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@ Vector Norms for Matrices

© Operatorial Norms for Matrices

© Inner Products

@ Hyperplanes in R”

© Unitary and Orthogonal Matrices

@ Projection on Subspaces

@ Positive Definite and Positive Semidefinite Matrices
© The Gram-Schmidt Orthogonalization Algorithm

© The QR Factorization of Matrices |
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The set C™*" is a linear space. Therefore, it is natural to consider norms
defined on matrices. We discuss two basic methods for defining norms for
matrices.
@ The first approach treats matrices as vectors (through the vec
mapping).
@ The second, regards matrices as representations of linear operators,
and defined norms for matrices starting from operator norms.
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Definition

The (m x n)-vectorization mapping is the mapping vec : C™*" — C™"

defined by
ail

aml
vec(A) = | ¢ |,

dln

dmn

obtained by reading A column-wise.
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The following equality is immediate for a matrix A € C™*":

Ae1
A62

vec(A) =
Ae,

The vectorization mapping vec is an isomorphism between the linear space
C™ " and the linear space C™", as can be easily verified.

%

UMASS
BOSTON

Prof. Dan A. Simovici CS724: Topics in Algorithms Norms and In 4/117



Example
For the matrix /, we have

€1

€2
vec(lp) =

€n
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Definition

Let v be a vector norm on the space R™. The vectorial matrix norm
p{mm) on R™XM is the mapping (™" : R™<" — R defined by

M(m,n)(A) = y(veC(A))a

for A € RM*",

v

Vectorial norms of matrices are defined without regard for matrix products.
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Theorem

If f : C™ — C" is a linear operator, v and v’ are corms on C™ and C",
respectively, there exists a non-negative constant such that

V(f(x)) < My(x)

for every x € C™.
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Definition

Let f : C™ — C" is a linear operator, and let v and v/ be norms on C™

and C", respectively. The operatorial norm of f is the number

wu(f) =inf{M € Rxq | V'(f(x)) < My(x) for every x € C™}.
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Theorem

The mapping v is a norm on the space of linear operators Hom(C™,C").

Since p depends on both v and v/ it is denoted by N(v,1/).
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Theorem

Let f:C™ — C" and g : C" — CP be two linear operators and let
v,V V" be norms on C™ C" and CP, respectively. Define u = N(v,v'),
W =N V"), and '’ = N(v,v"). We have

1" (gf) < p(fu'(g)-
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Proof

For x € C™ we have /(f(x) < (u(f) + €')v(x) for every € > 0/ Similarly,

for y € C" e have v"(g(y)) < (1/(g) + €”)v/(y) for every €’ > 0. These
inequalities imply

V'(g(f(x))) < (V(g) + ")V (F(x)) < (vV'(g) + ") (w(f(x)) + €)v(x),

hence

p'(8f) < (1'(g) + €")(u(f) + €)
for every € and €”, hence p/(gf) < p(f)i/(g).
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Definition

A consistent family of matrix norms is a family of functions
plmn) - cm*n 5 R, where m, n € P that satisfies the following
conditions:

° ,u(m "(A) = 0 if and only if A= O p;
™M (A + B) < p(mm(A) 4 u{™n)(B) (the subadditivity property);
° u(’” ")(aA) = |alu(™")(A);

o u(mP)(AB) < ulm™(A)ulmP)(B) for every matrix A € R™*" and
B € R"*P (the submultiplicative property).

o

If the format of the matrix A is clear from context or is irrelevant, then we
shall write 1i(A) instead of (™"(A).
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Example

Let P € C"™" be an idempotent matrix, that is, a matrix P such that
P2 = P. If yu is a matrix norm, then either y(P) = 0 or u(P) > 1.
Indeed, since P is idempotent we have pu(P) = u(P?). By the
submultiplicative property, u(P?) < (u(P))?, so u(P) < (u(P))?.

Consequently, if u(P) # 0, then u(P) > 1.
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Some vectorial matrix norms turn out to be actual matrix norms; others
fail to be matrix norms. This point is illustrated by the next examples.
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Example

Consider the vectorial matrix norm gy induced by the vector norm v;. We have
p(A) =307, 2o |ag| for A€ R™*". Actually, this is a matrix norm. To prove

this fact consider the matrices A € R™*P and B € RP*". We have:

11(AB)

We denote this vectorial matrix norm by the same notation as the corresponding
vector norm, that is, by || A ||1.

/A

m n p

m P
ZZ Zaikbkj <ZZZ|a;kbkj|
i=1 j=1 |k=1 i=1 j=1 k=1

n

S S fawllbes

i=1 j=1 k'=1k""=1
(because we added extra non-negative terms to the sums)

(i > |a,-k/|> (325 ey

i=1 k'=1 Jj=1 k""=1
p1(A)pa(B).

v
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The vectorial norm py (also known as the Frobenius norm) is induced by
the vector norm 5. It is also a matrix norm. Indeed, we have

m n p 2
(12(AB))> = D > 1> awb¥

i=1 j—1 k=1

Y (zra,kr zu»mz)

i=1 j=1 \k=1
(by Cauchy-Schwarz Inequality)

< (u2(A)?(n2(B)).
p2(A) is denoted also by || A || (F from Frobenius).

N
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Example

For real matrices we have || A ||2= trace(AA’) = trace(A'A).
For complex matrices the corresponding equality is

| Al|2= trace(AA") = trace(A"A).

