UQ. The
orthonormality of BU and B̃U implies BH

UBU = B̃H
U B̃U = Im. Thus, we can

write
Im = BH

UBU = QHB̃H
U B̃UQ = QHQ,

which shows that Q is unitary. Furthermore, BH
U B̃U = QHB̃H

U B̃U = QH is
unitary and

BUB
H
U = B̃UQQ

HB̃H
U = B̃U B̃

H
U .
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Definition

A matrix A ∈ Cn×n is positive definite if xxxHAxxx is a real positive number for
every xxx ∈ Cn − {000}.
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Theorem

If A ∈ Cn×n is positive definite, then A is Hermitian.

Proof.

Let A ∈ Cn×n be a matrix. Since xxxHAxxx is a real number it follows that it
equals its conjugate, so xxxHAxxx = xxxHAHxxx for every xxx ∈ Cn. Therefore, there
exists a unique pair of Hermitian matrices H1 and H2 such that
A = H1 + iH2, which implies AH = HH

1 − iHH
2 . Thus, we have

xxxH(H1 + iH2)xxx = xxxH(HH
1 − iHH

2 )xxx = xxxH(H1 − iH2)xxx ,

because H1 and H2 are Hermitian. This implies xxxHH2xxx = 0 for every
xxx ∈ Cn, which, in turn, implies H2 = On,n. Consequently, A = H1, so A is
indeed Hermitian.
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Definition

A matrix A ∈ Cn×n is positive semidefinite if xxxHAxxx is a non-negative real
number for every xxx ∈ Cn − {000}.

Positive definiteness (positive semidefiniteness) is denoted by A ≻ 0
(A ⪰ 0, respectively).
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The definition of positive definite (semidefinite) matrix can be specialized
for real matrices as follows.

Definition

A symmetric matrix A ∈ Rn×n is positive definite if xxx ′Axxx > 0 for every
xxx ∈ Rn − {000}.
If A satisfies the weaker inequality xxx ′Axxx ⩾ 0 for every xxx ∈ Rn − {000}, then
we say that A is positive semidefinite.
A ≻ 0 denotes that A is positive definite and A ⪰ 0 means that A is
positive semidefinite.
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Note that in the case of real-valued matrices we need to require explicitly
the symmetry of the matrix because, unlike the complex case, the
inequality xxx ′Axxx > 0 for xxx ∈ Rn − {000n} does not imply the symmetry of A.
For example, consider the matrix

A =

(
a b
−b a

)
,

where a, b ∈ R and a > 0. We have

xxx ′Axxx = (x1 x2)

(
a b
−b a

)(
x1
x2

)
= a(x21 + x22 ) > 0

if xxx ̸= 0002.
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Example

The symmetric real matrix

A =

(
a b
b c

)
is positive definite if and only if a > 0 and b2 − ac < 0. Indeed, we have
xxx ′Axxx > 0 for every xxx ∈ R2 − {000} if and only if ax21 + 2bx1x2 + cx22 > 0,
where xxx ′ = (x1 x2); elementary algebra considerations lead to a > 0 and
b2 − ac < 0.
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A positive definite matrix is non-singular. Indeed, if Axxx = 000, where
A ∈ Rn×n is positive definite, then xxxHAxxx = 0, so xxx = 000. Therefore, A is
non-singular.

Example

If A ∈ Cm×n, then the matrices AHA ∈ Cn×n and AAH ∈ Cm×m are positive
semidefinite. For xxx ∈ Cn we have

xxxH(AHA)xxx = (xxxHAH)(Axxx) = (Axxx)H(Axxx) =∥ Axxx ∥22⩾ 0.

The argument for AAH is similar.
If rank(A) = n, then the matrix AHA is positive definite because
xxxH(AHA)xxx = 0 implies Axxx = 000, which, in turn, implies xxx = 000.
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Theorem

If A ∈ Cn×n is a positive definite matrix, then any principal submatrix

B = A

[
i1 · · · ik
i1 · · · ik

]
is a positive definite matrix.

