CS724: Topics in Algorithms
Norms and Inner Products - II
Slide Set 5

Prof. Dan A. Simovici
1. Vector Norms for Matrices
2. Operatorial Norms for Matrices
3. Inner Products
4. Hyperplanes in \mathbb{R}^n
5. Unitary and Orthogonal Matrices
6. Projection on Subspaces
7. Positive Definite and Positive Semidefinite Matrices
8. The Gram-Schmidt Orthogonalization Algorithm
9. The QR Factorization of Matrices
10. MATLAB Computations
The set $\mathbb{C}^{m \times n}$ is a linear space. Therefore, it is natural to consider norms defined on matrices. We discuss two basic methods for defining norms for matrices.

- The first approach treats matrices as vectors (through the vec mapping).
- The second, regards matrices as representations of linear operators, and defined norms for matrices starting from operator norms.
Definition

The \((m \times n)\)-vectorization mapping is the mapping \(\text{vec} : \mathbb{C}^{m \times n} \rightarrow \mathbb{C}^{mn}\) defined by

\[
\text{vec}(A) = \begin{pmatrix}
 a_{11} \\
 \vdots \\
 a_{m1} \\
 \vdots \\
 a_{1n} \\
 \vdots \\
 a_{mn}
\end{pmatrix},
\]

obtained by reading \(A\) column-wise.
The following equality is immediate for a matrix $A \in \mathbb{C}^{m \times n}$:

$$\text{vec}(A) = \begin{pmatrix} Ae_1 \\ Ae_2 \\ \vdots \\ Ae_n \end{pmatrix}.$$

The vectorization mapping vec is an isomorphism between the linear space $\mathbb{C}^{m \times n}$ and the linear space \mathbb{C}^{mn}, as can be easily verified.
Example

For the matrix I_n we have

$$\text{vec}(I_n) = \begin{pmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \end{pmatrix}.$$
Definition

Let ν be a vector norm on the space \mathbb{R}^{mn}. The vectorial matrix norm $\mu^{(m,n)}$ on $\mathbb{R}^{m \times n}$ is the mapping $\mu^{(m,n)} : \mathbb{R}^{m \times n} \rightarrow \mathbb{R}_{\geq 0}$ defined by

$$\mu^{(m,n)}(A) = \nu(\text{vec}(A)),$$

for $A \in \mathbb{R}^{m \times n}$.

Vectorial norms of matrices are defined without regard for matrix products.
Theorem

If $f : \mathbb{C}^m \rightarrow \mathbb{C}^n$ is a linear operator, ν and ν' are norms on \mathbb{C}^m and \mathbb{C}^n, respectively, there exists a non-negative constant such that

$$\nu'(f(x)) \leq M\nu(x)$$

for every $x \in \mathbb{C}^m$.
Definition

Let $f : \mathbb{C}^m \rightarrow \mathbb{C}^n$ be a linear operator, and let ν and ν' be norms on \mathbb{C}^m and \mathbb{C}^n, respectively. The **operatorial norm** of f is the number

$$\mu(f) = \inf\{ M \in \mathbb{R}_{\geq 0} \mid \nu'(f(x)) \leq M \nu(x) \text{ for every } x \in \mathbb{C}^m \}.$$
Theorem

The mapping ν is a norm on the space of linear operators $\text{Hom}(\mathbb{C}^m, \mathbb{C}^n)$. Since μ depends on both ν and ν' it is denoted by $N(\nu, \nu')$.
Theorem

Let \(f : \mathbb{C}^m \rightarrow \mathbb{C}^n \) and \(g : \mathbb{C}^n \rightarrow \mathbb{C}^p \) be two linear operators and let \(\nu, \nu', \nu'' \) be norms on \(\mathbb{C}^m, \mathbb{C}^n \) and \(\mathbb{C}^p \), respectively. Define \(\mu = N(\nu, \nu') \), \(\mu' = N(\nu', \nu'') \), and \(\mu'' = N(\nu, \nu'') \). We have

\[
\mu''(gf) \leq \mu(f)\mu'(g).
\]
Proof

For $x \in \mathbb{C}^m$ we have $\nu'(f(x)) \leq (\mu(f) + \epsilon')\nu(x)$ for every $\epsilon' > 0$. Similarly, for $y \in \mathbb{C}^n$ we have $\nu''(g(y)) \leq (\mu'(g) + \epsilon'')\nu'(y)$ for every $\epsilon'' > 0$. These inequalities imply

$$\nu''(g(f(x))) \leq (\nu'(g) + \epsilon'')\nu'(f(x)) \leq (\nu'(g) + \epsilon'')(\nu(f(x)) + \epsilon')\nu(x),$$

hence

$$\mu''(gf) \leq (\mu'(g) + \epsilon'')\mu'(f) + \epsilon')$$

for every ϵ' and ϵ'', hence $\mu''(gf) \leq \mu(f)\mu'(g)$.
A consistent family of matrix norms is a family of functions \(\mu^{(m,n)} : \mathbb{C}^{m \times n} \rightarrow \mathbb{R}_{\geq 0} \), where \(m, n \in \mathbb{P} \) that satisfies the following conditions:

- \(\mu^{(m,n)}(A) = 0 \) if and only if \(A = O_{m,n} \);
- \(\mu^{(m,n)}(A + B) \leq \mu^{(m,n)}(A) + \mu^{(m,n)}(B) \) (the subadditivity property);
- \(\mu^{(m,n)}(aA) = |a| \mu^{(m,n)}(A) \);
- \(\mu^{(m,p)}(AB) \leq \mu^{(m,n)}(A) \mu^{(n,p)}(B) \) for every matrix \(A \in \mathbb{R}^{m \times n} \) and \(B \in \mathbb{R}^{n \times p} \) (the submultiplicativity property).