Note that || A" ||2=|| A ||Z for every A.
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Example

The vectorial norm pi.o induced by the vector norm v is denoted by
| Alloo and is given by
| Alloe= max|ay

for A € C"*". This is not a matrix norm. Indeed, let a, b be two positive

numbers and consider the matrices

a a b b
A_<a a) andB-(b b>'

We have || A ||co= a and || B ||oc= b. However, since

2ab 2ab
A= <2ab 2ab) ’

we have || AB ||co= 2ab and the submultiplicative property of matrix
norms is violated.

v
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Theorem

Let 1 be the matrix norm on C™" induced by the vector norm v. We
have v(Au) < p(A)v(u) for every u € C".

Proof.

The inequality is obviously satisfied when u = 0,. Therefore, we may
assume that v # 0, and let x = ﬁu. Clearly, v(x) =1 and

v (g0 < A

for every u € C" — {0,}. This implies immediately the desired
inequality. O
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If 1+ is a matrix norm induced by a vector norm on R", then
w(ly) = sup{r(lhx) | v(x) <1} = 1. This necessary condition can be
used for identifying matrix norms that are not induced by vector norms.

The operator matrix norm induced by the vector norm || - ||, is denoted by

- 1lp-
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Example
To compute [|All1 = sup{|| Ax |1 ||| x ||1< 1}, where A € R™™", suppose that the

columns of A are the vectors ay, ..., a,, that is
alj
azj
aj = .
anj
Let x € R" be a vector whose components are xi, ..., x,. Then,

Ax = xja1 + - - - + xpa;, SO

[ Ax i = [Ixa1+-+xap |1
n
< Y Il laylh
j=1

n
< max || g [l ) Il
J °
Jj=1

= max [ [l [ xls -
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Example cont'd

Example

Let e; be the vector whose components are 0 with the exception of its i
component that is equal to 1. Clearly, we have || e; [1=1 and a; = Ae;.
This, in turn implies || a; ||1=|| Ae; ||1< [|A]|1 for 1 < j < n. Therefore,
max; [| aj [l1< | All, so

n
IAll2 = max || aj [l1= m.aXZ |ajjl.
J S

In other words, ||A||1 equals the maximum column sum of the absolute
values.

%

UMASS
BOSTON

Prof. Dan A. Simovici CS724: Topics in Algorithms Norms and In 22 /117



Example

Consider now a matrix A € R™". We have

1<i<n |4

n
I AX oo = max > ayx
j=1

N

n
max ajix;
e 'E ||
J=1

n

< > Jal.

S max || xleo 1Iaul
=

Consequently, if || x [lc< 1 we have || Ax [lco< maxi<i<n )7 [aj-
Thus, [[Aflec < maxici<n Y1y |aj]-
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Example cont'd

Example

The converse inequality is immediate if A= O, ,. Therefore, assume that

A # Opxn, and let (ap1,...,apn) be any row of A that has at least one element
distinct from 0. Define the vector z € R" by

EM 0
22 if a, £ 0
zj=q % b 70,

1 otherwise,

for 1 <j < n. Itis clear that z; € {—1,1} for every j, 1 <j < n and, therefore,

|| z [[co= 1. Moreover, we have |a,;| = apjz; for 1 < j < n. Therefore, we can
write:

1<ign

n
> lal = E pjZj < Efamzf < max |3 ayz
Jj=1 1

= || AZ oo < max{ll AX loo | | X lloo< 1} = [|Aflco-
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Example cont'd

Example

Since this holds for every row of A, it follows that
maxi<i<n 21— |aj| < [|Alloo, which proves that

n

1Alloe = max > Jag.

J=1

In other words, ||A||~ equals the maximum row sum of the absolute values.

v
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Example
Let D = diag(dh,...,d,) € C"*" be a diagonal matrix. If x € C" we have

dixy
Dx = : :
dnXn
o)
1Dl = max{|| Dx |2 | [| x [l2= 1}

= max{1/(dix)? -+ (dnxn)? | X+ 42 =1
= max{|dj| | 1 <1< n}.
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Certain norms are invariant with respect to multiplication by unitary
matrices. We refer to these norms as unitarily invariant norms.

Theorem

Let U € C"™" be a unitary matrix. The following statements hold:
o || Ux [|2=|| x [|2 for every x € C";
o [ UAI = Al for every A € C™;
o || UA ||p=|| A || for every A c C"™*P.
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Proof

For the first part of the theorem note that
| Ux |j3= (Ux)"Ux = x"U"Ux = x"x =|| x ||3,

because U"A = [,,.
The second part of the theorem is shown next:

IUAll2 = max{|| (UA)x [l2| || x [2= 1}

max{|| U(Ax) [[2 ||| x [l2=1}

= max{[| Ax [l2[ [| x [[2= 1}
(by Part (i))

= [IA]l-
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Proof cont'd

For the Frobenius norm note that

| UA ||F= \/trace((UA)M UA) = \/trace(A" U UA) = \/trace(A"A) =|| A ||F
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Corollary

If U € C"™" is a unitary matrix, then ||U|» = 1.

Proof.

Since UJl2 = sup{|l Ux |l2| || x l2< 1}, we have

[Ull2 = sup{ll x [l2 ]| x o< 1} = 1.
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Corollary

Let A, U € C"™". If U is an unitary matrix, then

| U"AU ||p=|[ A [l -

Proof.