Proof.

Let xxx ∈ Cn − {000} be a vector such that all components located on

positions other than i1, . . . , ik equal 0 and let yyy = xxx

[
i1 · · · ik

1

]
∈ Ck be

the vector obtained from xxx by retaining only the components located on
positions i1, . . . , ik . Since yyy

HByyy = xxxHAxxx > 0 it follows that B ≻ 0.
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Corollary

If A ∈ Cn×n is a positive definite matrix, then any diagonal element aii is a
real positive number for 1 ⩽ i ⩽ n.
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Theorem

If A,B ∈ Cn×n are two positive semidefinite matrices and a, b are two
non-negative numbers, then aA+ bB ⪰ 0.

Proof.

The statement holds because xxxH(aA+ bB)xxx = axxxHAxxx + bxxxHBxxx ⩾ 0, due
to the fact that A and B are positive semidefinite.
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Definition

Let L = (vvv1, . . . ,vvvm) be a sequence of vectors in Rn.
The Gram matrix of L is the matrix

GL = (gij) ∈ Rm×m

defined by gij = vvv ′ivvv j for 1 ⩽ i , j ⩽ m.

If AL = (vvv1 · · · vvvm) ∈ Rn×m, then GL = A′
LAL. Also, note that GL is a

symmetric matrix.
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Example

Let

vvv1 =

 1
0
−1

 ,vvv2 =

1
2
2

 ,vvv3 =

2
1
0

 .

The Gram matrix of the set L = {vvv1,vvv2,vvv3} is

GL =

 2 −1 2
−1 9 4
2 4 5

 .

Note that det(GL) = 1.
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Theorem

Let L = (vvv1, . . . ,vvvm) be a sequence of m vectors in Rn, where m ⩽ n. If L
is linearly independent, then the Gram matrix GL is positive definite.

Proof.

Suppose that L is linearly independent. Let xxx ∈ Rm. We have
xxx ′GLxxx = xxx ′A′

LALxxx = (ALxxx)
′ALxxx =∥ ALxxx ∥22. Therefore, if xxx ′GLxxx = 0, we

have ALxxx = 000, which is equivalent to x1vvv1 + · · ·+ xnvvvn = 0. Since
{vvv1, . . . ,vvvm} is linearly independent it follows that x1 = · · · = xm = 0, so
xxx = 000. Thus, A is indeed, positive definite.
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The Gram matrix of an arbitrary sequence of vectors is positive
semidefinite, as the reader can easily verify.

Definition

Let L = (vvv1, . . . ,vvvm) be a sequence of m vectors in Rn, where m ⩽ n. The
Gramian of L is the number det(GL).
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Theorem

If L = (vvv1, . . . ,vvvm) is a sequence of m vectors in Rn. Then, L is linearly
independent if and only if det(GL) ̸= 0.

Proof.

Suppose that det(GL) ̸= 0 and that L is not linearly independent. In other
words, the numbers a1, . . . , am exists such that at least one of them is not
0 and a1xxx1 + · · ·+ amxxxm = 000. This implies the equalities

a1(xxx1,xxx j) + · · ·+ am(xxxm,xxx j) = 000,

for 1 ⩽ j ⩽ m, so the system GLaaa = 000 has a non-trivial solution in
a1, . . . , am. This implies det(GL) = 0, which contradicts the initial
assumption.
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Proof cont’d