If the format of the matrix \(A \) is clear from context or is irrelevant, then we shall write \(\mu(A) \) instead of \(\mu^{(m,n)}(A) \).
Example

Let $P \in \mathbb{C}^{n \times n}$ be an idempotent matrix, that is, a matrix P such that $P^2 = P$. If μ is a matrix norm, then either $\mu(P) = 0$ or $\mu(P) \geq 1$. Indeed, since P is idempotent we have $\mu(P) = \mu(P^2)$. By the submultiplicative property, $\mu(P^2) \leq (\mu(P))^2$, so $\mu(P) \leq (\mu(P))^2$. Consequently, if $\mu(P) \neq 0$, then $\mu(P) \geq 1$.
Some vectorial matrix norms turn out to be actual matrix norms; others fail to be matrix norms. This point is illustrated by the next examples.
Example

Consider the vectorial matrix norm μ_1 induced by the vector norm ν_1. We have $\mu_1(A) = \sum_{i=1}^{n} \sum_{j=1}^{m} |a_{ij}|$ for $A \in \mathbb{R}^{m \times n}$. Actually, this is a matrix norm. To prove this fact consider the matrices $A \in \mathbb{R}^{m \times p}$ and $B \in \mathbb{R}^{p \times n}$. We have:

$$\mu_1(AB) = \left| \sum_{i=1}^{m} \sum_{j=1}^{n} \sum_{k=1}^{p} a_{ik} b_{kj} \right| \leq \sum_{i=1}^{m} \sum_{j=1}^{n} \sum_{k=1}^{p} \left| a_{ik} b_{kj} \right|$$

$$\leq \sum_{i=1}^{m} \sum_{j=1}^{n} \sum_{k'=1}^{p} \sum_{k''=1}^{p} \left| a_{ik'} \right| \left| b_{k''j} \right|$$

(because we added extra non-negative terms to the sums)

$$= \left(\sum_{i=1}^{m} \sum_{k'=1}^{p} \left| a_{ik'} \right| \right) \cdot \left(\sum_{j=1}^{n} \sum_{k''=1}^{p} \left| b_{k''j} \right| \right)$$

$$= \mu_1(A) \mu_1(B).$$

We denote this vectorial matrix norm by the same notation as the corresponding vector norm, that is, by $\|A\|_1$.
The vectorial norm μ_2 (also known as the *Frobenius norm*) is induced by the vector norm ν_2. It is also a matrix norm. Indeed, we have

\[
(\mu_2(AB))^2 = \sum_{i=1}^{m} \sum_{j=1}^{n} \left| \sum_{k=1}^{p} a_{ik} b_{kj} \right|^2
\]

\[
\leq \sum_{i=1}^{m} \sum_{j=1}^{n} \left(\sum_{k=1}^{p} |a_{ik}|^2 \sum_{\ell=1}^{p} |b_{\ell j}|^2 \right)
\]

(by Cauchy-Schwarz Inequality)

\[
\leq (\mu_2(A))^2 (\mu_2(B))^2.
\]

$\mu_2(A)$ is denoted also by $\| A \|_F$ (F from Frobenius).
Example

For real matrices we have $\|A\|_F^2 = \text{trace}(AA') = \text{trace}(A'A)$.

For complex matrices the corresponding equality is

$$\|A\|_F^2 = \text{trace}(AA^H) = \text{trace}(A^HA).$$

Note that $\|A^H\|_F^2 = \|A\|_F^2$ for every A.
Example

The vectorial norm μ_∞ induced by the vector norm ν_∞ is denoted by $\|A\|_\infty$ and is given by

$$\|A\|_\infty = \max_{i,j} |a_{ij}|$$

for $A \in \mathbb{C}^{n\times n}$. This is not a matrix norm. Indeed, let a, b be two positive numbers and consider the matrices

$$A = \begin{pmatrix} a & a \\ a & a \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} b & b \\ b & b \end{pmatrix}.$$

We have $\|A\|_\infty = a$ and $\|B\|_\infty = b$. However, since

$$AB = \begin{pmatrix} 2ab & 2ab \\ 2ab & 2ab \end{pmatrix},$$

we have $\|AB\|_\infty = 2ab$ and the submultiplicative property of matrix norms is violated.
Theorem

Let μ be the matrix norm on $\mathbb{C}^{n\times n}$ induced by the vector norm ν. We have $\nu(Au) \leq \mu(A)\nu(u)$ for every $u \in \mathbb{C}^n$.

Proof.

The inequality is obviously satisfied when $u = 0_n$. Therefore, we may assume that $u \neq 0_n$ and let $x = \frac{1}{\nu(u)}u$. Clearly, $\nu(x) = 1$ and

$$\nu \left(A \frac{1}{\nu(u)}u \right) \leq \mu(A)$$

for every $u \in \mathbb{C}^n - \{0_n\}$. This implies immediately the desired inequality.
If μ is a matrix norm induced by a vector norm on \mathbb{R}^n, then $\mu(I_n) = \sup\{\nu(I_nx) \mid \nu(x) \leq 1\} = 1$. This necessary condition can be used for identifying matrix norms that are not induced by vector norms. The operator matrix norm induced by the vector norm $\| \cdot \|_p$ is denoted by $\| \cdot \|_p$.