Since U is a unitary matrix, so is U". By a previous Theorem,

I UMAU [lg=|| AU [|lr=Il URA" 2=l A" E=11 A |17,

which proves the corollary.
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Example

Let S ={x € R" ||| x ||2= 1} be the surface of the sphere in R". The
image of S under the linear transformation hy that corresponds to the
unitary matrix U is S itself. Indeed, || hy(x) ||2=| x ||2= 1, so hy(x) € S
for every x € S. Also, note that hy restricted to S is a bijection because
hyn(hy(x)) = x for every x € R".
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Theorem
Let A€ R™". We have ||A|2 <|| A ||F.

Proof.
Let x € R”. We have
rix
Ax=1| ' |,
rpx
where ry,...,r, are the rows of the matrix A. Thus,
A Jl2 /ity (rix)?
I x |2 I x |2

By Cauchy-Schwarz inequality we have: (rix)? <|| r; ||3]| x ||3, so

1Al < /520 1l ri 1B =11 Al This implies A2 <|| A - O
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Definition

Let L be a C-linear space. An inner product on L is a function
f: L x L — C that has the following properties:
o f(ax + by,z) = af(x,z) + bf(y,z) (linearity in the first argument);
e f(x,y) =f(y,x) for y,x € L (conjugate symmetry);
e if x #0, then f(x,x) is a positive real number (positivity),
e f(x,x) =0 if and only if x = 0 (definiteness),
for every x,y,z € L and a,b € C.
The pair (L, f) is called an inner product space.

An alternative terminology for real inner product spaces is Euclidean
spaces, and Hermitian spaces for complex inner product spaces.
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For the second argument of an inner product we have the property of
conjugate linearity, that is,

f(z,ax + by) = af(z,x) + bf(z,y)

for every x,y,z € L and a,b € C. Indeed, by the conjugate symmetry
property we can write

f(z,ax + by) = f(ax + by,z)

af(x,z) + bf(y,z)
af(x,z) + bf(y,z)
= af(z,x) + bf(z,y).
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Observe that conjugate symmetry property on inner products implies that
for x € L, f(x,x) is a real number because f(x,x) = f(x, x).

When L is a real linear space the definition of the inner product becomes
simpler because the conjugate of a real number a is a itself. Namely, for
real linear spaces, the conjugate symmetry is replaced by the plain
symmetry property,

f(x,y) = f(y,x),

for x,y € L and f is linear in both arguments.
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Let W = {w1,...,w,} be a basis in the complex n-dimensional inner
product space L. If x =37 ; x'w; and y =37 ; y/w;, then

x.y) =D Xyif(wiw)),

i=1 j=1

due to the bilinearity of the inner product. If we denote f(w;, w;) by g,
then f(x,y) can be written as

f(x,y) = szyfgu (1)

i=1 j=1

for x,y € L.
If Lis a real inner product space L, then

xy)—zzxygu

i=1 j=1

To simplify notations, if there is no risk of confusion, we d&e the inner
UMASS
product f(u,v) as (u,v). rosTen
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Definition

Two vectors u,v € C" are said to be orthogonal with respect to an inner
product if (u,v) = 0. This is denoted by x L y.

An orthogonal set of vectors in an inner product space L equipped with an
inner product is a subset W of L such that for every u,v € W we have
ulv.

%
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Theorem

defined by || x ||= +/(x,x) for x € L.

Any inner product on a linear space L generates a norm on that space

Prof. Dan A. Simovici
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Proof

Let L be a C-linear space. We need to verify that the norm satisfies the
conditions of Definition. Applying the properties of the inner product we
have

Ix+y > = (x+y,x+y)
= (x,x) +2(x,y) +(y,y)
= |IxIP+2xy)+ |y
< IxPP+2lxly I+ 1yl?
= (IxI+1yl)*

Because || x ||> 0 it follows that || x +y ||<| x || + || ¥ ||, which is the
subadditivity property.

If a € C, then

| ax ||= /(ax, ax) = \/ad(x,x) = \/]a]*(x,x) = |a|/(x,x) = |a] | x ||
From the definiteness property of the inner product it follomhat

|| x ||= 0 if and only if x = 0. Umass
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The norm induced by the inner product f(x,y) = x"ﬁg,-j is

Prof. Dan A. Simovici

Ix [[>= f(x,x) = x'xg.
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Theorem

If W is a set of orthogonal vectors in a n-dimensional C-linear space L and
0 & W, then W is linearly independent.

v

Proof.

Let ¢ = a'wy + - -- + a"w,, a linear combination in L such that

alwi + -+ a"w, = 0. Since (c,w;) = a; || w; ||>= 0, we have a; =0
because || w; ||?# 0, and this holds for every i, where 1 < i < n. Thus, W
is linearly independent. [

v
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Definition

An orthonormal set of vectors in an inner product space L equipped with
an inner product is an orthogonal subset W of L such that for every u we
have || u ||= 1, where the norm is induced by the inner product.

Corollary

If W is an orthonormal set of vectors in an n-dimensional C-linear space L

and |W| = n, then W is a basis in L.

