CS724: Topics in Algorithms Norms and Inner Products - II Slide Set 5

Prof. Dan A. Simovici

< ∃⇒

Prof. Dan A. Simovici

- 2 Operatorial Norms for Matrices
- Inner Products
- 4 Hyperplanes in \mathbb{R}^n
- 5 Unitary and Orthogonal Matrices
- 6 Projection on Subspaces
- Positive Definite and Positive Semidefinite Matrices
- 8 The Gram-Schmidt Orthogonalization Algorithm
- Ine QR Factorization of Matrices

< ∃ →

The set $\mathbb{C}^{m \times n}$ is a linear space. Therefore, it is natural to consider norms defined on matrices. We discuss two basic methods for defining norms for matrices.

- The first approach treats matrices as vectors (through the vec mapping).
- The second, regards matrices as representations of linear operators, and defined norms for matrices starting from operator norms.

Definition

The $(m \times n)$ -vectorization mapping is the mapping vec : $\mathbb{C}^{m \times n} \longrightarrow \mathbb{C}^{mn}$ defined by

/ \

$$\operatorname{vec}(A) = \begin{pmatrix} a_{11} \\ \vdots \\ a_{m1} \\ \vdots \\ a_{1n} \\ \vdots \\ a_{mn} \end{pmatrix},$$

obtained by reading A column-wise.

< 17 ▶

The following equality is immediate for a matrix $A \in \mathbb{C}^{m \times n}$:

$$\operatorname{vec}(A) = \begin{pmatrix} A \boldsymbol{e}_1 \\ A \boldsymbol{e}_2 \\ \vdots \\ A \boldsymbol{e}_n \end{pmatrix}.$$

The vectorization mapping vec is an isomorphism between the linear space $\mathbb{C}^{m \times n}$ and the linear space \mathbb{C}^{mn} , as can be easily verified.

For the matrix I_n we have

$$\operatorname{vec}(I_n) = \begin{pmatrix} \boldsymbol{e}_1 \\ \boldsymbol{e}_2 \\ \vdots \\ \boldsymbol{e}_n \end{pmatrix}.$$

æ

Definition

Let ν be a vector norm on the space \mathbb{R}^{mn} . The vectorial matrix norm $\mu^{(m,n)}$ on $\mathbb{R}^{m \times n}$ is the mapping $\mu^{(m,n)} : \mathbb{R}^{m \times n} \longrightarrow \mathbb{R}_{\geq 0}$ defined by

$$\mu^{(m,n)}(A) = \nu(\operatorname{vec}(A)),$$

for $A \in \mathbb{R}^{m \times n}$.

Vectorial norms of matrices are defined without regard for matrix products.

Theorem

If $f : \mathbb{C}^m \longrightarrow \mathbb{C}^n$ is a linear operator, ν and ν' are corms on \mathbb{C}^m and \mathbb{C}^n , respectively, there exists a non-negative constant such that

 $\nu'(f(x)) \leqslant M\nu(x)$

for every $x \in \mathbb{C}^m$.

Definition

Let $f : \mathbb{C}^m \longrightarrow \mathbb{C}^n$ is a linear operator, and let ν and ν' be norms on \mathbb{C}^m and \mathbb{C}^n , respectively. The operatorial norm of f is the number

 $\mu(f) = \inf\{M \in \mathbb{R}_{\geq 0} \mid \nu'(f(x)) \leqslant M\nu(x) \text{ for every } \boldsymbol{x} \in \mathbb{C}^m\}.$

Theorem

The mapping ν is a norm on the space of linear operators $Hom(\mathbb{C}^m, \mathbb{C}^n)$.

Since μ depends on both ν and ν' it is denoted by $N(\nu, \nu')$.

Theorem

Let $f : \mathbb{C}^m \longrightarrow \mathbb{C}^n$ and $g : \mathbb{C}^n \longrightarrow \mathbb{C}^p$ be two linear operators and let ν, ν', ν'' be norms on $\mathbb{C}^m, \mathbb{C}^n$ and \mathbb{C}^p , respectively. Define $\mu = N(\nu, \nu')$, $\mu' = N(\nu', \nu'')$, and $\mu'' = N(\nu, \nu'')$. We have

 $\mu''(gf) \leqslant \mu(f)\mu'(g).$

э

Proof

For $\mathbf{x} \in \mathbb{C}^m$ we have $\nu'(f(x) \leq (\mu(f) + \epsilon')\nu(\mathbf{x})$ for every $\epsilon' > 0/$ Similarly, for $\mathbf{y} \in \mathbb{C}^n$ e have $\nu''(g(y)) \leq (\mu'(g) + \epsilon'')\nu'(\mathbf{y})$ for every $\epsilon'' > 0$. These inequalities imply

$$\nu''(g(f(\boldsymbol{x}))) \leqslant (\nu'(g) + \epsilon'')\nu'(f(x)) \leqslant (\nu'(g) + \epsilon'')(\nu(f(x)) + \epsilon')\nu(\boldsymbol{x}),$$

hence

$$\mu''(gf) \leqslant (\mu'(g) + \epsilon'')(\mu(f) + \epsilon')$$

for every ϵ' and ϵ'' , hence $\mu''(gf) \leqslant \mu(f)\mu'(g)$.

- ∢ ⊒ →

Definition

A consistent family of matrix norms is a family of functions $\mu^{(m,n)} : \mathbb{C}^{m \times n} \longrightarrow \mathbb{R}_{\geq 0}$, where $m, n \in \mathbb{P}$ that satisfies the following conditions:

•
$$\mu^{(m,n)}(A) = 0$$
 if and only if $A = O_{m,n}$;
• $\mu^{(m,n)}(A+B) \leq \mu^{(m,n)}(A) + \mu^{(m,n)}(B)$ (the subadditivity property);
• $\mu^{(m,n)}(aA) = |a|\mu^{(m,n)}(A);$
• $\mu^{(m,p)}(AB) \leq \mu^{(m,n)}(A)\mu^{(n,p)}(B)$ for every matrix $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$ (the submultiplicative property).

If the format of the matrix A is clear from context or is irrelevant, then we shall write $\mu(A)$ instead of $\mu^{(m,n)}(A)$.

< ∃⇒

Let $P \in \mathbb{C}^{n \times n}$ be an idempotent matrix, that is, a matrix P such that $P^2 = P$. If μ is a matrix norm, then either $\mu(P) = 0$ or $\mu(P) \ge 1$. Indeed, since P is idempotent we have $\mu(P) = \mu(P^2)$. By the submultiplicative property, $\mu(P^2) \le (\mu(P))^2$, so $\mu(P) \le (\mu(P))^2$. Consequently, if $\mu(P) \ne 0$, then $\mu(P) \ge 1$.

Some vectorial matrix norms turn out to be actual matrix norms; others fail to be matrix norms. This point is illustrated by the next examples.

Consider the vectorial matrix norm μ_1 induced by the vector norm ν_1 . We have $\mu_1(A) = \sum_{i=1}^n \sum_{j=1}^m |a_{ij}|$ for $A \in \mathbb{R}^{m \times n}$. Actually, this is a matrix norm. To prove this fact consider the matrices $A \in \mathbb{R}^{m \times p}$ and $B \in \mathbb{R}^{p \times n}$. We have:

$$\mu_1(AB) = \sum_{i=1}^m \sum_{j=1}^n \left| \sum_{k=1}^p a_{ik} b_{kj} \right| \leq \sum_{i=1}^m \sum_{j=1}^n \sum_{k=1}^p |a_{ik} b_{kj}|$$
$$\leq \sum_{i=1}^m \sum_{j=1}^n \sum_{k'=1}^p \sum_{k''=1}^p |a_{ik'}| |b_{k''j}|$$

(because we added extra non-negative terms to the sums)

ヘロマ ふむ マイロマ

$$= \left(\sum_{i=1}^{m} \sum_{k'=1}^{p} |a_{ik'}|\right) \cdot \left(\sum_{j=1}^{n} \sum_{k''=1}^{p} |b_{k''j}|\right) \\ = \mu_1(A)\mu_1(B).$$

We denote this vectorial matrix norm by the same notation as the corresponding vector norm, that is, by $\|A\|_1$.

The vectorial norm μ_2 (also known as the *Frobenius norm*) is induced by the vector norm ν_2 . It is also a matrix norm. Indeed, we have

$$(\mu_{2}(AB))^{2} = \sum_{i=1}^{m} \sum_{j=1}^{n} \left| \sum_{k=1}^{p} a_{ik} b^{kj} \right|^{2}$$

$$\leqslant \sum_{i=1}^{m} \sum_{j=1}^{n} \left(\sum_{k=1}^{p} |a_{ik}|^{2} \sum_{\ell=1}^{p} |b^{\ell j}|^{2} \right)$$

(by Cauchy-Schwarz Inequality)

$$\leqslant (\mu_{2}(A))^{2} (\mu_{2}(B))^{2}.$$

 $\mu_2(A)$ is denoted also by $|| A ||_F$ (F from Frobenius).

• = • • = •

For real matrices we have $||A||_F^2 = \text{trace}(AA') = \text{trace}(A'A)$. For complex matrices the corresponding equality is

$$|A||_F^2 = \operatorname{trace}(AA^{\mathsf{H}}) = \operatorname{trace}(A^{\mathsf{H}}A).$$

Note that $||A^{H}||_{F}^{2} = ||A||_{F}^{2}$ for every A.

The vectorial norm μ_∞ induced by the vector norm ν_∞ is denoted by $\parallel A \parallel_\infty$ and is given by

$$|A||_{\infty} = \max_{i,j} |a_{ij}|$$

for $A \in \mathbb{C}^{n \times n}$. This is *not* a matrix norm. Indeed, let *a*, *b* be two positive numbers and consider the matrices

$$A = egin{pmatrix} a & a \ a & a \end{pmatrix}$$
 and $B = egin{pmatrix} b & b \ b & b \end{pmatrix}$.

We have $\parallel A \parallel_{\infty} = a$ and $\parallel B \parallel_{\infty} = b$. However, since

$$AB = \begin{pmatrix} 2ab & 2ab \\ 2ab & 2ab \end{pmatrix},$$

we have $\parallel AB \parallel_{\infty} = 2ab$ and the submultiplicative property of matrix norms is violated.