Example

To compute $\|A\|_1 = \sup\{\|Ax\|_1 \mid \|x\|_1 \leq 1\}$, where $A \in \mathbb{R}^{n \times n}$, suppose that the columns of A are the vectors a_1, \ldots, a_n, that is

$$a_j = \begin{pmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{nj} \end{pmatrix}.$$

Let $x \in \mathbb{R}^n$ be a vector whose components are x_1, \ldots, x_n. Then, $Ax = x_1 a_1 + \cdots + x_n a_n$, so

$$\|Ax\|_1 = \|x_1 a_1 + \cdots + x_n a_n\|_1$$

$$\leq \sum_{j=1}^{n} |x_j| \|a_j\|_1$$

$$\leq \max_j \|a_j\|_1 \sum_{j=1}^{n} |x_j|$$

$$= \max_j \|a_j\|_1 \cdot \|x\|_1.$$
Example cont’d

Example

Let \(e_j \) be the vector whose components are 0 with the exception of its \(j^{th} \) component that is equal to 1. Clearly, we have \(\| e_j \|_1 = 1 \) and \(a_j = A e_j \). This, in turn implies \(\| a_j \|_1 = \| A e_j \|_1 \leq \| A \|_1 \) for \(1 \leq j \leq n \). Therefore,
\[
\max_j \| a_j \|_1 \leq \| A \|_1,
\]
so
\[
\| A \|_1 = \max_j \| a_j \|_1 = \max_j \sum_{i=1}^{n} |a_{ij}|.
\]

In other words, \(\| A \|_1 \) equals the maximum column sum of the absolute values.
Example

Consider now a matrix \(A \in \mathbb{R}^{n \times n} \). We have

\[
\| Ax \|_\infty = \max_{1 \leq i \leq n} \left| \sum_{j=1}^{n} a_{ij}x_j \right|
\]

\[
\leq \max_{1 \leq i \leq n} \sum_{j=1}^{n} |a_{ij}x_j|
\]

\[
\leq \max_{1 \leq i \leq n} \| x \|_\infty \sum_{j=1}^{n} |a_{ij}|.
\]

Consequently, if \(\| x \|_\infty \leq 1 \) we have \(\| Ax \|_\infty \leq \max_{1 \leq i \leq n} \sum_{j=1}^{n} |a_{ij}| \).

Thus, \(\| A \|_\infty \leq \max_{1 \leq i \leq n} \sum_{j=1}^{n} |a_{ij}|. \)
The converse inequality is immediate if $A = O_{n,n}$. Therefore, assume that $A \neq O_{n \times n}$, and let (a_{p1}, \ldots, a_{pn}) be any row of A that has at least one element distinct from 0. Define the vector $z \in \mathbb{R}^n$ by

$$z_j = \begin{cases} \frac{|a_{pj}|}{a_{pj}} & \text{if } a_{pj} \neq 0, \\ 1 & \text{otherwise}, \end{cases}$$

for $1 \leq j \leq n$. It is clear that $z_j \in \{-1, 1\}$ for every j, $1 \leq j \leq n$ and, therefore, $\|z\|_\infty = 1$. Moreover, we have $|a_{pj}| = a_{pj}z_j$ for $1 \leq j \leq n$. Therefore, we can write:

$$\begin{align*}
\sum_{j=1}^{n} |a_{pj}| &= \sum_{j=1}^{n} a_{pj}z_j \\
&\leq \max_{1 \leq i \leq n} \left| \sum_{j=1}^{n} a_{ij}z_j \right| \\
&= \|Az\|_\infty \leq \max\{\|Ax\|_\infty, \|x\|_\infty \leq 1\} = \|A\|_\infty.
\end{align*}$$
Example cont’d

Example

Since this holds for every row of A, it follows that

$$\max_{1 \leq i \leq n} \sum_{j=1}^{n} |a_{ij}| \leq \|A\|_\infty,$$

which proves that

$$\|A\|_\infty = \max_{1 \leq i \leq n} \sum_{j=1}^{n} |a_{ij}|.$$

In other words, $\|A\|_\infty$ equals the maximum row sum of the absolute values.
Example

Let $D = \text{diag}(d_1, \ldots, d_n) \in \mathbb{C}^{n \times n}$ be a diagonal matrix. If $x \in \mathbb{C}^n$ we have

$$Dx = \begin{pmatrix} d_1x_1 \\ \vdots \\ d_nx_n \end{pmatrix},$$

so

$$\|D\|_2 = \max\{ \|Dx\|_2 \|x\|_2 = 1 \}$$

$$= \max\{ \sqrt{(d_1x_1)^2 + \cdots + (d_nx_n)^2} \mid x_1^2 + \cdots + x_n^2 = 1 \}$$

$$= \max\{|d_i| \mid 1 \leq i \leq n\}.$$
Certain norms are invariant with respect to multiplication by unitary matrices. We refer to these norms as \textit{unitarily invariant norms}.

\textbf{Theorem}

Let $U \in \mathbb{C}^{n \times n}$ be a unitary matrix. The following statements hold:

- $\| U \mathbf{x} \|_2 = \| \mathbf{x} \|_2$ for every $\mathbf{x} \in \mathbb{C}^n$;
- $\| U \mathbf{A} \|_2 = \| \mathbf{A} \|_2$ for every $\mathbf{A} \in \mathbb{C}^{n \times p}$;
- $\| U \mathbf{A} \|_F = \| \mathbf{A} \|_F$ for every $\mathbf{A} \in \mathbb{C}^{n \times p}$.
Proof

For the first part of the theorem note that

\[\| Ux \|_2^2 = (Ux)^H Ux = x^H U^H Ux = x^H x = \| x \|_2^2, \]

because \(U^H A = I_n \).