Prof. Dan A. Simovici CS724: Topics in Algorithms Norms and In
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If W ={wi,...,wp} is an orthonormal basis in C" we have

0 ifi+]
1 ifi=],

gij = (wi,wj) = {

which means that the inner product of the vectors x = x'w; and y = ijj
is given by: o o

(x,y) = x'yl(wi,wj) = x'y'". (2)
Consequently, || x |>= >0, [x/[2.
The inner product of x,y € R" is

(x.y) = x'y (wj, wj) = xy". (3)

%
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Not every norm can be induced by an inner product. A characterization of
this type of norms in linear spaces is presented next.

This equality shown in the next theorem is known as the parallelogram
equality.

Theorem

Let L be a real linear space. A norm || - || is induced by an inner product if
and only if

Ix+y 12+ 1 x =y 1= 20 x > + Ly 1*),

for every x,y € L.

%
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Proof

Suppose that the norm is induced by an inner product. In this case we can
write for every x and y:

Ix+y|P=(x+y,x+y) = (x,x)+2xy)+(y,y)
Ix—y|P=x-y,x—y) = (x,x)=2(x,y)+(y,y).
Thus,
(x+y,x+y)+(x—y,x—y)=2xx)+2(y,y),

which can be written in terms of the norm generated as the inner product
as

Ix+y 12+ 11 x =y [P= 201 x I + 1y [?).

The proof of the reverse implication is omitted.

%
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Definition

Let w € R" — {0} and let a € R. The hyperplane determined by w and a
is the set
Hwa={x €R" | w'x = a}.

%
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If xo € Hw.a, then w'xg = a, so Hy , is also described by the equality
Hwa={x €R" | w(x —x¢) = 0}.

Any hyperplane H,, , partitions R" into three sets:

Hy. = {xeR"|wx>a},
H&a = Hw,a;
Hy. = {xeR" | wx<a}.

The sets H,, , and Hg , are the positive and negative open half-spaces
determined by Hy ., respectively. The sets

Hy., = {xeR" | wx

é)}”
a}.

are the positive and negative closed half-spaces determinedﬁ Hw a,
respectively. umass

BOSTON

2
Hy, = {xeR" | wx<
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If x1,x2 € Hw, 2 we say that the vector x; — x> is located in the hyperplane
Hw.a. In this case w L x; — x». This justifies referring to w as the normal
to the hyperplane H,, ,. Observe that a hyperplane is fully determined by
a vector xo € Hw 5 and by w.

%
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Let xo € R" and let Hy , be a hyperplane. We seek x € Hy, 5 such that

|| x — xo ||2 is minimal. Finding x amounts to minimizing the function

f(x) =[x — xo I3= >_"_;(xi — x0i)? subjected to the constraint

wixi + -+ -+ wpx, — a = 0. Using the Lagrangian

A(x) = f(x) + A\(w'x — a) and the multiplier A we impose the conditions
ON

a—)quforlgign

which amount to of
Oix,- + )\W,‘ = 0

for 1 < i< n. These equalities yield 2(x; — xp;) + Aw; = 0, so we have
Xj = X0i — %)\W,‘.

%
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Consequently, we have x = xg — %)\w. Since x € Hy 5 this implies
/ / 1 /
wx:wxo—EAww:a.

Thus,
/ /
w'xg — a w'xg — a

ww " w3

We conclude that the closest point in Hy, , to Xg is

w’xo—aw
fwls ™

X = X9 —

%
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The smallest distance between xg and a point in the hyperplane Hy ; is
given by
|w'xo — al

| xo —x [|=
| w2

If we define the distance d(Hw a,X0) between xg and Hy , as this smallest
distance we have

d(Hw,a,Xo) =

(4)

%
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Lemma

Let Ac C™". Ifx"Ax =0 for every x € C", then A= O,

Prof. Dan A. Simovici
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Proof

If x = ey, then x"Ax = ay for every k, 1 < k < n, so all diagonal entries
of A equal 0. Choose now x = e, + e;. Then,

(ek + ej)HA(ek + ej)
= ejAex +ejAe; + ei'Ae, + e} Ae;

= ejAe; +eAey

ayj + ajk = 0.
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Proof cont'd

Similarly, if we choose x = e, + ie; we obtain:

(ek + iej)HA(ek =+ iej)

(ek — ie])Aex + iej)
exAey — iel'Aey + iekAe; + e] Ae;

—iajk + iakj =0.

The equalities ay; + ajx = 0 and —ajx + a,; = 0 imply ax; = ajx = 0. Thus,
all off-diagonal elements of A are also 0, hence A= O, ...

Prof. Dan A. Simovici
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Theorem

A matrix U € C™" is unitary if || Ux ||2=|| x ||2 for every x € C".

%

UMASS
BOSTON

Prof. Dan A. Simovici CS724: Topics in Algorithms Norms and In|



Proof

If U is unitary we have
I Ux [3= (Ux)"Ux = x"U" Ux =|| x ||3

because U"U = I,. Thus, || Ux [|2=]| x ||2.

Conversely, let U be a matrix such that || Ux |[2=|| x ||2 for every x € C".
This implies x"U"Ux = x"x, hence x"(U"U — I,)x = 0 for x € C". This
implies U"U = I,, so U is a unitary matrix.
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Corollary

The following statements that concern a matrix U € C"*" are equivalent:
e U is unitary;
o || Ux— Uy |2=[ x —y |2 forx,y € C";
o (Ux,Uy) = (x,y) forx,y € C".
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The counterpart of unitary matrices in the set of real matrices are
introduced next.