Prof. Dan A. Simovici

▶ ∢ ⊒ ▶

Theorem

Let μ be the matrix norm on $\mathbb{C}^{n \times n}$ induced by the vector norm ν . We have $\nu(A\mathbf{u}) \leq \mu(A)\nu(\mathbf{u})$ for every $\mathbf{u} \in \mathbb{C}^n$.

Proof.

The inequality is obviously satisfied when $\boldsymbol{u} = \boldsymbol{0}_n$. Therefore, we may assume that $\boldsymbol{u} \neq \boldsymbol{0}_n$ and let $\boldsymbol{x} = \frac{1}{\nu(\boldsymbol{u})}\boldsymbol{u}$. Clearly, $\nu(\boldsymbol{x}) = 1$ and

$$\nu\left(A\frac{1}{\nu(\boldsymbol{u})}\boldsymbol{u}\right)\leqslant\mu(A)$$

for every $\boldsymbol{u} \in \mathbb{C}^n - \{\boldsymbol{0}_n\}$. This implies immediately the desired inequality.

If μ is a matrix norm induced by a vector norm on \mathbb{R}^n , then $\mu(I_n) = \sup\{\nu(I_n\mathbf{x}) \mid \nu(\mathbf{x}) \leq 1\} = 1$. This necessary condition can be used for identifying matrix norms that are not induced by vector norms. The operator matrix norm induced by the vector norm $\|\cdot\|_p$ is denoted by $\|\cdot\|_p$.

UMASS

To compute $|||A|||_1 = \sup\{||A\mathbf{x}||_1 | ||\mathbf{x}||_1 \leq 1\}$, where $A \in \mathbb{R}^{n \times n}$, suppose that the columns of A are the vectors $\mathbf{a}_1, \ldots, \mathbf{a}_n$, that is

$$\mathbf{a}_{j} = egin{pmatrix} \mathbf{a}_{1j} \\ \mathbf{a}_{2j} \\ \vdots \\ \mathbf{a}_{nj} \end{pmatrix}$$

Let $\mathbf{x} \in \mathbb{R}^n$ be a vector whose components are x_1, \ldots, x_n . Then, $A\mathbf{x} = x_1 \mathbf{a}_1 + \cdots + x_n \mathbf{a}_n$, so

$$|A\mathbf{x}||_{1} = ||x_{1}\mathbf{a}_{1} + \dots + x_{n}\mathbf{a}_{n}||_{1}$$

$$\leq \sum_{j=1}^{n} |x_{j}| || \mathbf{a}_{j} ||_{1}$$

$$\leq \max_{j} ||\mathbf{a}_{j}||_{1} \sum_{j=1}^{n} |x_{j}|$$

$$= \max_{j} ||\mathbf{a}_{j}||_{1} \cdot ||\mathbf{x}||_{1}.$$

Example cont'd

Example

Let \mathbf{e}_j be the vector whose components are 0 with the exception of its j^{th} component that is equal to 1. Clearly, we have $\|\mathbf{e}_j\|_1 = 1$ and $\mathbf{a}_j = A\mathbf{e}_j$. This, in turn implies $\|\mathbf{a}_j\|_1 = \|A\mathbf{e}_j\|_1 \leqslant \|\|A\|\|_1$ for $1 \leqslant j \leqslant n$. Therefore, $\max_j \|\mathbf{a}_j\|_1 \leqslant \|\|A\|\|_1$, so

$$\lVert A
Vert_1 = \max_j \parallel oldsymbol{a}_j \parallel_1 = \max_j \sum_{i=1}^n |a_{ij}|.$$

In other words, $|||A|||_1$ equals the maximum column sum of the absolute values.

Consider now a matrix $A \in \mathbb{R}^{n \times n}$. We have

$$\|A\mathbf{x}\|_{\infty} = \max_{1 \leq i \leq n} \left| \sum_{j=1}^{n} a_{ij} x_j \right|$$
$$\leq \max_{1 \leq i \leq n} \sum_{j=1}^{n} |a_{ij} x_j|$$
$$\leq \max_{1 \leq i \leq n} \|\mathbf{x}\|_{\infty} \sum_{j=1}^{n} |a_{ij}|.$$

Consequently, if $\| \mathbf{x} \|_{\infty} \leq 1$ we have $\| A\mathbf{x} \|_{\infty} \leq \max_{1 \leq i \leq n} \sum_{j=1}^{n} |a_{ij}|$. Thus, $\| A \|_{\infty} \leq \max_{1 \leq i \leq n} \sum_{j=1}^{n} |a_{ij}|$.

- ∢ ⊒ →

Example cont'd

Example

The converse inequality is immediate if $A = O_{n,n}$. Therefore, assume that $A \neq O_{n \times n}$, and let (a_{p1}, \ldots, a_{pn}) be any row of A that has at least one element distinct from 0. Define the vector $\mathbf{z} \in \mathbb{R}^n$ by

$$\mathbf{z}_j = egin{cases} rac{|\mathbf{a}_{pj}|}{\mathbf{a}_{pj}} & ext{if } \mathbf{a}_{pj}
eq 0, \ 1 & ext{otherwise}, \end{cases}$$

for $1 \leq j \leq n$. It is clear that $z_j \in \{-1, 1\}$ for every $j, 1 \leq j \leq n$ and, therefore, $\| \mathbf{z} \|_{\infty} = 1$. Moreover, we have $|a_{pj}| = a_{pj}z_j$ for $1 \leq j \leq n$. Therefore, we can write:

$$\sum_{j=1}^{n} |a_{pj}| = \sum_{j=1}^{n} a_{pj} z_j \leqslant \left| \sum_{j=1}^{n} a_{pj} z_j \right| \leqslant \max_{1 \leqslant i \leqslant n} \left| \sum_{j=1}^{n} a_{ij} z_j \right|$$
$$= ||A\mathbf{z}||_{\infty} \leqslant \max\{||A\mathbf{x}||_{\infty} | ||\mathbf{x}||_{\infty} \leqslant 1\} = |||A|||_{\infty}.$$

Example cont'd

Example

Since this holds for every row of A, it follows that $\max_{1 \leq i \leq n} \sum_{j=1}^{n} |a_{ij}| \leq ||A||_{\infty}$, which proves that

$$|||A|||_{\infty} = \max_{1 \leq i \leq n} \sum_{j=1}^{n} |a_{ij}|.$$

In other words, $||A||_{\infty}$ equals the maximum row sum of the absolute values.

< ∃ →

Let $D = \operatorname{diag}(d_1, \ldots, d_n) \in \mathbb{C}^{n \times n}$ be a diagonal matrix. If $\boldsymbol{x} \in \mathbb{C}^n$ we have

$$D\boldsymbol{x} = \begin{pmatrix} d_1 x_1 \\ \vdots \\ d_n x_n \end{pmatrix}$$

$$|||D|||_{2} = \max\{|| D\mathbf{x} ||_{2} | || \mathbf{x} ||_{2} = 1\}$$

= $\max\{\sqrt{(d_{1}x_{1})^{2} + \dots + (d_{n}x_{n})^{2}} | x_{1}^{2} + \dots + x_{n}^{2} = 1\}$
= $\max\{|d_{i}| | 1 \leq 1 \leq n\}.$

< ロ > < 同 > < 回 > < 回 >

э

Certain norms are invariant with respect to multiplication by unitary matrices. We refer to these norms as *unitarily invariant norms*.

Theorem

Let $U \in \mathbb{C}^{n \times n}$ be a unitary matrix. The following statements hold:

- $|| U\mathbf{x} ||_2 = || \mathbf{x} ||_2$ for every $\mathbf{x} \in \mathbb{C}^n$;
- $||| UA |||_2 = |||A|||_2$ for every $A \in \mathbb{C}^{n \times p}$;
- $|| UA ||_F = || A ||_F$ for every $A \in \mathbb{C}^{n \times p}$.

Proof

For the first part of the theorem note that

$$\parallel U\mathbf{x} \parallel_2^2 = (U\mathbf{x})^{\mathsf{H}} U\mathbf{x} = \mathbf{x}^{\mathsf{H}} U^{\mathsf{H}} U\mathbf{x} = \mathbf{x}^{\mathsf{H}} \mathbf{x} = \parallel \mathbf{x} \parallel_2^2,$$

because $U^{H}A = I_n$.

The second part of the theorem is shown next:

$$\begin{aligned} \|UA\|\|_2 &= \max\{\| (UA)\mathbf{x} \|_2 | \| \mathbf{x} \|_2 = 1\} \\ &= \max\{\| U(A\mathbf{x}) \|_2 | \| \mathbf{x} \|_2 = 1\} \\ &= \max\{\| A\mathbf{x} \|_2 | \| \mathbf{x} \|_2 = 1\} \\ &\quad (by Part (i)) \\ &= \| \|A\| \|_2. \end{aligned}$$

Proof cont'd

For the Frobenius norm note that

$$\parallel UA \parallel_{F} = \sqrt{\operatorname{trace}((UA)^{\scriptscriptstyle H}UA)} = \sqrt{\operatorname{trace}(A^{\scriptscriptstyle H}U^{\scriptscriptstyle H}UA)} = \sqrt{\operatorname{trace}(A^{\scriptscriptstyle H}A)} = \parallel A \parallel_{F}$$

æ

Corollary

If $U \in \mathbb{C}^{n \times n}$ is a unitary matrix, then $||| U |||_2 = 1$.

Proof.

Since
$$||| U |||_2 = \sup\{|| U x ||_2 | || x ||_2 \leq 1\}$$
, we have

$$|\!|\!| U |\!|\!|_2 = \sup\{ |\!| \boldsymbol{x} |\!|_2 | \!|\!| \boldsymbol{x} |\!|_2 \leqslant 1 \} = 1.$$

æ

Corollary

Let $A, U \in \mathbb{C}^{n \times n}$. If U is an unitary matrix, then

$$\parallel U^{\scriptscriptstyle H}AU\parallel_F=\parallel A\parallel_F.$$

Proof.

Since U is a unitary matrix, so is U^{H} . By a previous Theorem,

$$|| U^{H}AU ||_{F} = || AU ||_{F} = || U^{H}A^{H} ||_{F}^{2} = || A^{H} ||_{F}^{2} = || A ||_{F}^{2}$$

which proves the corollary.