The second part of the theorem is shown next:

\[\| UA \|_2 = \max \{ \| (UA)x \|_2 \mid \| x \|_2 = 1 \} \]
\[= \max \{ \| U(Ax) \|_2 \mid \| x \|_2 = 1 \} \]
\[= \max \{ \| Ax \|_2 \mid \| x \|_2 = 1 \} \]

(by Part (i))

\[= \| A \|_2. \]
Proof cont’d

For the Frobenius norm note that

\[\| UA \|_F = \sqrt{\text{trace}((UA)^H UA)} = \sqrt{\text{trace}(A^H U^H UA)} = \sqrt{\text{trace}(A^H A)} = \| A \|_F \]
Corollary

If $U \in \mathbb{C}^{n \times n}$ is a unitary matrix, then $\|U\|_2 = 1$.

Proof.

Since $\|U\|_2 = \sup\{ \|Ux\|_2 \mid \|x\|_2 \leq 1 \}$, we have

$$\|U\|_2 = \sup\{ \|x\|_2 \mid \|x\|_2 \leq 1 \} = 1.$$
Corollary

Let $A, U \in \mathbb{C}^{n \times n}$. If U is an unitary matrix, then

$$\| U^H A U \|_F = \| A \|_F.$$

Proof.

Since U is a unitary matrix, so is U^H. By a previous Theorem,

$$\| U^H A U \|_F = \| A U \|_F = \| U^H A^H \|_F^2 = \| A^H \|_F^2 = \| A \|_F^2,$$

which proves the corollary.
Example

Let $S = \{ \mathbf{x} \in \mathbb{R}^n \mid \| \mathbf{x} \|_2 = 1 \}$ be the surface of the sphere in \mathbb{R}^n. The image of S under the linear transformation h_U that corresponds to the unitary matrix U is S itself. Indeed, $\| h_U(\mathbf{x}) \|_2 = \| \mathbf{x} \|_2 = 1$, so $h_U(\mathbf{x}) \in S$ for every $\mathbf{x} \in S$. Also, note that h_U restricted to S is a bijection because $h_U^H(h_U(\mathbf{x})) = \mathbf{x}$ for every $\mathbf{x} \in \mathbb{R}^n$.
Theorem

Let \(A \in \mathbb{R}^{n \times n} \). We have \(\| A \|_2 \leq \| A \|_F \).

Proof.

Let \(x \in \mathbb{R}^n \). We have

\[
Ax = \begin{pmatrix}
 r_1x \\
 \vdots \\
 r_nx
\end{pmatrix},
\]

where \(r_1, \ldots, r_n \) are the rows of the matrix \(A \). Thus,

\[
\frac{\| Ax \|_2}{\| x \|_2} = \frac{\sqrt{\sum_{i=1}^{n}(r_i x)^2}}{\| x \|_2}.
\]

By Cauchy-Schwarz inequality we have: \((r_i x)^2 \leq \| r_i \|_2^2 \| x \|_2^2\), so

\[
\frac{\| Ax \|_2}{\| x \|_2} \leq \sqrt{\sum_{i=1}^{n} \| r_i \|_2^2} = \| A \|_F.
\]

This implies \(\| A \|_2 \leq \| A \|_F \).
Definition

Let L be a \mathbb{C}-linear space. An *inner product* on L is a function $f : L \times L \rightarrow \mathbb{C}$ that has the following properties:

- $f(ax + by, z) = af(x, z) + bf(y, z)$ (linearity in the first argument);
- $f(x, y) = \overline{f(y, x)}$ for $y, x \in L$ (conjugate symmetry);
- if $x \neq 0$, then $f(x, x)$ is a positive real number (positivity),
- $f(x, x) = 0$ if and only if $x = 0$ (definiteness),

for every $x, y, z \in L$ and $a, b \in \mathbb{C}$.

The pair (L, f) is called an *inner product space*.

An alternative terminology for real inner product spaces is *Euclidean spaces*, and *Hermitian spaces* for complex inner product spaces.
For the second argument of an inner product we have the property of
conjugate linearity, that is,

\[
f(z, ax + by) = \bar{a}f(z, x) + \bar{b}f(z, y)
\]

for every \(x, y, z \in L\) and \(a, b \in \mathbb{C}\). Indeed, by the conjugate symmetry property we can write

\[
\begin{align*}
f(z, ax + by) &= f(ax + by, z) \\
&= af(x, z) + bf(y, z) \\
&= \bar{a}f(x, z) + \bar{b}f(y, z) \\
&= \bar{a}f(z, x) + \bar{b}f(z, y).
\end{align*}
\]
Observe that conjugate symmetry property on inner products implies that for $x \in L$, $f(x, x)$ is a real number because $f(x, x) = \overline{f(x, x)}$.

When L is a real linear space the definition of the inner product becomes simpler because the conjugate of a real number a is a itself. Namely, for real linear spaces, the conjugate symmetry is replaced by the plain symmetry property,

$$f(x, y) = f(y, x),$$

for $x, y \in L$ and f is linear in both arguments.
Let $\mathcal{W} = \{\mathbf{w}_1, \ldots, \mathbf{w}_n\}$ be a basis in the complex n-dimensional inner product space L. If $\mathbf{x} = \sum_{i=1}^{n} x^i \mathbf{w}_i$ and $\mathbf{y} = \sum_{j=1}^{n} y^j \mathbf{w}_j$, then

$$f(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{n} \sum_{j=1}^{n} x^i y^j f(\mathbf{w}_i, \mathbf{w}_j),$$

due to the bilinearity of the inner product. If we denote $f(\mathbf{w}_i, \mathbf{w}_j)$ by g_{ij}, then $f(\mathbf{x}, \mathbf{y})$ can be written as

$$f(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{n} \sum_{j=1}^{n} x^i y^j g_{ij}$$

for $\mathbf{x}, \mathbf{y} \in L$.