Definition

A matrix A € R"*" is orthogonal or orthonormal if it is unitary. J

In other words, a real matrix A € R"*" is orthogonal if and only if
A'A = AA" = |,. Clearly, A is orthogonal if and only if A is orthogonal.
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Theorem

If A€ R™" is an orthogonal matrix, then det(A) € {—1,1}.

Proof.
By a previous Corollary, | det(A)| = 1. Since det(A) is a real number, it
follows that det(A) € {—1,1}. O

v
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Corollary

Let A be a matrix in R"*". The following statements are equivalent:
A is orthogonal;

o A is invertible and A=t = A’;

o A’ is invertible and (A')~1 = A;

o A’ is orthogonal.

Thus, a matrix A is orthogonal if and only if it preserves the length of
vectors.
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Definition

A reflection matrix is an orthogonal matrix R € R"*" such that
det(R) = —1.

A rotation matrix is an orthogonal matrix R € R"*" such that det(R) = 1.
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In the bidimensional case, n = 2, a rotation is a an orthogonal matrix
R € R2*2 For
ni r
R— (M n2
1 2

we have:

RR — rni 2 rni r
1 2 rna2
2 2
o 1+ o rirn1 + oo
= 2 2
ri1my + rioro 51+ o

- ()
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The above equalities imply:

2 2
M +ry =

2 2
ry+ o

Il
s:) \r—‘ =

riimy1 + rigry =

Also, the orthogonality implies

riiro — rori = 1.

Prof. Dan A. Simovici CS724: Topics in Algorithms Norms and Ini
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The equality ri1mp — a1 = 1 implies:

ro(riir2 + rir2) — ra(rins — nam1) = —no,
or
2 2
m1(ryp + rz) = —no,
SO 1 = —no.
If 1 = —r1 =0, the above equalities imply that either rj; = ) =1 or
ri1 = rp = —1. Otherwise, the equality ri1r2 + 1o = 0 implies
ni = ro.
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Since rf < 1 it follows that there exists 6 such that ri; = cosf. This
implies that R has the form

cosf —sinf
R_(sinﬁ c059>

X = (Xl) € R?
X2
is to produce the vector y = Rx, where
_ [x1cos0 — xpsin6
 \xisinf +xxcos6 )’
which is obtained from x by a counterclockwise rotation by the angle 6.
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It is easy to see that det(R) = 1, so the term “rotation matrix" is clearly
justified for R. To mark the dependency of R on 8 we will use the notation

R(0) = (

cosf —sinf
sin@ cos@ |~
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X: . . )
If the angle of the vector x = Xl) with the x; axis is o and x is rotated
2

counterclockwise by 6 to yield the vector y = y1e1 + y»e2, then
X] = rcoso, xo = rsin«, and
y1 = rcos(a+0)=rcosacosf — rsinasinf = x; cosf — xpsin 6,
y2 = rsin(a+60)=rsinacosf + rcosasinf = x;sinf + xa cos b,
which are the formulas that describe the transformation of x into y.

X2
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Definition

Let U be an m-dimensional subspace of C"” and let {u1,...,un} be an
orthonormal basis of this subspace. The orthogonal projection of the
vector x € C" on the subspace U is the vector proj(x) given by:

projy(x) = (X, u1)ur + - - + (X, Um) .
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Theorem

Let U be an m-dimensional subspace of R" and let x € R". The vector
y = x — proj(x) belongs to the subspace U™.

Proof.
Let By = {u1,...,un} be an orthonormal basis of U. Note that

(v,uj)) = (x,uj)— (Z X, U; u,,uj>
i=1

= (x,uj)— E i)(ui,uj) =0,

i=1

due to the orthogonality of the basis By. Therefore, y is orthogonal on
every linear combination of By, that is on the subspace U. Ol
/4|
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Theorem

Let U be an m-dimensional subspace of C" having the orthonormal basis

{U]_, ooop um}'
The orthogonal projection proj, is given by proj,(x) = ByB[jx for
x € C", where By € R"™™ s the matrix By = (uy -+ up) € C"*™M.
Proof.
We can write
i uy
projy(x) = Y wi(ufx) = (ur -+ um) | 1 | x=BuBpx.
i=1 ot
m
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Since the basis {u1,...,un} is orthonormal, we have B;By = I,. Observe
that the matrix ByBj; € C"*" is symmetric and idempotent because

(BuBy)(BuBY) = Bu(B(Bu)By = BuBj).

For an m-dimensional subspace U of C” we denote by
Py = ByB[; € C"™", where By is a matrix of an orthonormal basis of U
as defined before. Py is the projection matrix of the subspace U.
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Corollary

For every non-zero subspace U, the matrix Py is a Hermitian matrix, and
therefore, a self-adjoint matrix.

Proof.
Since Py = ByB[; where By is a matrix of an orthonormal basis of the
subspace S, it is immediate that P}, = Py. Ol

v

The self-adjointness of Py means that (x, Pyy) = (Pyx,y) for every
x,y € C".
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Corollary

Let U be an m-dimensional subspace of C" having the orthonormal basis
{ug,...;um}. If By = (u1 -+ uy) € C™™, then for every x € C we have
the decomposition x = Pyx + Qux, where Py = ByBjj and

Qu=1,— Py, Pyx € U and Qux € U*.
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Observe that
Q) = (h—PuPY)(ln— PuPp)
= In— PuPy — PuPj + PuPiPuPy = Qu,

so Qu is an idempotent matrix. The matrix Qy is the projection matrix on
the subspace Ut. Clearly, we have

Pyr = Qu =1,— Py. (5)

It is possible to give a direct argument for the independence of the
projection matrix Py relative to the choice of orthonormal basis in U.
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It is possible to give a direct argument for the independence of the
projection matrix Py relative to the choice of orthonormal basis in U.