< A ▶

Let $S = \{\mathbf{x} \in \mathbb{R}^n \mid || \mathbf{x} ||_2 = 1\}$ be the surface of the sphere in \mathbb{R}^n . The image of S under the linear transformation h_U that corresponds to the unitary matrix U is S itself. Indeed, $|| h_U(\mathbf{x}) ||_2 = || \mathbf{x} ||_2 = 1$, so $h_U(\mathbf{x}) \in S$ for every $\mathbf{x} \in S$. Also, note that h_U restricted to S is a bijection because $h_{U^{\mathsf{H}}}(h_U(\mathbf{x})) = \mathbf{x}$ for every $\mathbf{x} \in \mathbb{R}^n$.

< ∃ > < ∃ >

Theorem

Let $A \in \mathbb{R}^{n \times n}$. We have $|||A|||_2 \leq ||A||_F$.

Proof.

Let $\mathbf{x} \in \mathbb{R}^n$. We have

$$A\mathbf{x} = \begin{pmatrix} \mathbf{r}_1 \mathbf{x} \\ \vdots \\ \mathbf{r}_n \mathbf{x} \end{pmatrix},$$

where $\boldsymbol{r}_1, \ldots, \boldsymbol{r}_n$ are the rows of the matrix A. Thus,

$$\frac{\parallel A\mathbf{x} \parallel_2}{\parallel \mathbf{x} \parallel_2} = \frac{\sqrt{\sum_{i=1}^n (\mathbf{r}_i \mathbf{x})^2}}{\parallel \mathbf{x} \parallel_2}.$$

By Cauchy-Schwarz inequality we have: $(\mathbf{r}_i \mathbf{x})^2 \leq ||\mathbf{r}_i||_2^2 ||\mathbf{x}||_2^2$, so $\frac{||A\mathbf{x}||_2}{||\mathbf{x}||_2} \leq \sqrt{\sum_{i=1}^n ||\mathbf{r}_i||_2^2} = ||A||_F.$ This implies $|||A|||_2 \leq ||A||_F.$

BOSTON ∢□ ▷ ∢ ㈜ ▷ ∢ 글 ▷ ∢ 글 ▷

Definition

Let *L* be a \mathbb{C} -linear space. An *inner product* on *L* is a function $f: L \times L \longrightarrow \mathbb{C}$ that has the following properties: • $f(a\mathbf{x} + b\mathbf{y}, \mathbf{z}) = af(\mathbf{x}, \mathbf{z}) + bf(\mathbf{y}, \mathbf{z})$ (linearity in the first argument); • $f(\mathbf{x}, \mathbf{y}) = \overline{f(\mathbf{y}, \mathbf{x})}$ for $\mathbf{y}, \mathbf{x} \in L$ (conjugate symmetry); • if $\mathbf{x} \neq \mathbf{0}$, then $f(\mathbf{x}, \mathbf{x})$ is a positive real number (positivity), • $f(\mathbf{x}, \mathbf{x}) = 0$ if and only if $\mathbf{x} = \mathbf{0}$ (definiteness), for every $\mathbf{x}, \mathbf{y}, \mathbf{z} \in L$ and $a, b \in \mathbb{C}$. The pair (L, f) is called an *inner product space*.

An alternative terminology for real inner product spaces is *Euclidean spaces*, and *Hermitian spaces* for complex inner product spaces.

< ∃⇒

For the second argument of an inner product we have the property of *conjugate linearity*, that is,

$$f(oldsymbol{z},aoldsymbol{x}+boldsymbol{y})=ar{a}f(oldsymbol{z},oldsymbol{x})+ar{b}f(oldsymbol{z},oldsymbol{y})$$

for every $x, y, z \in L$ and $a, b \in \mathbb{C}$. Indeed, by the conjugate symmetry property we can write

$$f(\mathbf{z}, a\mathbf{x} + b\mathbf{y}) = \overline{f(a\mathbf{x} + b\mathbf{y}, \mathbf{z})}$$

= $\overline{af(\mathbf{x}, \mathbf{z}) + bf(\mathbf{y}, \mathbf{z})}$
= $\overline{af(\mathbf{x}, \mathbf{z}) + \overline{b}f(\mathbf{y}, \mathbf{z})}$
= $\overline{a}f(\mathbf{z}, \mathbf{x}) + \overline{b}f(\mathbf{z}, \mathbf{y}).$

< ∃ > < ∃ >

Observe that conjugate symmetry property on inner products implies that for $\mathbf{x} \in L$, $f(\mathbf{x}, \mathbf{x})$ is a real number because $f(\mathbf{x}, \mathbf{x}) = \overline{f(\mathbf{x}, \mathbf{x})}$. When *L* is a real linear space the definition of the inner product becomes simpler because the conjugate of a real number *a* is *a* itself. Namely, for real linear spaces, the conjugate symmetry is replaced by the plain symmetry property,

$$f(\boldsymbol{x}, \boldsymbol{y}) = f(\boldsymbol{y}, \boldsymbol{x}),$$

for $\boldsymbol{x}, \boldsymbol{y} \in L$ and f is linear in both arguments.

Let $W = \{ \boldsymbol{w}_1, \dots, \boldsymbol{w}_n \}$ be a basis in the complex *n*-dimensional inner product space *L*. If $\boldsymbol{x} = \sum_{i=1}^n x^i \boldsymbol{w}_i$ and $\boldsymbol{y} = \sum_{j=1}^n y^j \boldsymbol{w}_j$, then

$$f(\boldsymbol{x},\boldsymbol{y}) = \sum_{i=1}^{n} \sum_{j=1}^{n} x^{i} \overline{y^{j}} f(\boldsymbol{w}_{i},\boldsymbol{w}_{j}),$$

due to the bilinearity of the inner product. If we denote $f(\boldsymbol{w}_i, \boldsymbol{w}_j)$ by g_{ij} , then $f(\boldsymbol{x}, \boldsymbol{y})$ can be written as

$$f(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{n} \sum_{j=1}^{n} x^{i} \overline{y^{j}} g_{ij}$$
(1)

for $\mathbf{x}, \mathbf{y} \in L$. If *L* is a real inner product space *L*, then

$$f(\boldsymbol{x},\boldsymbol{y}) = \sum_{i=1}^{n} \sum_{j=1}^{n} x^{i} y^{j} g_{ij}$$

To simplify notations, if there is no risk of confusion, we denote the inner product f(u, v) as (u, v).

Definition

Two vectors $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{C}^n$ are said to be *orthogonal* with respect to an inner product if $(\boldsymbol{u}, \boldsymbol{v}) = 0$. This is denoted by $x \perp y$. An *orthogonal set of vectors* in an inner product space *L* equipped with an inner product is a subset *W* of *L* such that for every $\boldsymbol{u}, \boldsymbol{v} \in W$ we have $\boldsymbol{u} \perp \boldsymbol{v}$.

Theorem

Any inner product on a linear space L generates a norm on that space defined by $\| \mathbf{x} \| = \sqrt{(\mathbf{x}, \mathbf{x})}$ for $\mathbf{x} \in L$.

< 一 →

Proof

Let *L* be a \mathbb{C} -linear space. We need to verify that the norm satisfies the conditions of Definition. Applying the properties of the inner product we have

$$\| \mathbf{x} + \mathbf{y} \|^{2} = (\mathbf{x} + \mathbf{y}, \mathbf{x} + \mathbf{y})$$

= $(\mathbf{x}, \mathbf{x}) + 2(\mathbf{x}, \mathbf{y}) + (\mathbf{y}, \mathbf{y})$
= $\| \mathbf{x} \|^{2} + 2(\mathbf{x}, \mathbf{y}) + \| \mathbf{y} \|^{2}$
 $\leq \| \mathbf{x} \|^{2} + 2 \| \mathbf{x} \| \| \mathbf{y} \| + \| \mathbf{y} \|^{2}$
= $(\| \mathbf{x} \| + \| \mathbf{y} \|)^{2}$.

Because $\| \mathbf{x} \| \ge 0$ it follows that $\| \mathbf{x} + \mathbf{y} \| \le \| \mathbf{x} \| + \| \mathbf{y} \|$, which is the subadditivity property.

If $a \in \mathbb{C}$, then

$$\| a\mathbf{x} \| = \sqrt{(a\mathbf{x}, a\mathbf{x})} = \sqrt{a\overline{a}(\mathbf{x}, \mathbf{x})} = \sqrt{|a|^2(\mathbf{x}, \mathbf{x})} = |a|\sqrt{(\mathbf{x}, \mathbf{x})} = |a| \| \mathbf{x} \|.$$

From the definiteness property of the inner product it follows that
$$\| \mathbf{x} \| = 0 \text{ if and only if } \mathbf{x} = \mathbf{0}.$$

The norm induced by the inner product $f(\mathbf{x}, \mathbf{y}) = x^i \overline{y^j} g_{ij}$ is

$$\|\boldsymbol{x}\|^2 = f(\boldsymbol{x}, \boldsymbol{x}) = x^i \overline{x^j} g_{ij}.$$

э

Theorem

If W is a set of orthogonal vectors in a n-dimensional \mathbb{C} -linear space L and $\mathbf{0} \notin W$, then W is linearly independent.

Proof.

Let $\mathbf{c} = a^1 \mathbf{w}_1 + \cdots + a^n \mathbf{w}_n$ a linear combination in L such that $a^1 \mathbf{w}_1 + \cdots + a^n \mathbf{w}_n = \mathbf{0}$. Since $(\mathbf{c}, \mathbf{w}_i) = a_i \parallel \mathbf{w}_i \parallel^2 = 0$, we have $a_i = 0$ because $\parallel \mathbf{w}_i \parallel^2 \neq 0$, and this holds for every i, where $1 \leq i \leq n$. Thus, W is linearly independent.

Definition

An orthonormal set of vectors in an inner product space L equipped with an inner product is an orthogonal subset W of L such that for every \boldsymbol{u} we have $\| \boldsymbol{u} \| = 1$, where the norm is induced by the inner product.

Corollary

If W is an orthonormal set of vectors in an n-dimensional \mathbb{C} -linear space L and |W| = n, then W is a basis in L.