If L is a real inner product space L, then

$$f(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{n} \sum_{j=1}^{n} x^i y^j g_{ij}$$

To simplify notations, if there is no risk of confusion, we denote the inner product $f(\mathbf{u}, \mathbf{v})$ as (\mathbf{u}, \mathbf{v}).
Definition

Two vectors $u, v \in \mathbb{C}^n$ are said to be \textit{orthogonal} with respect to an inner product if $(u, v) = 0$. This is denoted by $u \perp v$.

An \textit{orthogonal set of vectors} in an inner product space L equipped with an inner product is a subset W of L such that for every $u, v \in W$ we have $u \perp v$.
Theorem

Any inner product on a linear space L generates a norm on that space defined by $\| x \| = \sqrt{(x, x)}$ for $x \in L$.

Proof

Let \(L \) be a \(\mathbb{C} \)-linear space. We need to verify that the norm satisfies the conditions of Definition. Applying the properties of the inner product we have

\[
\| x + y \|^2 = (x + y, x + y) = (x, x) + 2(x, y) + (y, y) = \| x \|^2 + 2(x, y) + \| y \|^2 \leq \| x \|^2 + 2\| x \| \| y \| + \| y \|^2 = (\| x \| + \| y \|)^2.
\]

Because \(\| x \| \geq 0 \) it follows that \(\| x + y \| \leq \| x \| + \| y \| \), which is the subadditivity property.

If \(a \in \mathbb{C} \), then

\[
\| ax \| = \sqrt{(ax, ax)} = \sqrt{a\overline{a}(x, x)} = \sqrt{|a|^2(x, x)} = |a| \sqrt{(x, x)} = |a| \| x \|.
\]

From the definiteness property of the inner product it follows that \(\| x \| = 0 \) if and only if \(x = 0 \).
The norm induced by the inner product $f(x, y) = x^i \overline{y}^j g_{ij}$ is

$$\| x \|^2 = f(x, x) = x^i x^j g_{ij}.$$
Theorem

If W is a set of orthogonal vectors in a n-dimensional \mathbb{C}-linear space L and $0 \notin W$, then W is linearly independent.

Proof.

Let $c = a^{1}w_{1} + \cdots + a^{n}w_{n}$ a linear combination in L such that $a^{1}w_{1} + \cdots + a^{n}w_{n} = 0$. Since $(c, w_{i}) = a_{i} \| w_{i} \|^{2} = 0$, we have $a_{i} = 0$ because $\| w_{i} \|^{2} \neq 0$, and this holds for every i, where $1 \leq i \leq n$. Thus, W is linearly independent.
Definition

An \textit{orthonormal set of vectors} in an inner product space \(L \) equipped with an inner product is an orthogonal subset \(W \) of \(L \) such that for every \(u \) we have \(\| u \| = 1 \), where the norm is induced by the inner product.

Corollary

\textit{If} \(W \) \textit{is an orthonormal set of vectors in an} \(n \)-\textit{dimensional} \(\mathbb{C} \)-linear space \(L \) \textit{and} \(|W| = n \), \textit{then} \(W \) \textit{is a basis in} \(L \).
If $W = \{w_1, \ldots, w_n\}$ is an orthonormal basis in \mathbb{C}^n we have

$$g_{ij} = (w_i, w_j) = \begin{cases} 0 & \text{if } i \neq j, \\ 1 & \text{if } i = j, \end{cases}$$

which means that the inner product of the vectors $x = x^i w_i$ and $y = y^j w_j$ is given by:

$$(x, y) = x^i y^j (w_i, w_j) = x^i y^i.$$ \hfill (2)$$

Consequently, $\|x\|^2 = \sum_{i=1}^{n} |x^i|^2$.

The inner product of $x, y \in \mathbb{R}^n$ is

$$(x, y) = x^i y^j (w_i, w_j) = x^i y^i.$$ \hfill (3)$$
Not every norm can be induced by an inner product. A characterization of this type of norms in linear spaces is presented next. This equality shown in the next theorem is known as the parallelogram equality.

Theorem

Let L be a real linear space. A norm $\| \cdot \|$ is induced by an inner product if and only if

$$\| x + y \|^2 + \| x - y \|^2 = 2(\| x \|^2 + \| y \|^2),$$

for every $x, y \in L$.

Proof

Suppose that the norm is induced by an inner product. In this case we can write for every x and y:

\[
\| x + y \|^2 = (x + y, x + y) = (x, x) + 2(x, y) + (y, y),
\]
\[
\| x - y \|^2 = (x - y, x - y) = (x, x) - 2(x, y) + (y, y).
\]

Thus,

\[
(x + y, x + y) + (x - y, x - y) = 2(x, x) + 2(y, y),
\]

which can be written in terms of the norm generated as the inner product as

\[
\| x + y \|^2 + \| x - y \|^2 = 2(\| x \|^2 + \| y \|^2).
\]