Theorem

Let U be an m-dimensional subspace of C" having the orthonormal bases
{ur, ... um}t and {v1,..., v} and let By = (u1 -+ um) € C™" and
By = (vi -+ vip) € C™™. The matrix B}By € C™*™ is unitary and
BuBy = ByBj.
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Proof

Since the both sets of columns of By and BU are bases for U, there exists
a unique square matrix @ € C™*™ such that By = ByQ. The
orthonormality of By and By implies B;By = B}}By = Im. Thus, we can
write

Im = BBy = Q"B}\ByQ = @"Q,

which shows that @ is unitary. Furthermore, BBBU = Q“BUBU =Q"is
unitary and

BuBl, = ByQQ"B}, = By By
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Definition

A matrix A € C"™" is positive definite if x"Ax is a real positive number for
every x € C" — {0}.
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Theorem

If A € C™" is positive definite, then A is Hermitian.

Proof.

Let A € C"™" be a matrix. Since x"Ax is a real number it follows that it
equals its conjugate, so x"Ax = x"A"x for every x € C". Therefore, there
exists a unique pair of Hermitian matrices H; and H, such that

A = Hi + iH>, which implies A" = H{' — iH%. Thus, we have

x"(Hy + iHa)x = x"(H;' — iHy )x = x"(Hy — ith)x,

because H; and H, are Hermitian. This implies x"Hox = 0 for every
x € C", which, in turn, implies H> = O, ,. Consequently, A= Hj, so A is
indeed Hermitian. []
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Definition

A matrix A € C"™*" is positive semidefinite if x!Ax is a non-negative real

number for every x € C" — {0}.

Positive definiteness (positive semidefiniteness) is denoted by A > 0
(A = 0, respectively).
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The definition of positive definite (semidefinite) matrix can be specialized
for real matrices as follows.

Definition

A symmetric matrix A € R"*" is positive definite if x’ Ax > 0 for every

x € R" — {0}.

If A satisfies the weaker inequality x’Ax > 0 for every x € R" — {0}, then
we say that A is positive semidefinite.

A > 0 denotes that A is positive definite and A = 0 means that A is
positive semidefinite.
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Note that in the case of real-valued matrices we need to require explicitly
the symmetry of the matrix because, unlike the complex case, the
inequality x’Ax > 0 for x € R" — {0,} does not imply the symmetry of A.
For example, consider the matrix

a b
= (% %)

where a,b € R and a > 0. We have

x'Ax = (x1 x0) (_ab b> <X1> =a(x +x3) >0

a X2

if x # 0,.
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Example

The symmetric real matrix

a b
A= )
is positive definite if and only if 2 > 0 and b> — ac < 0. Indeed, we have
x'Ax > 0 for every x € R? — {0} if and only if ax? + 2bxyxp + cx3 > 0,

where X’ = (x; x2); elementary algebra considerations lead to a > 0 and
b? — ac < 0. )
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A positive definite matrix is non-singular. Indeed, if Ax =0, where
A € R"™" s positive definite, then x"Ax = 0, so x = 0. Therefore, A is
non-singular.

Example

If A€ C™*" then the matrices A"A € C"*" and AA" € C™*™ are positive
semidefinite. For x € C" we have

X(A"A)x = (x"A")(Ax) = (Ax)(Ax) =|| Ax [3> 0.

The argument for AA" is similar.
If rank(A) = n, then the matrix A"A is positive definite because
x"(A"A)x = 0 implies Ax = 0, which, in turn, implies x = 0.
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Theorem

If A€ C"™" s a positive definite matrix, then any principal submatrix

oo 0k | .. . .
B=A [ il ik ] is a positive definite matrix.
oo i

Proof.

Let x € C" — {0} be a vector such that all components located on
" . . i
positions other than iy, ..., ik equal 0 and let y = x [ ! 1 k| e ck be

the vector obtained from x by retaining only the components located on
positions iy, ..., ix. Since y"By = x"Ax > 0 it follows that B > 0. O

v
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Corollary

real positive number for 1 < i < n.

If A€ C™" js a positive definite matrix, then any diagonal element a;; is a

Prof. Dan A. Simovici
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Theorem

If A, B € C™" are two positive semidefinite matrices and a, b are two
non-negative numbers, then aA + bB = 0.

Proof.

The statement holds because x"(aA + bB)x = ax"Ax + bx"Bx > 0, due

to the fact that A and B are positive semidefinite.

O]

v
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Definition

Let L = (v1,...,vm) be a sequence of vectors in R".
The Gram matrix of L is the matrix

GL = (g5) € R™™

defined by gjj = viv; for 1 <i,j < m.

If AL =(v1 - vm) € R™™, then G, = A A.. Also, note that G is a
symmetric matrix.
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Example

Let
1 1 2
V1= 0 , Vo = 2 ,V3 = 1
=1 2 0

Note that det(G.) = 1.
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Theorem

Let L =(vi,...,vm) be a sequence of m vectors in R", where m < n. If L
is linearly independent, then the Gram matrix G, is positive definite.

v

Proof.