If $W = \{ \boldsymbol{w}_1, \dots, \boldsymbol{w}_n \}$ is an orthonormal basis in \mathbb{C}^n we have

$$g_{ij} = (\boldsymbol{w}_i, \boldsymbol{w}_j) = \begin{cases} 0 & \text{if } i \neq j, \\ 1 & \text{if } i = j, \end{cases}$$

which means that the inner product of the vectors $\mathbf{x} = x^i \mathbf{w}_i$ and $\mathbf{y} = y^j \mathbf{w}_j$ is given by:

$$(\mathbf{x}, \mathbf{y}) = x^{i} \overline{y^{j}} (\mathbf{w}_{i}, \mathbf{w}_{j}) = x^{i} \overline{y^{i}}.$$
(2)

Consequently, $\| \mathbf{x} \|^2 = \sum_{i=1}^n |x^i|^2$. The inner product of $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ is

$$(\mathbf{x}, \mathbf{y}) = x^i y^j (\mathbf{w}_i, \mathbf{w}_j) = x^i y^i.$$
(3)

• = • • = •

Not every norm can be induced by an inner product. A characterization of this type of norms in linear spaces is presented next.

This equality shown in the next theorem is known as the *parallelogram* equality.

Theorem

Let L be a real linear space. A norm $\|\cdot\|$ is induced by an inner product if and only if

$$\| \mathbf{x} + \mathbf{y} \|^2 + \| \mathbf{x} - \mathbf{y} \|^2 = 2(\| \mathbf{x} \|^2 + \| \mathbf{y} \|^2),$$

for every $\mathbf{x}, \mathbf{y} \in L$.

Proof

Suppose that the norm is induced by an inner product. In this case we can write for every \boldsymbol{x} and \boldsymbol{y} :

$$\| \mathbf{x} + \mathbf{y} \|^{2} = (\mathbf{x} + \mathbf{y}, \mathbf{x} + \mathbf{y}) = (\mathbf{x}, \mathbf{x}) + 2(\mathbf{x}, \mathbf{y}) + (\mathbf{y}, \mathbf{y}),$$

$$\| \mathbf{x} - \mathbf{y} \|^{2} = (\mathbf{x} - \mathbf{y}, \mathbf{x} - \mathbf{y}) = (\mathbf{x}, \mathbf{x}) - 2(\mathbf{x}, \mathbf{y}) + (\mathbf{y}, \mathbf{y}).$$

Thus,

$$(\mathbf{x}+\mathbf{y},\mathbf{x}+\mathbf{y})+(\mathbf{x}-\mathbf{y},\mathbf{x}-\mathbf{y})=2(\mathbf{x},\mathbf{x})+2(\mathbf{y},\mathbf{y}),$$

which can be written in terms of the norm generated as the inner product as

$$\| \mathbf{x} + \mathbf{y} \|^2 + \| \mathbf{x} - \mathbf{y} \|^2 = 2(\| \mathbf{x} \|^2 + \| \mathbf{y} \|^2).$$

The proof of the reverse implication is omitted.

< ∃⇒

Definition

Let $w \in \mathbb{R}^n - \{0\}$ and let $a \in \mathbb{R}$. The *hyperplane* determined by w and a is the set

$$H_{\boldsymbol{w},\boldsymbol{a}} = \{ \boldsymbol{x} \in \mathbb{R}^n \mid \boldsymbol{w}' \boldsymbol{x} = \boldsymbol{a} \}.$$

< 一 →

If $x_0 \in H_{w,a}$, then $w'x_0 = a$, so $H_{w,a}$ is also described by the equality

$$H_{\boldsymbol{w},\boldsymbol{a}} = \{\boldsymbol{x} \in \mathbb{R}^n \mid \boldsymbol{w}'(\boldsymbol{x} - \boldsymbol{x}_0) = 0\}.$$

Any hyperplane $H_{\mathbf{w},a}$ partitions \mathbb{R}^n into three sets:

The sets $H^{>}_{w,a}$ and $H^{<}_{w,a}$ are the *positive* and *negative open* half-spaces determined by $H_{w,a}$, respectively. The sets

$$\begin{aligned} & \mathcal{H}^{\leqslant}_{\boldsymbol{w},a} &= \{\boldsymbol{x} \in \mathbb{R}^n \mid \boldsymbol{w}' \boldsymbol{x} \geqslant a\}, \\ & \mathcal{H}^{\leqslant}_{\boldsymbol{w},a} &= \{\boldsymbol{x} \in \mathbb{R}^n \mid \boldsymbol{w}' \boldsymbol{x} \leqslant a\}. \end{aligned}$$

are the *positive* and *negative closed* half-spaces determined by $H_{w,a}$, respectively.

If $\mathbf{x}_1, \mathbf{x}_2 \in H_{\mathbf{w},a}$ we say that the vector $\mathbf{x}_1 - \mathbf{x}_2$ is located in the hyperplane $H_{\mathbf{w},a}$. In this case $\mathbf{w} \perp \mathbf{x}_1 - \mathbf{x}_2$. This justifies referring to \mathbf{w} as the *normal* to the hyperplane $H_{\mathbf{w},a}$. Observe that a hyperplane is fully determined by a vector $\mathbf{x}_0 \in H_{\mathbf{w},a}$ and by \mathbf{w} .

Let $\mathbf{x}_0 \in \mathbb{R}^n$ and let $H_{\mathbf{w},a}$ be a hyperplane. We seek $\mathbf{x} \in H_{\mathbf{w},a}$ such that $\|\mathbf{x} - \mathbf{x}_0\|_2$ is minimal. Finding \mathbf{x} amounts to minimizing the function $f(\mathbf{x}) = \|\mathbf{x} - \mathbf{x}_0\|_2^2 = \sum_{i=1}^n (x_i - x_{0i})^2$ subjected to the constraint $\mathbf{w}_1\mathbf{x}_1 + \cdots + w_n\mathbf{x}_n - a = 0$. Using the Lagrangian $\Lambda(\mathbf{x}) = f(\mathbf{x}) + \lambda(\mathbf{w}'\mathbf{x} - a)$ and the multiplier λ we impose the conditions

$$\frac{\partial \Lambda}{\partial x_i} = 0$$
 for $1 \leqslant i \leqslant n$

which amount to

$$\frac{\partial f}{\partial x_i} + \lambda w_i = 0$$

for $1 \leq i \leq n$. These equalities yield $2(x_i - x_{0i}) + \lambda \boldsymbol{w}_i = 0$, so we have $x_i = x_{0i} - \frac{1}{2}\lambda \boldsymbol{w}_i$.

Consequently, we have $\mathbf{x} = \mathbf{x}_0 - \frac{1}{2}\lambda \mathbf{w}$. Since $\mathbf{x} \in H_{\mathbf{w},a}$ this implies

$$\boldsymbol{w}'\boldsymbol{x} = \boldsymbol{w}'\boldsymbol{x}_0 - \frac{1}{2}\lambda \boldsymbol{w}'\boldsymbol{w} = \boldsymbol{a}.$$

Thus,

$$\lambda = 2 \frac{\boldsymbol{w}' \boldsymbol{x}_0 - \boldsymbol{a}}{\boldsymbol{w}' \boldsymbol{w}} = 2 \frac{\boldsymbol{w}' \boldsymbol{x}_0 - \boldsymbol{a}}{\parallel \boldsymbol{w} \parallel_2^2}.$$

We conclude that the closest point in $H_{w,a}$ to x_0 is

$$\mathbf{x} = \mathbf{x}_0 - \frac{\mathbf{w}'\mathbf{x}_0 - \mathbf{a}}{\|\mathbf{w}\|_2^2}\mathbf{w}.$$

The smallest distance between \mathbf{x}_0 and a point in the hyperplane $H_{\mathbf{w},a}$ is given by

$$\| \boldsymbol{x}_0 - \boldsymbol{x} \| = \frac{| \boldsymbol{w}' \boldsymbol{x}_0 - \boldsymbol{a} |}{\| \boldsymbol{w} \|_2}.$$

If we define the distance $d(H_{w,a}, x_0)$ between x_0 and $H_{w,a}$ as this smallest distance we have

$$d(H_{\boldsymbol{w},\boldsymbol{a}},\boldsymbol{x}_0) = \frac{|\boldsymbol{w}'\boldsymbol{x}_0 - \boldsymbol{a}|}{\|\boldsymbol{w}\|_2}.$$
(4)

Lemma

Let $A \in \mathbb{C}^{n \times n}$. If $\mathbf{x}^{H}A\mathbf{x} = 0$ for every $\mathbf{x} \in \mathbb{C}^{n}$, then $A = O_{n,n}$.

æ

Proof

If $\mathbf{x} = \mathbf{e}_k$, then $\mathbf{x}^{\mathsf{H}} A \mathbf{x} = a_{kk}$ for every $k, 1 \leq k \leq n$, so all diagonal entries of A equal 0. Choose now $\mathbf{x} = \mathbf{e}_k + \mathbf{e}_j$. Then,

$$(\boldsymbol{e}_{k} + \boldsymbol{e}_{j})^{H} A(\boldsymbol{e}_{k} + \boldsymbol{e}_{j})$$

$$= \boldsymbol{e}_{k}^{H} A \boldsymbol{e}_{k} + \boldsymbol{e}_{k}^{H} A \boldsymbol{e}_{j} + \boldsymbol{e}_{j}^{H} A \boldsymbol{e}_{k} + \boldsymbol{e}_{j}^{H} A \boldsymbol{e}_{j}$$

$$= \boldsymbol{e}_{k}^{H} A \boldsymbol{e}_{j} + \boldsymbol{e}_{j}^{H} A \boldsymbol{e}_{k}$$

$$= \boldsymbol{a}_{kj} + \boldsymbol{a}_{jk} = 0.$$

Proof cont'd

Similarly, if we choose $\boldsymbol{x} = \boldsymbol{e}_k + i \boldsymbol{e}_j$ we obtain:

$$(\boldsymbol{e}_{k} + i\boldsymbol{e}_{j})^{\mathsf{H}}A(\boldsymbol{e}_{k} + i\boldsymbol{e}_{j})$$

$$= (\boldsymbol{e}_{k}^{\mathsf{H}} - i\boldsymbol{e}_{j}^{\mathsf{H}})A(\boldsymbol{e}_{k} + i\boldsymbol{e}_{j})$$

$$= \boldsymbol{e}_{k}^{\mathsf{H}}A\boldsymbol{e}_{k} - i\boldsymbol{e}_{j}^{\mathsf{H}}A\boldsymbol{e}_{k} + i\boldsymbol{e}_{k}^{\mathsf{H}}A\boldsymbol{e}_{j} + \boldsymbol{e}_{j}^{\mathsf{H}}A\boldsymbol{e}_{j}$$

$$= -ia_{jk} + ia_{kj} = 0.$$

The equalities $a_{kj} + a_{jk} = 0$ and $-a_{jk} + a_{kj} = 0$ imply $a_{kj} = a_{jk} = 0$. Thus, all off-diagonal elements of A are also 0, hence $A = O_{n,n}$.