The proof of the reverse implication is omitted.
Definition

Let \(w \in \mathbb{R}^n - \{0\} \) and let \(a \in \mathbb{R} \). The hyperplane determined by \(w \) and \(a \) is the set

\[
H_{w,a} = \{ x \in \mathbb{R}^n \mid w^t x = a \}.
\]
If $x_0 \in H_{w,a}$, then $w'x_0 = a$, so $H_{w,a}$ is also described by the equality

$$H_{w,a} = \{x \in \mathbb{R}^n \mid w'(x - x_0) = 0\}.$$

Any hyperplane $H_{w,a}$ partitions \mathbb{R}^n into three sets:

$$H_{w,a}^> = \{x \in \mathbb{R}^n \mid w'x > a\},$$

$$H_{w,a}^0 = H_{w,a},$$

$$H_{w,a}^< = \{x \in \mathbb{R}^n \mid w'x < a\}.$$

The sets $H_{w,a}^>$ and $H_{w,a}^<$ are the **positive** and **negative open** half-spaces determined by $H_{w,a}$, respectively. The sets

$$H_{w,a}^\geq = \{x \in \mathbb{R}^n \mid w'x \geq a\},$$

$$H_{w,a}^\leq = \{x \in \mathbb{R}^n \mid w'x \leq a\}.$$

are the **positive** and **negative closed** half-spaces determined by $H_{w,a}$, respectively.
If \(x_1, x_2 \in H_{w,a} \) we say that the vector \(x_1 - x_2 \) is located in the hyperplane \(H_{w,a} \). In this case \(w \perp x_1 - x_2 \). This justifies referring to \(w \) as the normal to the hyperplane \(H_{w,a} \). Observe that a hyperplane is fully determined by a vector \(x_0 \in H_{w,a} \) and by \(w \).
Let $x_0 \in \mathbb{R}^n$ and let $H_{w,a}$ be a hyperplane. We seek $x \in H_{w,a}$ such that $\|x - x_0\|_2$ is minimal. Finding x amounts to minimizing the function $f(x) = \|x - x_0\|_2^2 = \sum_{i=1}^{n}(x_i - x_{0i})^2$ subjected to the constraint $w_1x_1 + \cdots + w_nx_n - a = 0$. Using the Lagrangian $\Lambda(x) = f(x) + \lambda(w'x - a)$ and the multiplier λ we impose the conditions

$$\frac{\partial \Lambda}{\partial x_i} = 0 \text{ for } 1 \leq i \leq n$$

which amount to

$$\frac{\partial f}{\partial x_i} + \lambda w_i = 0$$

for $1 \leq i \leq n$. These equalities yield $2(x_i - x_{0i}) + \lambda w_i = 0$, so we have $x_i = x_{0i} - \frac{1}{2}\lambda w_i$.

Consequently, we have \(\mathbf{x} = \mathbf{x}_0 - \frac{1}{2} \lambda \mathbf{w} \). Since \(\mathbf{x} \in H_{\mathbf{w},a} \) this implies

\[
\mathbf{w}' \mathbf{x} = \mathbf{w}' \mathbf{x}_0 - \frac{1}{2} \lambda \mathbf{w}' \mathbf{w} = a.
\]

Thus,

\[
\lambda = 2 \frac{\mathbf{w}' \mathbf{x}_0 - a}{\mathbf{w}' \mathbf{w}} = 2 \frac{\mathbf{w}' \mathbf{x}_0 - a}{\| \mathbf{w} \|^2_2}.
\]

We conclude that the closest point in \(H_{\mathbf{w},a} \) to \(\mathbf{x}_0 \) is

\[
\mathbf{x} = \mathbf{x}_0 - \frac{\mathbf{w}' \mathbf{x}_0 - a}{\| \mathbf{w} \|^2_2} \mathbf{w}.
\]
The smallest distance between \(x_0 \) and a point in the hyperplane \(H_{w,a} \) is given by

\[
\| x_0 - x \| = \frac{w'x_0 - a}{\| w \|_2}.
\]

If we define the distance \(d(H_{w,a}, x_0) \) between \(x_0 \) and \(H_{w,a} \) as this smallest distance we have

\[
d(H_{w,a}, x_0) = \frac{w'x_0 - a}{\| w \|_2}.
\] (4)
Lemma

Let $A \in \mathbb{C}^{n \times n}$. If $x^H Ax = 0$ for every $x \in \mathbb{C}^n$, then $A = O_{n,n}$.
Proof

If $\mathbf{x} = \mathbf{e}_k$, then $\mathbf{x}^H \mathbf{A} \mathbf{x} = a_{kk}$ for every k, $1 \leq k \leq n$, so all diagonal entries of \mathbf{A} equal 0. Choose now $\mathbf{x} = \mathbf{e}_k + \mathbf{e}_j$. Then,

$$
\begin{align*}
(e_k + e_j)^H \mathbf{A} (e_k + e_j) &= e_k^H \mathbf{A} e_k + e_k^H \mathbf{A} e_j + e_j^H \mathbf{A} e_k + e_j^H \mathbf{A} e_j \\
&= e_k^H \mathbf{A} e_j + e_j^H \mathbf{A} e_k \\
&= a_{kj} + a_{jk} = 0.
\end{align*}
$$
Proof cont’d

Similarly, if we choose \(\mathbf{x} = e_k + i e_j \) we obtain:

\[
(e_k + i e_j)^H A (e_k + i e_j) = (e_k^H - i e_j^H) A (e_k + i e_j) = e_k^H A e_k - i e_j^H A e_k + i e_k^H A e_j + e_j^H A e_j = -i a_{jk} + i a_{kj} = 0.
\]

The equalities \(a_{kj} + a_{jk} = 0 \) and \(-a_{jk} + a_{kj} = 0 \) imply \(a_{kj} = a_{jk} = 0 \). Thus, all off-diagonal elements of \(A \) are also 0, hence \(A = O_{n,n} \).
Theorem

A matrix $U \in \mathbb{C}^{n \times n}$ is unitary if $\| Ux \|_2 = \| x \|_2$ for every $x \in \mathbb{C}^n$.
Proof

If U is unitary we have

$$\| Ux \|_2^2 = (Ux)^H Ux = x^H U^H U x = \| x \|_2^2$$

because $U^H U = I_n$. Thus, $\| Ux \|_2 = \| x \|_2$.