Suppose that L is linearly independent. Let x € R™. We have

x'Gix = xX'AjArx = (Ax)'Aux =|| Aix ||3. Therefore, if x'Gx = 0, we
have A;x = 0, which is equivalent to xyv1 + - - - + x,v, = 0. Since
{V1,...,Vm} is linearly independent it follows that x; = --- = x, = 0, so
x =0. Thus, A is indeed, positive definite. O

v
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The Gram matrix of an arbitrary sequence of vectors is positive
semidefinite, as the reader can easily verify.

Definition

Let L = (v1,...,vm) be a sequence of m vectors in R”, where m < n. The

Gramian of L is the number det(G;).
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Theorem

If L= (v1,...,vm) is a sequence of m vectors in R". Then, L is linearly
independent if and only if det(G) # 0.

Proof.
Suppose that det(G;) # 0 and that L is not linearly independent. In other
words, the numbers a1, ..., an, exists such that at least one of them is not

0 and aix; + - + amxm = 0. This implies the equalities
al(xl,xj) + -4 am(xm,xj) = 0,

for 1 < j < m, so the system G;a = 0 has a non-trivial solution in
ai,...,am. This implies det(G;) = 0, which contradicts the initial
assumption. ]
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Proof cont'd

Conversely, suppose that L is linearly independent and det(G,) = 0. Then,
the linear system

al(xl,xj) + -+ am(xm,xj) =0,

for 1 <j < m, has a non-trivial solution in a1,...,am,. If

W = a1X1 + -+ - amXpm, this amounts to (w,x;) =0 for 1 </ < n. This, in
turn, implies (w,w) =|| w ||3=0, so w = 0, which contradicts the linear
independence of L.
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The Gram-Schmidt algorithm constructs an orthonormal basis for a
subspace U of C", starting from an arbitrary basis of {ui,...,un} of U.
The orthonormal basis is constructed sequentially such that
(Wl,...,Wk) :<U1,...,Uk) forl< k< m
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Notations

U(:,1: k) is the matrix (uy, ...
the existing basis.
W(:,1: k) the matrix (wq, ..
new orthonormal basis.

, Uy ) that contains the first k vectors of

., W) that contains the first k vectors of the
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Gram-Schmidt Orthogonalization Algorithm

Data: A basis {u1,...,un} for a subspace U of C"
Result: An orthonormal basis {wi,...,wp} for U
W = Onm
W(,1)=W(,1)+ TGO 1 U( 1)
For (k=2to m) {
P=1I,—W(,1:(k —1))W( (k—1))"
W(:, k)= W(, k) + ”PU( PU( k)
}

Return W = (wy -+ wp)
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Theorem

Let (w1,...,wn) be the sequence of vectors constructed by the
Gram-Schmidt algorithm starting from the basis {u1,...,umn} of an
m-dimensional subspace U of C". The set {wi,...,wp} is an orthogonal
basis of U and (w1, ..., wy) = (u1,...ux) for 1 < k < m.
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Proof

In the algorithm the matrix W is initialized as O, . Its columns will
contain eventually the vectors of the orthonormal basis wy,...,w,,. The
argument is by induction on k > 1.

The base case, kK =1, is immediate.

Suppose that the statement of the theorem holds for k, that is, the set
{w1,...,wy} is an orthonormal basis for Uy = (u1,...,u,) and
constitutes the set of the initial kK columns of the matrix W, that is,

Wy = W(:,1: k). Then,

Py =1, — W,W;

is the projection matrix on the subspace Uj-, so Pyuy is orthogonal on
every w;, where 1 < i < k. Therefore, wy1 = W(:, (k+ 1)) is a unit
vector orthogonal on all its predecessors wy, ..., Wy, so {wi,...,wp} is
an orthonormal set. m
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Proof cont'd

The equality (u1,...,ux) = (wi,...,wg) clearly holds for k = 1. Suppose
that it holds for k. Then, we have

1
Wil — (g1 — WiWjluy g
+ || Pkuk+1 ”2( + k + )
1
= ——(upy1 — (w1 - wi) Wi 1)
|| Pkuk+1 HZ( + ( ) k + )
Since wi. ..., wy belong to the subspace (uy,...,ux) (by inductive
hypothesis), it follows that wy 1 € (u1, ..., ux, Uki1), SO
(Wi,...,wip1) C(ur, ..., ug).
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Proof cont'd

For the converse inclusion, since

U1 = Prtigsr 2 Wir + (Wi - wi) Wlug,
it follows that uk.1 € (W1,..., Wk, wWii1). Thus,
(U]_, ceey Uy, Uk-|-]_> g (wla cey, W, Wk+1>'
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Example
Let A € R3*2 be the matrix
1 1
A=10 0
13

It is easy to see that rank(A) = 2. We have {u;,u>} C R3 and we
construct an orthogonal basis for the subspace generated by these
columns. The matrix W is initialized to O3.
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Example cont'd

we begin by defining

1
pr— 1 pr—
| w1 (2

wi

S ol

SO

<
Il
S oMl

The projection matrix is

O N
N[

P= I3 — W(Z,l)W(Z,l)/ = I3 — W1W/1 =

o = O

Q)
N o |

|
N[=

UMASS
BOSTON

Prof. Dan A. Simovici CS724: Topics in Algorithms Norms and Ini 102 /117



The projection of us is

-1
PU2 = 0
1
and the second column of W becomes
_V2
P 2
wie = w(,2) = 1LPellz, g
P N
2
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Thus, the orthonormal basis we are seeking consists of the vectors