< ∃ > < ∃ >

Theorem

A matrix $U \in \mathbb{C}^{n \times n}$ is unitary if $|| U \mathbf{x} ||_2 = || \mathbf{x} ||_2$ for every $\mathbf{x} \in \mathbb{C}^n$.

э

Proof

If U is unitary we have

$$\parallel U\mathbf{x} \parallel_2^2 = (U\mathbf{x})^{\mathsf{H}} U\mathbf{x} = \mathbf{x}^{\mathsf{H}} U^{\mathsf{H}} U\mathbf{x} = \parallel \mathbf{x} \parallel_2^2$$

because $U^{H}U = I_{n}$. Thus, $\parallel U \mathbf{x} \parallel_{2} = \parallel \mathbf{x} \parallel_{2}$.

Conversely, let U be a matrix such that $|| U\mathbf{x} ||_2 = || \mathbf{x} ||_2$ for every $\mathbf{x} \in \mathbb{C}^n$. This implies $\mathbf{x}^{\mathsf{H}} U^{\mathsf{H}} U\mathbf{x} = \mathbf{x}^{\mathsf{H}} \mathbf{x}$, hence $\mathbf{x}^{\mathsf{H}} (U^{\mathsf{H}} U - I_n) \mathbf{x} = 0$ for $\mathbf{x} \in \mathbb{C}^n$. This implies $U^{\mathsf{H}} U = I_n$, so U is a unitary matrix.

Corollary

The following statements that concern a matrix $U \in \mathbb{C}^{n \times n}$ are equivalent:

• U is unitary;

•
$$|| U\mathbf{x} - U\mathbf{y} ||_2 = || \mathbf{x} - \mathbf{y} ||_2$$
 for $\mathbf{x}, \mathbf{y} \in \mathbb{C}^n$;

•
$$(U\mathbf{x}, U\mathbf{y}) = (\mathbf{x}, \mathbf{y})$$
 for $\mathbf{x}, \mathbf{y} \in \mathbb{C}^n$.

< 1 →

The counterpart of unitary matrices in the set of real matrices are introduced next.

Definition

A matrix $A \in \mathbb{R}^{n \times n}$ is orthogonal or orthonormal if it is unitary.

In other words, a real matrix $A \in \mathbb{R}^{n \times n}$ is orthogonal if and only if $A'A = AA' = I_n$. Clearly, A is orthogonal if and only if A' is orthogonal.

< ∃⇒

Theorem

If $A \in \mathbb{R}^{n \times n}$ is an orthogonal matrix, then $det(A) \in \{-1, 1\}$.

Proof.

By a previous Corollary, $|\det(A)| = 1$. Since $\det(A)$ is a real number, it follows that $\det(A) \in \{-1, 1\}$.

Corollary

Let A be a matrix in $\mathbb{R}^{n \times n}$. The following statements are equivalent:

- A is orthogonal;
- A is invertible and $A^{-1} = A'$;
- A' is invertible and $(A')^{-1} = A;$
- A' is orthogonal.

Thus, a matrix A is orthogonal if and only if it preserves the length of vectors.

< ∃ →

Definition

A rotation matrix is an orthogonal matrix $R \in \mathbb{R}^{n \times n}$ such that det(R) = 1.

A reflection matrix is an orthogonal matrix $R \in \mathbb{R}^{n \times n}$ such that det(R) = -1.

-∢ ≣ ▶

In the bidimensional case, n = 2, a rotation is a an orthogonal matrix $R \in \mathbb{R}^{2 \times 2}$. For

$$R = \begin{pmatrix} r_{11} & r_{12} \\ r_{21} & r_{22} \end{pmatrix}$$

we have:

.

$$RR' = \begin{pmatrix} r_{11} & r_{12} \\ r_{21} & r_{22} \end{pmatrix} \begin{pmatrix} r_{11} & r_{21} \\ r_{12} & r_{22} \end{pmatrix}$$
$$= \begin{pmatrix} r_{11}^2 + r_{12}^2 & r_{11}r_{21} + r_{12}r_{22} \\ r_{11}r_{21} + r_{12}r_{22} & r_{21}^2 + r_{22}^2 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

The above equalities imply:

$$\begin{array}{rrrr} r_{11}^2+r_{12}^2&=&1,\\ r_{21}^2+r_{22}^2&=&1,\\ r_{11}r_{21}+r_{12}r_{22}&=&0. \end{array}$$

Also, the orthogonality implies

$$r_{11}r_{22} - r_{12}r_{21} = 1.$$

< □ > < 同 >

э

The equality $r_{11}r_{22} - r_{12}r_{21} = 1$ implies:

$$r_{22}(r_{11}r_{12} + r_{21}r_{22}) - r_{12}(r_{11}r_{22} - r_{12}r_{21}) = -r_{12},$$

or

$$r_{21}(r_{22}^2+r_{12}^2)=-r_{12},$$

so $r_{21} = -r_{12}$. If $r_{21} = -r_{21} = 0$, the above equalities imply that either $r_{11} = r_{22} = 1$ or $r_{11} = r_{22} = -1$. Otherwise, the equality $r_{11}r_{12} + r_{21}r_{22} = 0$ implies $r_{11} = r_{22}$.

Since $r_{11}^2 \leq 1$ it follows that there exists θ such that $r_{11} = \cos \theta$. This implies that *R* has the form

$$R = \begin{pmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{pmatrix}$$

Its effect on a vector

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{R}^2$$

is to produce the vector $\boldsymbol{y} = R\boldsymbol{x}$, where

$$\mathbf{y} = \begin{pmatrix} x_1 \cos \theta - x_2 \sin \theta \\ x_1 \sin \theta + x_2 \cos \theta \end{pmatrix},$$

which is obtained from \boldsymbol{x} by a counterclockwise rotation by the angle θ .

It is easy to see that det(R) = 1, so the term "rotation matrix" is clearly justified for R. To mark the dependency of R on θ we will use the notation

$$R(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

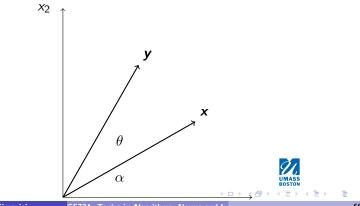
٠

If the angle of the vector $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ with the x_1 axis is α and \mathbf{x} is rotated counterclockwise by θ to yield the vector $\mathbf{y} = y_1 \mathbf{e}_1 + y_2 \mathbf{e}_2$, then $x_1 = r \cos \alpha$, $x_2 = r \sin \alpha$, and

$$y_1 = r \cos(\alpha + \theta) = r \cos \alpha \cos \theta - r \sin \alpha \sin \theta = x_1 \cos \theta - x_2 \sin \theta$$

$$y_2 = r \sin(\alpha + \theta) = r \sin \alpha \cos \theta + r \cos \alpha \sin \theta = x_1 \sin \theta + x_2 \cos \theta$$

which are the formulas that describe the transformation of \boldsymbol{x} into \boldsymbol{y} .



Definition

Let U be an *m*-dimensional subspace of \mathbb{C}^n and let $\{u_1, \ldots, u_m\}$ be an orthonormal basis of this subspace. The *orthogonal projection of the vector* $\mathbf{x} \in \mathbb{C}^n$ *on the subspace* U is the vector $\operatorname{proj}_{U}(\mathbf{x})$ given by:

$$\operatorname{proj}_U(\mathbf{x}) = (\mathbf{x}, \mathbf{u}_1)\mathbf{u}_1 + \cdots + (\mathbf{x}, \mathbf{u}_m)\mathbf{u}_m.$$

Theorem

Let U be an m-dimensional subspace of \mathbb{R}^n and let $\mathbf{x} \in \mathbb{R}^n$. The vector $\mathbf{y} = \mathbf{x} - \operatorname{proj}_U(\mathbf{x})$ belongs to the subspace U^{\perp} .

Proof.

Let $B_U = \{ u_1, \dots, u_m \}$ be an orthonormal basis of U. Note that

due to the orthogonality of the basis B_U . Therefore, **y** is orthogonal on every linear combination of B_U , that is on the subspace U.

Theorem

Let U be an m-dimensional subspace of \mathbb{C}^n having the orthonormal basis $\{u_1, \ldots, u_m\}$. The orthogonal projection proj_U is given by $proj_U(\mathbf{x}) = B_U B_U^H \mathbf{x}$ for $\mathbf{x} \in \mathbb{C}^n$, where $B_U \in \mathbb{R}^{n \times m}$ is the matrix $B_U = (\mathbf{u}_1 \cdots \mathbf{u}_m) \in \mathbb{C}^{n \times m}$.

Proof.

We can write

$$\operatorname{proj}_{U}(\boldsymbol{x}) = \sum_{i=1}^{m} \boldsymbol{u}_{i}(\boldsymbol{u}_{i}^{\mathsf{H}}\boldsymbol{x}) = (\boldsymbol{u}_{1} \cdots \boldsymbol{u}_{m}) \begin{pmatrix} \boldsymbol{u}_{1}^{\mathsf{H}} \\ \vdots \\ \boldsymbol{u}_{m}^{\mathsf{H}} \end{pmatrix} \boldsymbol{x} = B_{U}B_{U}^{\mathsf{H}}\boldsymbol{x}.$$

< ∃ →

Since the basis $\{\boldsymbol{u}_1, \ldots, \boldsymbol{u}_m\}$ is orthonormal, we have $B_U^{\mathsf{H}}B_U = I_m$. Observe that the matrix $B_U B_U^{\mathsf{H}} \in \mathbb{C}^{n \times n}$ is symmetric and idempotent because

$$(B_U B_U^{\scriptscriptstyle \mathsf{H}})(B_U B_U^{\scriptscriptstyle \mathsf{H}}) = B_U (B_U^{\scriptscriptstyle \mathsf{H}} B_U) B_U^{\scriptscriptstyle \mathsf{H}} = B_U B_U^{\scriptscriptstyle \mathsf{H}}.$$

For an *m*-dimensional subspace U of \mathbb{C}^n we denote by $P_U = B_U B_U^{\mathsf{H}} \in \mathbb{C}^{n \times n}$, where B_U is a matrix of an orthonormal basis of Uas defined before. P_U is the *projection matrix* of the subspace U.