Conversely, let U be a matrix such that $\| Ux \|_2 = \| x \|_2$ for every $x \in \mathbb{C}^n$. This implies $x^H U^H U x = x^H x$, hence $x^H (U^H U - I_n) x = 0$ for $x \in \mathbb{C}^n$. This implies $U^H U = I_n$, so U is a unitary matrix.
Corollary

The following statements that concern a matrix $U \in \mathbb{C}^{n \times n}$ are equivalent:

- U is unitary;
- $\| Ux - Uy \|_2 = \| x - y \|_2$ for $x, y \in \mathbb{C}^n$;
- $(Ux, Uy) = (x, y)$ for $x, y \in \mathbb{C}^n$.
The counterpart of unitary matrices in the set of real matrices are introduced next.

Definition

A matrix $A \in \mathbb{R}^{n \times n}$ is **orthogonal** or **orthonormal** if it is unitary.

In other words, a real matrix $A \in \mathbb{R}^{n \times n}$ is orthogonal if and only if $A^\prime A = AA^\prime = I_n$. Clearly, A is orthogonal if and only if A^\prime is orthogonal.
Theorem

If $A \in \mathbb{R}^{n \times n}$ is an orthogonal matrix, then $\det(A) \in \{-1, 1\}$.

Proof.

By a previous Corollary, $|\det(A)| = 1$. Since $\det(A)$ is a real number, it follows that $\det(A) \in \{-1, 1\}$. \qed
Corollary

Let A be a matrix in $\mathbb{R}^{n \times n}$. The following statements are equivalent:

- A is orthogonal;
- A is invertible and $A^{-1} = A'$;
- A' is invertible and $(A')^{-1} = A$;
- A' is orthogonal.

Thus, a matrix A is orthogonal if and only if it preserves the length of vectors.
A rotation matrix is an orthogonal matrix $R \in \mathbb{R}^{n \times n}$ such that $\det(R) = 1$. A reflection matrix is an orthogonal matrix $R \in \mathbb{R}^{n \times n}$ such that $\det(R) = -1$.
Example

In the 2-dimensional case, \(n = 2 \), a rotation is a matrix \(R \in \mathbb{R}^{2 \times 2} \),

\[
R = \begin{pmatrix} r_{11} & r_{12} \\ r_{21} & r_{22} \end{pmatrix}
\]

such that

\[
\begin{align*}
 r_{11}^2 + r_{21}^2 &= 1, \\
 r_{12}^2 + r_{22}^2 &= 1, \\
 r_{11}r_{12} + r_{21}r_{22} &= 0
\end{align*}
\]

and

\[
r_{11}r_{22} - r_{12}r_{21} = 1.
\]

This implies

\[
r_{22}(r_{11}r_{12} + r_{21}r_{22}) - r_{12}(r_{11}r_{22} - r_{12}r_{21}) = -r_{12},
\]

or
Since $r_{11}^2 \leq 1$ it follows that there exists θ such that $r_{11} = \cos \theta$. This implies that R has the form

$$R = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

Its effect on a vector

$$x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{R}^2$$

is to produce the vector $y = Rx$, where

$$y = \begin{pmatrix} x_1 \cos \theta - x_2 \sin \theta \\ x_1 \sin \theta + x_2 \cos \theta \end{pmatrix},$$

which is obtained from x by a counterclockwise rotation by the angle θ.
It is easy to see that \(\det(R) = 1 \), so the term “rotation matrix” is clearly justified for \(R \). To mark the dependency of \(R \) on \(\theta \) we will use the notation

\[
R(\theta) = \begin{pmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{pmatrix}.
\]
If the angle of the vector \(\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \) with the \(x_1 \) axis is \(\alpha \) and \(\mathbf{x} \) is rotated counterclockwise by \(\theta \) to yield the vector \(\mathbf{y} = y_1 \mathbf{e}_1 + y_2 \mathbf{e}_2 \), then

\[
\begin{align*}
x_1 &= r \cos \alpha, \\
x_2 &= r \sin \alpha, \\
y_1 &= r \cos(\alpha + \theta) = r \cos \alpha \cos \theta - r \sin \alpha \sin \theta = x_1 \cos \theta - x_2 \sin \theta, \\
y_2 &= r \sin(\alpha + \theta) = r \sin \alpha \cos \theta + r \cos \alpha \sin \theta = x_1 \sin \theta + x_2 \cos \theta,
\end{align*}
\]

which are the formulas that describe the transformation of \(\mathbf{x} \) into \(\mathbf{y} \).
Definition

Let U be an m-dimensional subspace of \mathbb{C}^n and let $\{u_1, \ldots, u_m\}$ be an orthonormal basis of this subspace. The orthogonal projection of the vector $x \in \mathbb{C}^n$ onto the subspace U is the vector $u = (x, u_1)u_1 + \cdots + (x, u_m)u_m$.
Theorem

Let U be an m-dimensional subspace of \mathbb{R}^n and let $x \in \mathbb{R}^n$. The vector $y = x - \text{proj}_U(x)$ belongs to the subspace U^\perp.

Proof.