V2 _V2
2 2
0 and 0

V2 V2
2
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We describe a factorization algorithm for rectangular matrices which
allows us to express a matrix as a product of a rectangular matrix with

orthogonal columns and un upper triangular invertible matrix (the thin QR
factorization).
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Theorem

(The Thin QR Factorization Theorem) Let A € C™*" be a full-rank matrix
such that m > n. Then, A can be factored as A = QR, where Q@ € C™*",
R € C"™" such that
e the columns of Q constitute an orthonormal basis for range(A), and
® R = (rj) is an upper triangular invertible matrix such that its diagonal
elements are real non-negative numbers, that is, ri;; > 0 for 1 <i < n.
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Let u1,...,u, be the columns of A. Since rank(A) = n, these columns
constitute a basis for range(A). Starting from this set of columns
construct an orthonormal basis w1, ..., w, for the subspace range(A)
using the Gram-Schmidt algorithm. Define @ as the orthogonal matrix

Q:(Wl Wn)-
By the properties of the Gram-Schmidt algorithm we have
(ug,...,uk) ={(wy,...,wy) for 1 < k < n, so it is possible to write
Ue = rngwi+ -+ nuWg
Ik Nk

_ . Fik _ Pk
= (W]_ Wn) 0 Q 0

: o) A
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We may assume that r, > 0; otherwise, that is, if rix < 0, replace wy by
—w,. Clearly, this does not affect the orthonormality of the set
{wi,...,wp}.

It is clear that rank(Q) = n. Therefore, since

rank(A) < min{rank(Q), rank(R)}, it follows that rank(R) = n, so R is an
invertible matrix. Therefore, we have ry > 0 for 1 < k < n.
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Example

Let us determine a QR factorization for the matrix
11
A=(0 0
1 3

which has rank 2. We constructed an orthonormal basis for range(A) that
consists of the vectors

1 1
V2 V2
wi=1]0 and wy = 0
1 1
V2 V2
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Example cont'd

Thus, the orthogonal matrix Q is

I
V2 V2
R=|0 0
I
V2 V2

To compute R we need to express u; and us as linear combinations of w;
and ws. Since

up = \/§W1
u, = 2\/§W1+\/§W2

the matrix R is

ae (2 20),

%
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Vector norms can be computed using the function norm which comes in
two signatures: norm(v) and norm(v,p). The first variant computes

|| v ||2; the second computes || v ||, for any p, 1 < p < co. In addition,
norm(v,inf) computes || v ||o= max{|vi| | 1 < i< n}, where v € R". If
one uses —oo as the second parameter, then norm(v,-inf) returns
min{|v;| | 1 < i< n}.

Example

For the vector

v =[2 -3 5 -4]

the computation

norms = [norm(v,1),norm(v,2),norm(v,2.5),norm(v,inf) ,norm(v,-inf)]
returns

norms =

14.0000 7.3485 6.5344 5.0000 2.0000
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For matrices whose norm is expensive to compute, an approximative
estimation of || A |2 can be performed using the function normest (4), or

normest (A,r), where r is the relative error; the default for r is 107°.
The following function implements the Gram-Schmidt algorithm.

function [W] = gram(U)

%GRAM implements the classical Gram-Schmidt algorithm
[n,m] = size(U);

W = zeros(n,m);

W(:,1)= (1/norm(U(:,1)))*U(:,1);

for k = 2:1:m

P = eye(n) - WkW’;

W(:,k) = W(:,k) + (1/norm(P*U(:,k)))* PxU(:,k);

end
end

%
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Theorem (Cholesky Decomposition Theorem)

Let A € C"™" be a Hermitian positive definite matrix. There exists a

unique upper triangular matrix R with real positive diagonal elements such
that A= R"R.

v

Corollary

If A€ C™" is a Hermitian positive definite matrix, then det(A) is a real
positive number.
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The Cholesky decomposition of a Hermitian positive definite matrix is
computed in MATLAB using the function chol. The function call

R = chol(A) returns an upper triangular matrix R, satisfying the
equation R"R = A. If A is not positive definite an error message is
generated. The matrix R is computed using the diagonal and the upper
triangle of A and the computation makes sense only if A is Hermitian.

%
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Example

Let A be the symmetric positive definite matrix

30 2
A=[(0 2 1
21 2
Then, R = chol(A) yields
R =
1.7321 0 1.1547
0 1.4142 0.7071
0 0 0.4082
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The call L = chol(A,’lower’) returns a lower triangular matrix L from
the diagonal and lower triangle of matrix A, satisfying the equation
LL" = A. When A is sparse, this syntax of chol is faster.

Example

For the same matrix AL = chol(A,’lower’) returns

L =
1.7321 0 0
0 1.4142 0
1.1547 0.7071 0.4082

For added flexibility, [R,p] = chol(A) and [L,p] = chol(A,’lower’)
set p to 0 if A is positive definite and to a positive number, otherwise,
without returning an error message.
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The thin QR decomposition of a matrix A € C™*" is
function qr as in

[Q R] = qr(4)
To obtain the full decomposition we write

[Q R] = qr(A,0)
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