Corollary

For every non-zero subspace U, the matrix P_U is a Hermitian matrix, and therefore, a self-adjoint matrix.

Proof.

Since $P_U = B_U B_U^H$ where B_U is a matrix of an orthonormal basis of the subspace S, it is immediate that $P_U^H = P_U$.

The self-adjointness of P_U means that $(\mathbf{x}, P_U \mathbf{y}) = (P_U \mathbf{x}, \mathbf{y})$ for every $\mathbf{x}, \mathbf{y} \in \mathbb{C}^n$.

Corollary

Let U be an m-dimensional subspace of \mathbb{C}^n having the orthonormal basis $\{u_1, \ldots, u_m\}$. If $B_U = (u_1 \cdots u_m) \in \mathbb{C}^{n \times m}$, then for every $\mathbf{x} \in \mathbb{C}$ we have the decomposition $\mathbf{x} = P_U \mathbf{x} + Q_U \mathbf{x}$, where $P_U = B_U B_U^H$ and $Q_U = I_n - P_U$, $P_U \mathbf{x} \in U$ and $Q_U \mathbf{x} \in U^{\perp}$.

Observe that

$$Q_{U}^{2} = (I_{n} - P_{U}P_{U}^{H})(I_{n} - P_{U}P_{U}^{H})$$

= $I_{n} - P_{U}P_{U}^{H} - P_{U}P_{U}^{H} + P_{U}P_{U}^{H}P_{U}P_{U}^{H} = Q_{U},$

so Q_U is an idempotent matrix. The matrix Q_U is the projection matrix on the subspace U^{\perp} . Clearly, we have

$$P_{U^{\perp}} = Q_U = I_n - P_U. \tag{5}$$

It is possible to give a direct argument for the independence of the projection matrix P_U relative to the choice of orthonormal basis in U.

4 E b

It is possible to give a direct argument for the independence of the projection matrix P_U relative to the choice of orthonormal basis in U.

Theorem

Let U be an m-dimensional subspace of \mathbb{C}^n having the orthonormal bases $\{\mathbf{u}_1, \ldots, \mathbf{u}_m\}$ and $\{\mathbf{v}_1, \ldots, \mathbf{v}_m\}$ and let $B_U = (\mathbf{u}_1 \cdots \mathbf{u}_m) \in \mathbb{C}^{n \times m}$ and $\tilde{B}_U = (\mathbf{v}_1 \cdots \mathbf{v}_m) \in \mathbb{C}^{n \times m}$. The matrix $B_U^H \tilde{B}_U \in \mathbb{C}^{m \times m}$ is unitary and $\tilde{B}_U \tilde{B}_U^H = B_U B_U^H$.

Proof

Since the both sets of columns of B_U and \tilde{B}_U are bases for U, there exists a unique square matrix $Q \in \mathbb{C}^{m \times m}$ such that $B_U = \tilde{B}_U Q$. The orthonormality of B_U and \tilde{B}_U implies $B_U^{\mathsf{H}} B_U = \tilde{B}_U^{\mathsf{H}} \tilde{B}_U = I_m$. Thus, we can write

$$I_m = B_U^{\mathsf{H}} B_U = Q^{\mathsf{H}} \tilde{B}_U^{\mathsf{H}} \tilde{B}_U Q = Q^{\mathsf{H}} Q,$$

which shows that Q is unitary. Furthermore, $B_U^{\rm H}\tilde{B}_U = Q^{\rm H}\tilde{B}_U^{\rm H}\tilde{B}_U = Q^{\rm H}$ is unitary and

$$B_U B_U^{\mathsf{H}} = \tilde{B}_U Q Q^{\mathsf{H}} \tilde{B}_U^{\mathsf{H}} = \tilde{B}_U \tilde{B}_U^{\mathsf{H}}.$$

- ∢ ⊒ →

Definition

A matrix $A \in \mathbb{C}^{n \times n}$ is *positive definite* if $\mathbf{x}^{\mathsf{H}}A\mathbf{x}$ is a real positive number for every $\mathbf{x} \in \mathbb{C}^n - \{\mathbf{0}\}$.

< 47 ▶

Theorem

If $A \in \mathbb{C}^{n \times n}$ is positive definite, then A is Hermitian.

Proof.

Let $A \in \mathbb{C}^{n \times n}$ be a matrix. Since $\mathbf{x}^{H}A\mathbf{x}$ is a real number it follows that it equals its conjugate, so $\mathbf{x}^{H}A\mathbf{x} = \mathbf{x}^{H}A^{H}\mathbf{x}$ for every $\mathbf{x} \in \mathbb{C}^{n}$. Therefore, there exists a unique pair of Hermitian matrices H_{1} and H_{2} such that $A = H_{1} + iH_{2}$, which implies $A^{H} = H_{1}^{H} - iH_{2}^{H}$. Thus, we have

$$\mathbf{x}^{\mathsf{H}}(H_1+iH_2)\mathbf{x} = \mathbf{x}^{\mathsf{H}}(H_1^{\mathsf{H}}-iH_2^{\mathsf{H}})\mathbf{x} = \mathbf{x}^{\mathsf{H}}(H_1-iH_2)\mathbf{x},$$

because H_1 and H_2 are Hermitian. This implies $\mathbf{x}^H H_2 \mathbf{x} = 0$ for every $\mathbf{x} \in \mathbb{C}^n$, which, in turn, implies $H_2 = O_{n,n}$. Consequently, $A = H_1$, so A is indeed Hermitian.

Definition

A matrix $A \in \mathbb{C}^{n \times n}$ is *positive semidefinite* if $\mathbf{x}^{\mathsf{H}}A\mathbf{x}$ is a non-negative real number for every $\mathbf{x} \in \mathbb{C}^n - \{\mathbf{0}\}$.

Positive definiteness (positive semidefiniteness) is denoted by $A \succ 0$ ($A \succeq 0$, respectively).

< ∃ →

The definition of positive definite (semidefinite) matrix can be specialized for real matrices as follows.

Definition

A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is *positive definite* if $\mathbf{x}' A \mathbf{x} > 0$ for every $\mathbf{x} \in \mathbb{R}^n - \{\mathbf{0}\}$. If A satisfies the weaker inequality $\mathbf{x}' A \mathbf{x} \ge 0$ for every $\mathbf{x} \in \mathbb{R}^n - \{\mathbf{0}\}$, then we say that A is *positive semidefinite*. $A \succ 0$ denotes that A is positive definite and $A \succeq 0$ means that A is positive semidefinite.

Note that in the case of real-valued matrices we need to require explicitly the symmetry of the matrix because, unlike the complex case, the inequality $\mathbf{x}' A \mathbf{x} > 0$ for $\mathbf{x} \in \mathbb{R}^n - {\mathbf{0}_n}$ does *not* imply the symmetry of A. For example, consider the matrix

$$\mathsf{A} = \begin{pmatrix} \mathsf{a} & \mathsf{b} \\ -\mathsf{b} & \mathsf{a} \end{pmatrix},$$

where $a, b \in \mathbb{R}$ and a > 0. We have

$$\mathbf{x}' A \mathbf{x} = (x_1 \ x_2) \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = a(x_1^2 + x_2^2) > 0$$

if $\mathbf{x} \neq \mathbf{0}_2$.

Example

The symmetric real matrix

$$A = \begin{pmatrix} a & b \\ b & c \end{pmatrix}$$

is positive definite if and only if a > 0 and $b^2 - ac < 0$. Indeed, we have $\mathbf{x}'A\mathbf{x} > 0$ for every $\mathbf{x} \in \mathbb{R}^2 - \{\mathbf{0}\}$ if and only if $ax_1^2 + 2bx_1x_2 + cx_2^2 > 0$, where $\mathbf{x}' = (x_1 \ x_2)$; elementary algebra considerations lead to a > 0 and $b^2 - ac < 0$.

A positive definite matrix is non-singular. Indeed, if $A\mathbf{x} = \mathbf{0}$, where $A \in \mathbb{R}^{n \times n}$ is positive definite, then $\mathbf{x}^{\mathsf{H}}A\mathbf{x} = 0$, so $\mathbf{x} = \mathbf{0}$. Therefore, A is non-singular.

Example

If $A \in \mathbb{C}^{m \times n}$, then the matrices $A^{H}A \in \mathbb{C}^{n \times n}$ and $AA^{H} \in \mathbb{C}^{m \times m}$ are positive semidefinite. For $\mathbf{x} \in \mathbb{C}^{n}$ we have

$$\mathbf{x}^{\mathsf{H}}(A^{\mathsf{H}}A)\mathbf{x} = (\mathbf{x}^{\mathsf{H}}A^{\mathsf{H}})(A\mathbf{x}) = (A\mathbf{x})^{\mathsf{H}}(A\mathbf{x}) = \parallel A\mathbf{x} \parallel_2^2 \geq 0.$$

The argument for AA^{H} is similar. If rank(A) = n, then the matrix $A^{H}A$ is positive definite because $\mathbf{x}^{H}(A^{H}A)\mathbf{x} = 0$ implies $A\mathbf{x} = \mathbf{0}$, which, in turn, implies $\mathbf{x} = \mathbf{0}$.

Theorem

If $A \in \mathbb{C}^{n \times n}$ is a positive definite matrix, then any principal submatrix $B = A \begin{bmatrix} i_1 & \cdots & i_k \\ i_1 & \cdots & i_k \end{bmatrix}$ is a positive definite matrix.

Proof.