Conversely, suppose that L is linearly independent and det(GL) = 0. Then,
the linear system

a1(xxx1,xxx j) + · · ·+ am(xxxm,xxx j) = 000,

for 1 ⩽ j ⩽ m, has a non-trivial solution in a1, . . . , am. If
www = a1xxx1 + · · · amxxxm, this amounts to (www ,xxx i ) = 0 for 1 ⩽ i ⩽ n. This, in
turn, implies (www ,www) =∥ www ∥22= 0, so www = 0, which contradicts the linear
independence of L.
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The Gram-Schmidt algorithm constructs an orthonormal basis for a
subspace U of Cn, starting from an arbitrary basis of {uuu1, . . . ,uuum} of U.
The orthonormal basis is constructed sequentially such that
⟨⟨⟨www1, . . . ,wwwk⟩⟩⟩ = ⟨⟨⟨uuu1, . . . ,uuuk⟩⟩⟩ for 1 ⩽ k ⩽ m.
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Notations

U(:, 1 : k) is the matrix (uuu1, . . . ,uuuk) that contains the first k vectors of
the existing basis.
W (:, 1 : k) the matrix (www1, . . . ,wwwk) that contains the first k vectors of the
new orthonormal basis.
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Gram-Schmidt Orthogonalization Algorithm

Data: A basis {uuu1, . . . ,uuum} for a subspace U of Cn

Result: An orthonormal basis {www1, . . . ,wwwm} for U
W = On,m

W (:, 1) = W (:, 1) + 1
∥U(:,1)∥2U(:, 1)

For (k = 2 to m) {
P = In −W (:, 1 : (k − 1))W (:, 1 : (k − 1))H

W (:, k) = W (:, k) + 1
∥PU(:,k)∥2PU(:, k)

}

Return W = (www1 · · · wwwm)
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Theorem

Let (www1, . . . ,wwwm) be the sequence of vectors constructed by the
Gram-Schmidt algorithm starting from the basis {uuu1, . . . ,uuum} of an
m-dimensional subspace U of Cn. The set {www1, . . . ,wwwm} is an orthogonal
basis of U and ⟨⟨⟨www1, . . . ,wwwk⟩⟩⟩ = ⟨⟨⟨uuu1, . . .uuuk⟩⟩⟩ for 1 ⩽ k ⩽ m.
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Proof

In the algorithm the matrix W is initialized as On,m. Its columns will
contain eventually the vectors of the orthonormal basis www1, . . . ,wwwm. The
argument is by induction on k ⩾ 1.
The base case, k = 1, is immediate.
Suppose that the statement of the theorem holds for k , that is, the set
{www1, . . . ,wwwk} is an orthonormal basis for Uk = ⟨⟨⟨uuu1, . . . ,uuuk⟩⟩⟩ and
constitutes the set of the initial k columns of the matrix W , that is,
Wk = W (:, 1 : k). Then,

Pk = In −WkW
H
k

is the projection matrix on the subspace U⊥
k , so Pkuuuk is orthogonal on

every www i , where 1 ⩽ i ⩽ k . Therefore, wwwk+1 = W (:, (k + 1)) is a unit
vector orthogonal on all its predecessors www1, . . . ,wwwk , so {www1, . . . ,wwwm} is
an orthonormal set.

Prof. Dan A. Simovici CS724: Topics in Algorithms Norms and Inner Products - II Slide Set 5 98 / 117



Proof cont’d

The equality ⟨⟨⟨uuu1, . . . ,uuuk⟩⟩⟩ = ⟨⟨⟨www1, . . . ,wwwk⟩⟩⟩ clearly holds for k = 1. Suppose
that it holds for k . Then, we have

wwwk+1 =
1

∥ Pkuuuk+1 ∥2
(uuuk+1 −WkW

H
k uuuk+1)

=
1

∥ Pkuuuk+1 ∥2
(uuuk+1 − (www1 · · · wwwk)W

H
k uuuk+1) .