Let $\mathbf{x} \in \mathbb{C}^n - \{\mathbf{0}\}$ be a vector such that all components located on positions other than i_1, \ldots, i_k equal 0 and let $\mathbf{y} = \mathbf{x} \begin{bmatrix} i_1 \cdots i_k \\ 1 \end{bmatrix} \in \mathbb{C}^k$ be the vector obtained from \mathbf{x} by retaining only the components located on positions i_1, \ldots, i_k . Since $\mathbf{y}^{\mathsf{H}}B\mathbf{y} = \mathbf{x}^{\mathsf{H}}A\mathbf{x} > 0$ it follows that $B \succ 0$.

Corollary

If $A \in \mathbb{C}^{n \times n}$ is a positive definite matrix, then any diagonal element a_{ii} is a real positive number for $1 \leq i \leq n$.

Theorem

If $A, B \in \mathbb{C}^{n \times n}$ are two positive semidefinite matrices and a, b are two non-negative numbers, then $aA + bB \succeq 0$.

Proof.

The statement holds because $\mathbf{x}^{H}(aA + bB)\mathbf{x} = a\mathbf{x}^{H}A\mathbf{x} + b\mathbf{x}^{H}B\mathbf{x} \ge 0$, due to the fact that A and B are positive semidefinite.

Definition

Let $L = (\mathbf{v}_1, \dots, \mathbf{v}_m)$ be a sequence of vectors in \mathbb{R}^n . The *Gram matrix of L* is the matrix

$$G_L = (g_{ij}) \in \mathbb{R}^{m imes m}$$

defined by $g_{ij} = \mathbf{v}'_i \mathbf{v}_j$ for $1 \leq i, j \leq m$.

If $A_L = (\mathbf{v}_1 \cdots \mathbf{v}_m) \in \mathbb{R}^{n \times m}$, then $G_L = A'_L A_L$. Also, note that G_L is a symmetric matrix.

Example

Let

$$\mathbf{v}_1 = \begin{pmatrix} 1\\ 0\\ -1 \end{pmatrix}, \mathbf{v}_2 = \begin{pmatrix} 1\\ 2\\ 2 \end{pmatrix}, \mathbf{v}_3 = \begin{pmatrix} 2\\ 1\\ 0 \end{pmatrix}.$$

The Gram matrix of the set $L = \{ \boldsymbol{v}_1, \boldsymbol{v}_2, \boldsymbol{v}_3 \}$ is

$$G_L = egin{pmatrix} 2 & -1 & 2 \ -1 & 9 & 4 \ 2 & 4 & 5 \end{pmatrix}$$

Note that $det(G_L) = 1$.

< ロ > < 同 > < 回 > < 回 >

э

Theorem

Let $L = (\mathbf{v}_1, \dots, \mathbf{v}_m)$ be a sequence of m vectors in \mathbb{R}^n , where $m \leq n$. If L is linearly independent, then the Gram matrix G_L is positive definite.

Proof.

Suppose that *L* is linearly independent. Let $\mathbf{x} \in \mathbb{R}^m$. We have $\mathbf{x}'G_L\mathbf{x} = \mathbf{x}'A'_LA_L\mathbf{x} = (A_L\mathbf{x})'A_L\mathbf{x} = ||A_L\mathbf{x}||_2^2$. Therefore, if $\mathbf{x}'G_L\mathbf{x} = 0$, we have $A_L\mathbf{x} = \mathbf{0}$, which is equivalent to $x_1\mathbf{v}_1 + \cdots + x_n\mathbf{v}_n = 0$. Since $\{\mathbf{v}_1, \ldots, \mathbf{v}_m\}$ is linearly independent it follows that $x_1 = \cdots = x_m = 0$, so $\mathbf{x} = \mathbf{0}$. Thus, *A* is indeed, positive definite.

The Gram matrix of an arbitrary sequence of vectors is positive semidefinite, as the reader can easily verify.

Definition

Let $L = (\mathbf{v}_1, \dots, \mathbf{v}_m)$ be a sequence of m vectors in \mathbb{R}^n , where $m \leq n$. The *Gramian* of L is the number det (G_L) .

Theorem

If $L = (\mathbf{v}_1, \dots, \mathbf{v}_m)$ is a sequence of m vectors in \mathbb{R}^n . Then, L is linearly independent if and only if $\det(G_L) \neq 0$.

Proof.

Suppose that det(G_L) $\neq 0$ and that L is not linearly independent. In other words, the numbers a_1, \ldots, a_m exists such that at least one of them is not 0 and $a_1\mathbf{x}_1 + \cdots + a_m\mathbf{x}_m = \mathbf{0}$. This implies the equalities

$$a_1(\boldsymbol{x}_1, \boldsymbol{x}_j) + \cdots + a_m(\boldsymbol{x}_m, \boldsymbol{x}_j) = \boldsymbol{0},$$

for $1 \leq j \leq m$, so the system $G_L a = 0$ has a non-trivial solution in a_1, \ldots, a_m . This implies det $(G_L) = 0$, which contradicts the initial assumption.

Proof cont'd

Conversely, suppose that L is linearly independent and $det(G_L) = 0$. Then, the linear system

$$a_1(\mathbf{x}_1,\mathbf{x}_j)+\cdots+a_m(\mathbf{x}_m,\mathbf{x}_j)=\mathbf{0},$$

for $1 \leq j \leq m$, has a non-trivial solution in a_1, \ldots, a_m . If $\boldsymbol{w} = a_1 \boldsymbol{x}_1 + \cdots + a_m \boldsymbol{x}_m$, this amounts to $(\boldsymbol{w}, \boldsymbol{x}_i) = 0$ for $1 \leq i \leq n$. This, in turn, implies $(\boldsymbol{w}, \boldsymbol{w}) = || \boldsymbol{w} ||_2^2 = 0$, so $\boldsymbol{w} = 0$, which contradicts the linear independence of L.

The Gram-Schmidt algorithm constructs an orthonormal basis for a subspace U of \mathbb{C}^n , starting from an arbitrary basis of $\{\boldsymbol{u}_1, \ldots, \boldsymbol{u}_m\}$ of U. The orthonormal basis is constructed sequentially such that $\langle \boldsymbol{w}_1, \ldots, \boldsymbol{w}_k \rangle = \langle \boldsymbol{u}_1, \ldots, \boldsymbol{u}_k \rangle$ for $1 \leq k \leq m$.

Notations

U(:, 1:k) is the matrix $(\boldsymbol{u}_1, \ldots, \boldsymbol{u}_k)$ that contains the first k vectors of the existing basis.

W(:, 1:k) the matrix $(\boldsymbol{w}_1, \ldots, \boldsymbol{w}_k)$ that contains the first k vectors of the new orthonormal basis.

Gram-Schmidt Orthogonalization Algorithm

Data: A basis $\{u_1, ..., u_m\}$ for a subspace U of \mathbb{C}^n **Result:** An orthonormal basis $\{w_1, ..., w_m\}$ for U $W = O_{n,m}$ $W(:, 1) = W(:, 1) + \frac{1}{\|U(:,1)\|_2}U(:, 1)$ **For** (k = 2 to m) { $P = I_n - W(:, 1: (k - 1))W(:, 1: (k - 1))^H$ $W(:, k) = W(:, k) + \frac{1}{\|PU(:,k)\|_2}PU(:, k)$ }

Return $W = (\boldsymbol{w}_1 \cdots \boldsymbol{w}_m)$

Theorem

Let $(\mathbf{w}_1, \ldots, \mathbf{w}_m)$ be the sequence of vectors constructed by the Gram-Schmidt algorithm starting from the basis $\{\mathbf{u}_1, \ldots, \mathbf{u}_m\}$ of an *m*-dimensional subspace U of \mathbb{C}^n . The set $\{\mathbf{w}_1, \ldots, \mathbf{w}_m\}$ is an orthogonal basis of U and $\langle \mathbf{w}_1, \ldots, \mathbf{w}_k \rangle = \langle \mathbf{u}_1, \ldots, \mathbf{u}_k \rangle$ for $1 \leq k \leq m$.

Proof

In the algorithm the matrix W is initialized as $O_{n,m}$. Its columns will contain eventually the vectors of the orthonormal basis $\boldsymbol{w}_1, \ldots, \boldsymbol{w}_m$. The argument is by induction on $k \ge 1$.

The base case, k = 1, is immediate.

Suppose that the statement of the theorem holds for k, that is, the set $\{\boldsymbol{w}_1, \ldots, \boldsymbol{w}_k\}$ is an orthonormal basis for $U_k = \langle \boldsymbol{u}_1, \ldots, \boldsymbol{u}_k \rangle$ and constitutes the set of the initial k columns of the matrix W, that is, $W_k = W(:, 1:k)$. Then,

$$P_k = I_n - W_k W_k^{\rm H}$$

is the projection matrix on the subspace U_k^{\perp} , so $P_k \boldsymbol{u}_k$ is orthogonal on every \boldsymbol{w}_i , where $1 \leq i \leq k$. Therefore, $\boldsymbol{w}_{k+1} = W(:, (k+1))$ is a unit vector orthogonal on all its predecessors $\boldsymbol{w}_1, \ldots, \boldsymbol{w}_k$, so $\{\boldsymbol{w}_1, \ldots, \boldsymbol{w}_m\}$ is an orthonormal set.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ●

Proof cont'd

The equality $\langle \boldsymbol{u}_1, \ldots, \boldsymbol{u}_k \rangle = \langle \boldsymbol{w}_1, \ldots, \boldsymbol{w}_k \rangle$ clearly holds for k = 1. Suppose that it holds for k. Then, we have

Since $\boldsymbol{w}_1, \ldots, \boldsymbol{w}_k$ belong to the subspace $\langle \boldsymbol{u}_1, \ldots, \boldsymbol{u}_k \rangle$ (by inductive hypothesis), it follows that $\boldsymbol{w}_{k+1} \in \langle \boldsymbol{u}_1, \ldots, \boldsymbol{u}_k, \boldsymbol{u}_{k+1} \rangle$, so $\langle \boldsymbol{w}_1, \ldots, \boldsymbol{w}_{k+1} \rangle \subseteq \langle \boldsymbol{u}_1, \ldots, \boldsymbol{u}_k \rangle$.

< ∃ > < ∃ >

For the converse inclusion, since

$$\boldsymbol{u}_{k+1} = \parallel P_k \boldsymbol{u}_{k+1} \parallel_2 \boldsymbol{w}_{k+1} + (\boldsymbol{w}_1 \cdots \boldsymbol{w}_k) W_k^{\mathsf{H}} \boldsymbol{u}_{k+1},$$

it follows that
$$\boldsymbol{u}_{k+1} \in \langle \boldsymbol{w}_1, \dots, \boldsymbol{w}_k, \boldsymbol{w}_{k+1} \rangle$$
. Thus,
 $\langle \boldsymbol{u}_1, \dots, \boldsymbol{u}_k, \boldsymbol{u}_{k+1} \rangle \subseteq \langle \boldsymbol{w}_1, \dots, \boldsymbol{w}_k, \boldsymbol{w}_{k+1} \rangle$.

э

Example

Let $A \in \mathbb{R}^{3 \times 2}$ be the matrix

$$\mathsf{A}=egin{pmatrix}1&1\0&0\1&3\end{pmatrix}.$$

It is easy to see that rank(A) = 2. We have { u_1, u_2 } $\subseteq \mathbb{R}^3$ and we construct an orthogonal basis for the subspace generated by these columns. The matrix W is initialized to $O_{3,2}$.

Example cont'd

we begin by defining

$$oldsymbol{w}_1 = rac{1}{\paralleloldsymbol{u}_1\parallel_2}oldsymbol{u}_1 = egin{pmatrix}rac{\sqrt{2}}{2}\\0\\rac{\sqrt{2}}{2}\end{pmatrix},$$

SO

$$W = egin{pmatrix} rac{\sqrt{2}}{2} & 0 \ 0 & 0 \ rac{\sqrt{2}}{2} & 0 \end{pmatrix},$$

The projection matrix is

$$P = I_3 - W(:,1)W(:,1)' = I_3 - w_1w_1' = \begin{pmatrix} \frac{1}{2} & 0 & -\frac{1}{2} \\ 0 & 1 & 0 \\ -\frac{1}{2} & 0 & \frac{1}{2} \\ & & & \\ \end{pmatrix}.$$

э

< 同 > < 国 > < 国 >

The projection of \boldsymbol{u}_2 is

$$P \boldsymbol{u}_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$

and the second column of \boldsymbol{W} becomes

$$\mathbf{w}_{k} = W(:,2) = \frac{\|P\mathbf{u}_{2}\|_{2}}{P}\mathbf{u}_{2} = \begin{pmatrix} -\frac{\sqrt{2}}{2}\\ 0\\ \frac{\sqrt{2}}{2} \end{pmatrix}$$

< □ > < 同 >

.

Thus, the orthonormal basis we are seeking consists of the vectors

$$\begin{pmatrix} \frac{\sqrt{2}}{2} \\ 0 \\ \frac{\sqrt{2}}{2} \end{pmatrix} \text{ and } \begin{pmatrix} -\frac{\sqrt{2}}{2} \\ 0 \\ \frac{\sqrt{2}}{2} \end{pmatrix}.$$

<ロト < 同ト < ヨト < ヨト

We describe a factorization algorithm for rectangular matrices which allows us to express a matrix as a product of a rectangular matrix with orthogonal columns and un upper triangular invertible matrix (the *thin QR factorization*).

Theorem

(The Thin QR Factorization Theorem) Let $A \in \mathbb{C}^{m \times n}$ be a full-rank matrix such that $m \ge n$. Then, A can be factored as A = QR, where $Q \in \mathbb{C}^{m \times n}$, $R \in \mathbb{C}^{n \times n}$ such that

- the columns of Q constitute an orthonormal basis for range(A), and
- $R = (r_{ij})$ is an upper triangular invertible matrix such that its diagonal elements are real non-negative numbers, that is, $r_{ii} \ge 0$ for $1 \le i \le n$.

Let u_1, \ldots, u_n be the columns of A. Since rank(A) = n, these columns constitute a basis for range(A). Starting from this set of columns construct an orthonormal basis w_1, \ldots, w_n for the subspace range(A) using the Gram-Schmidt algorithm. Define Q as the orthogonal matrix

$$Q=(\boldsymbol{w}_1 \cdots \boldsymbol{w}_n).$$

By the properties of the Gram-Schmidt algorithm we have $\langle \boldsymbol{u}_1, \ldots, \boldsymbol{u}_k \rangle = \langle \boldsymbol{w}_1, \ldots, \boldsymbol{w}_k \rangle$ for $1 \leq k \leq n$, so it is possible to write

$$\mathbf{u}_{k} = \mathbf{r}_{1k}\mathbf{w}_{1} + \dots + \mathbf{r}_{kk}\mathbf{w}_{k}$$
$$= (\mathbf{w}_{1} \cdots \mathbf{w}_{n})\begin{pmatrix}\mathbf{r}_{1k}\\\vdots\\\mathbf{r}_{kk}\\0\\\vdots\\0\end{pmatrix} = Q\begin{pmatrix}\mathbf{r}_{1k}\\\vdots\\\mathbf{r}_{kk}\\0\\\vdots\\0\end{pmatrix}$$

We may assume that $r_{kk} \ge 0$; otherwise, that is, if $r_{kk} < 0$, replace \boldsymbol{w}_k by $-\boldsymbol{w}_k$. Clearly, this does not affect the orthonormality of the set $\{\boldsymbol{w}_1, \ldots, \boldsymbol{w}_n\}$. It is clear that rank(Q) = n. Therefore, since rank $(A) \le \min\{\operatorname{rank}(Q), \operatorname{rank}(R)\}$, it follows that rank(R) = n, so R is an invertible matrix. Therefore, we have $r_{kk} > 0$ for $1 \le k \le n$.

Example

Let us determine a QR factorization for the matrix

$$\mathsf{A} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \\ 1 & 3 \end{pmatrix}$$

which has rank 2. We constructed an orthonormal basis for range(A) that consists of the vectors

$$\boldsymbol{w}_1 = \begin{pmatrix} rac{1}{\sqrt{2}} \\ 0 \\ rac{1}{\sqrt{2}} \end{pmatrix}$$
 and $\boldsymbol{w}_2 = \begin{pmatrix} -rac{1}{\sqrt{2}} \\ 0 \\ rac{1}{\sqrt{2}} \end{pmatrix}$.

< ∃⇒

Example cont'd

Thus, the orthogonal matrix Q is

$$Q = egin{pmatrix} rac{1}{\sqrt{2}} & -rac{1}{\sqrt{2}} \ 0 & 0 \ rac{1}{\sqrt{2}} & rac{1}{\sqrt{2}} \end{pmatrix}.$$

To compute *R* we need to express u_1 and u_2 as linear combinations of w_1 and w_2 . Since

$$u_1 = \sqrt{2}w_1$$

$$u_2 = 2\sqrt{2}w_1 + \sqrt{2}w_2$$

the matrix R is

$$R = \begin{pmatrix} \sqrt{2} & 2\sqrt{2} \\ 0 & \sqrt{2} \end{pmatrix}.$$

Vector norms can be computed using the function norm which comes in two signatures: norm(v) and norm(v,p). The first variant computes $\| \mathbf{v} \|_2$; the second computes $\| \mathbf{v} \|_p$ for any $p, 1 \leq p \leq \infty$. In addition, norm(v,inf) computes $\| \mathbf{v} \|_{\infty} = \max\{|v_i| \mid 1 \leq i \leq n\}$, where $\mathbf{v} \in \mathbb{R}^n$. If one uses $-\infty$ as the second parameter, then norm(v,-inf) returns $\min\{|v_i| \mid 1 \leq i \leq n\}$.

Example						1
For the vector						
v = [2 -3 5	-4]					
the computati	ion					l
<pre>norms = [norm(v,1),norm(v,2),norm(v,2.5),norm(v,inf),norm(v,-inf)]</pre>						l
returns						l
norms =						
14.0000	7.3485	6.5344	5.0000	2.0000		
					(E) E • ● Q (C)	2
Prof Dan A Si	mautat C	S724: Topics in Ale		ad In	111 / 117	,

For matrices whose norm is expensive to compute, an approximative estimation of $||A||_2$ can be performed using the function normest(A), or normest(A,r), where r is the relative error; the default for r is 10^{-6} . The following function implements the Gram-Schmidt algorithm.

```
function [W] = gram(U)
%GRAM implements the classical Gram-Schmidt algorithm
[n,m] = size(U);
W = zeros(n,m);
W(:,1)= (1/norm(U(:,1)))*U(:,1);
for k = 2:1:m
        P = eye(n) - W*W';
        W(:,k) = W(:,k) + (1/norm(P*U(:,k)))* P*U(:,k);
end
end
```


Theorem (Cholesky Decomposition Theorem)

Let $A \in \mathbb{C}^{n \times n}$ be a Hermitian positive definite matrix. There exists a unique upper triangular matrix R with real positive diagonal elements such that $A = R^{H}R$.

Corollary

If $A \in \mathbb{C}^{n \times n}$ is a Hermitian positive definite matrix, then det(A) is a real positive number.

The Cholesky decomposition of a Hermitian positive definite matrix is computed in MATLAB using the function chol. The function call R = chol(A) returns an upper triangular matrix R, satisfying the equation $R^{H}R = A$. If A is not positive definite an error message is generated. The matrix R is computed using the diagonal and the upper triangle of A and the computation makes sense only if A is Hermitian.

Example

Let A be the symmetric positive definite matrix

$$A = \begin{pmatrix} 3 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 1 & 2 \end{pmatrix}$$

Then, R = chol(A) yields

R =

1.7321	0	1.1547
0	1.4142	0.7071
0	0	0.4082

< □ > < A >

The call L = chol(A, 'lower') returns a lower triangular matrix L from the diagonal and lower triangle of matrix A, satisfying the equation $LL^{H} = A$. When A is sparse, this syntax of chol is faster.

Example

For the same matrix A L = chol(A, 'lower') returns

L =			
1.7321	0	0	
0	1.4142	0	
1.1547	0.7071	0.4082	

For added flexibility, [R,p] = chol(A) and [L,p] = chol(A, 'lower')set p to 0 if A is positive definite and to a positive number, otherwise, without returning an error message.

The thin QR decomposition of a matrix $A \in \mathbb{C}^{m \times n}$ is obtained using the function qr as in

[Q R] = qr(A)

To obtain the full decomposition we write

[Q R] = qr(A,0)