Since www1. . . . ,wwwk belong to the subspace ⟨⟨⟨uuu1, . . . ,uuuk⟩⟩⟩ (by inductive
hypothesis), it follows that wwwk+1 ∈ ⟨⟨⟨uuu1, . . . ,uuuk ,uuuk+1⟩⟩⟩, so
⟨⟨⟨www1, . . . ,wwwk+1⟩⟩⟩ ⊆ ⟨⟨⟨uuu1, . . . ,uuuk⟩⟩⟩.
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Proof cont’d

For the converse inclusion, since

uuuk+1 =∥ Pkuuuk+1 ∥2 wwwk+1 + (www1 · · · wwwk)W
H
k uuuk+1,

it follows that uuuk+1 ∈ ⟨⟨⟨www1, . . . ,wwwk ,wwwk+1⟩⟩⟩. Thus,
⟨⟨⟨uuu1, . . . ,uuuk ,uuuk+1⟩⟩⟩ ⊆ ⟨⟨⟨www1, . . . ,wwwk ,wwwk+1⟩⟩⟩.

Prof. Dan A. Simovici CS724: Topics in Algorithms Norms and Inner Products - II Slide Set 5 100 / 117



Example

Let A ∈ R3×2 be the matrix

A =

1 1
0 0
1 3

 .

It is easy to see that rank(A) = 2. We have {uuu1,uuu2} ⊆ R3 and we
construct an orthogonal basis for the subspace generated by these
columns. The matrix W is initialized to O3,2.
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Example cont’d

we begin by defining

www1 =
1

∥ uuu1 ∥2
uuu1 =


√
2
2
0√
2
2

 ,

so

W =


√
2
2 0
0 0√
2
2 0

 ,

The projection matrix is

P = I3 −W (:, 1)W (:, 1)′ = I3 −www1www
′
1 =

 1
2 0 −1

2
0 1 0
−1

2 0 1
2

 .
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The projection of uuu2 is

Puuu2 =

−1
0
1


and the second column of W becomes

wwwk = W (:, 2) =
∥ Puuu2 ∥2

P
uuu2 =

−
√
2
2
0√
2
2

 .
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Thus, the orthonormal basis we are seeking consists of the vectors
√
2
2
0√
2
2

 and

−
√
2
2
0√
2
2

 .
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We describe a factorization algorithm for rectangular matrices which
allows us to express a matrix as a product of a rectangular matrix with
orthogonal columns and un upper triangular invertible matrix (the thin QR
factorization).
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Theorem

(The Thin QR Factorization Theorem) Let A ∈ Cm×n be a full-rank matrix
such that m ⩾ n. Then, A can be factored as A = QR, where Q ∈ Cm×n,
R ∈ Cn×n such that

the columns of Q constitute an orthonormal basis for range(A), and
R = (rij) is an upper triangular invertible matrix such that its diagonal
elements are real non-negative numbers, that is, rii ⩾ 0 for 1 ⩽ i ⩽ n.
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Let uuu1, . . . ,uuun be the columns of A. Since rank(A) = n, these columns
constitute a basis for range(A). Starting from this set of columns
construct an orthonormal basis www1, . . . ,wwwn for the subspace range(A)
using the Gram-Schmidt algorithm. Define Q as the orthogonal matrix

Q = (www1 · · · wwwn).

By the properties of the Gram-Schmidt algorithm we have
⟨⟨⟨uuu1, . . . ,uuuk⟩⟩⟩ = ⟨⟨⟨www1, . . . ,wwwk⟩⟩⟩ for 1 ⩽ k ⩽ n, so it is possible to write

uuuk = r1kwww1 + · · ·+ rkkwwwk

= (www1 · · · wwwn)



r1k
...
rkk
0
...
0


= Q



r1k
...
rkk
0
...
0


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We may assume that rkk ⩾ 0; otherwise, that is, if rkk < 0, replace wwwk by
−wwwk . Clearly, this does not affect the orthonormality of the set
{www1, . . . ,wwwn}.
It is clear that rank(Q) = n. Therefore, since
rank(A) ⩽ min{rank(Q), rank(R)}, it follows that rank(R) = n, so R is an
invertible matrix. Therefore, we have rkk > 0 for 1 ⩽ k ⩽ n.
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Example

Let us determine a QR factorization for the matrix

A =

1 1
0 0
1 3

 .

which has rank 2. We constructed an orthonormal basis for range(A) that
consists of the vectors

www1 =


1√
2

0
1√
2

 and www2 =

− 1√
2

0
1√
2

 .
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Example cont’d

Thus, the orthogonal matrix Q is

Q =


1√
2

− 1√
2

0 0
1√
2

1√
2

 .

To compute R we need to express uuu1 and uuu2 as linear combinations of www1

and www2. Since

uuu1 =
√
2www1

uuu2 = 2
√
2www1 +

√
2www2

the matrix R is

R =

(√
2 2

√
2

0
√
2

)
.
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Vector norms can be computed using the function norm which comes in
two signatures: norm(v) and norm(v,p). The first variant computes
∥ vvv ∥2; the second computes ∥ vvv ∥p for any p, 1 ⩽ p ⩽ ∞. In addition,
norm(v,inf) computes ∥ vvv ∥∞= max{|vi | | 1 ⩽ i ⩽ n}, where vvv ∈ Rn. If
one uses −∞ as the second parameter, then norm(v,-inf) returns
min{|vi | | 1 ⩽ i ⩽ n}.

Example

For the vector

v = [2 -3 5 -4]

the computation

norms = [norm(v,1),norm(v,2),norm(v,2.5),norm(v,inf),norm(v,-inf)]

returns

norms =

14.0000 7.3485 6.5344 5.0000 2.0000

Prof. Dan A. Simovici CS724: Topics in Algorithms Norms and Inner Products - II Slide Set 5 111 / 117



For matrices whose norm is expensive to compute, an approximative
estimation of ∥ A ∥2 can be performed using the function normest(A), or
normest(A,r), where r is the relative error; the default for r is 10−6.
The following function implements the Gram-Schmidt algorithm.

function [W] = gram(U)

%GRAM implements the classical Gram-Schmidt algorithm

[n,m] = size(U);

W = zeros(n,m);

W(:,1)= (1/norm(U(:,1)))*U(:,1);

for k = 2:1:m

P = eye(n) - W*W’;

W(:,k) = W(:,k) + (1/norm(P*U(:,k)))* P*U(:,k);

end

end
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Theorem (Cholesky Decomposition Theorem)

Let A ∈ Cn×n be a Hermitian positive definite matrix. There exists a
unique upper triangular matrix R with real positive diagonal elements such
that A = RHR.

Corollary

If A ∈ Cn×n is a Hermitian positive definite matrix, then det(A) is a real
positive number.
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The Cholesky decomposition of a Hermitian positive definite matrix is
computed in MATLAB using the function chol. The function call
R = chol(A) returns an upper triangular matrix R, satisfying the
equation RHR = A. If A is not positive definite an error message is
generated. The matrix R is computed using the diagonal and the upper
triangle of A and the computation makes sense only if A is Hermitian.
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Example

Let A be the symmetric positive definite matrix

A =

3 0 2
0 2 1
2 1 2

 .

Then, R = chol(A) yields

R =

1.7321 0 1.1547

0 1.4142 0.7071

0 0 0.4082
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The call L = chol(A,’lower’) returns a lower triangular matrix L from
the diagonal and lower triangle of matrix A, satisfying the equation
LLH = A. When A is sparse, this syntax of chol is faster.

Example

For the same matrix A L = chol(A,’lower’) returns

L =

1.7321 0 0

0 1.4142 0

1.1547 0.7071 0.4082

For added flexibility, [R,p] = chol(A) and [L,p] = chol(A,’lower’)

set p to 0 if A is positive definite and to a positive number, otherwise,
without returning an error message.
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The thin QR decomposition of a matrix A ∈ Cm×n is obtained using the
function qr as in

[Q R] = qr(A)

To obtain the full decomposition we write

[Q R] = qr(A,0)
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