Let $B_U = \{u_1, \ldots, u_m\}$ be an orthonormal basis of U. Note that

$$
(y, u_j) = (x, u_j) - \left(\sum_{i=1}^{m} (x, u_i)u_i, u_j \right)
$$

$$
= (x, u_j) - \sum_{i=1}^{m} (x, u_i)(u_i, u_j) = 0,
$$

due to the orthogonality of the basis B_U. Therefore, y is orthogonal on every linear combination of B_U, that is on the subspace U. \qed
Theorem

Let U be an m-dimensional subspace of \mathbb{C}^n having the orthonormal basis $\{u_1, \ldots, u_m\}$. The orthogonal projection proj_U is given by

$\text{proj}_U(x) = B_U B_U^H x$ for $x \in \mathbb{C}^n$, where $B_U \in \mathbb{R}^{n \times m}$ is the matrix $B_U = (u_1 \cdots u_m) \in \mathbb{C}^{n \times m}$.

Proof.

We can write

$\text{proj}_U(x) = \sum_{i=1}^m u_i (u_i^H x) = (u_1 \cdots u_m) \begin{pmatrix} u_1^H \\ \vdots \\ u_m^H \end{pmatrix} x = B_U B_U^H x$.

\square
Since the basis \(\{u_1, \ldots, u_m\} \) is orthonormal, we have \(B_U^H B_U = I_m \). Observe that the matrix \(B_U B_U^H \in \mathbb{C}^{n \times n} \) is symmetric and idempotent because
\[
(B_U B_U^H)(B_U B_U^H) = B_U (B_U^H B_U) B_U^H = B_U B_U^H.
\]

For an \(m \)-dimensional subspace \(U \) of \(\mathbb{C}^n \) we denote by \(P_U = B_U B_U^H \in \mathbb{C}^{n \times n} \), where \(B_U \) is a matrix of an orthonormal basis of \(U \) as defined before. \(P_U \) is the *projection matrix* of the subspace \(U \).
Corollary

For every non-zero subspace U, the matrix P_U is a Hermitian matrix, and therefore, a self-adjoint matrix.

Proof.

Since $P_U = B_U B_U^H$ where B_U is a matrix of an orthonormal basis of the subspace S, it is immediate that $P_U^H = P_U$.

The self-adjointness of P_U means that $(x, P_U y) = (P_U x, y)$ for every $x, y \in \mathbb{C}^n$.
Corollary

Let U be an m-dimensional subspace of \mathbb{C}^n having the orthonormal basis $\{u_1, \ldots, u_m\}$. If $B_U = (u_1 \cdots u_m) \in \mathbb{C}^{n \times m}$, then for every $x \in \mathbb{C}$ we have the decomposition $x = P_U x + Q_U x$, where $P_U = B_U B_U^H$ and $Q_U = I_n - P_U$, $P_U x \in U$ and $Q_U x \in U^\perp$.
Observe that
\[
Q_U^2 = (I_n - P_UP_P^H)(I_n - P_UP_P^H) = I_n - P_UP_P^H - P_UP_P^H + P_UP_P^H P_UP_P^H = Q_U,
\]
so \(Q_U \) is an idempotent matrix. The matrix \(Q_U \) is the projection matrix on the subspace \(U^\perp \). Clearly, we have
\[
P_{U^\perp} = Q_U = I_n - P_U. \tag{5}
\]
It is possible to give a direct argument for the independence of the projection matrix \(P_U \) relative to the choice of orthonormal basis in \(U \).
It is possible to give a direct argument for the independence of the projection matrix P_U relative to the choice of orthonormal basis in U.

Theorem

Let U be an m-dimensional subspace of \mathbb{C}^n having the orthonormal bases $\{u_1, \ldots, u_m\}$ and $\{v_1, \ldots, v_m\}$ and let $B_U = (u_1 \cdots u_m) \in \mathbb{C}^{n \times m}$ and $\tilde{B}_U = (v_1 \cdots v_m) \in \mathbb{C}^{n \times m}$. The matrix $B_U^H \tilde{B}_U \in \mathbb{C}^{m \times m}$ is unitary and $\tilde{B}_U B_U^H = B_U B_U^H$.
Proof

Since the both sets of columns of B_U and \tilde{B}_U are bases for U, there exists a unique square matrix $Q \in \mathbb{C}^{m \times m}$ such that $B_U = \tilde{B}_U Q$. The orthonormality of B_U and \tilde{B}_U implies $B^H_U B_U = \tilde{B}^H_U \tilde{B}_U = I_m$. Thus, we can write

$$I_m = B^H_U B_U = Q^H \tilde{B}^H_U \tilde{B}_U Q = Q^H Q,$$

which shows that Q is unitary. Furthermore, $B^H_U \tilde{B}_U = Q^H \tilde{B}^H_U \tilde{B}_U = Q^H$ is unitary and

$$B_U B^H_U = \tilde{B}_U Q Q^H \tilde{B}^H_U = \tilde{B}_U \tilde{B}^H_U.$$
Definition

A matrix $A \in \mathbb{C}^{n \times n}$ is \textit{positive definite} if $x^H A x$ is a real positive number for every $x \in \mathbb{C}^n - \{0\}$.
Theorem

If \(A \in \mathbb{C}^{n \times n} \) is positive definite, then \(A \) is Hermitian.

Proof.

Let \(A \in \mathbb{C}^{n \times n} \) be a matrix. Since \(x^H A x \) is a real number it follows that it equals its conjugate, so \(x^H A x = x^H A^H x \) for every \(x \in \mathbb{C}^n \). Therefore, there exists a unique pair of Hermitian matrices \(H_1 \) and \(H_2 \) such that \(A = H_1 + iH_2 \), which implies \(A^H = H_1^H - iH_2^H \). Thus, we have

\[
x^H (H_1 + iH_2) x = x^H (H_1^H - iH_2^H) x = x^H (H_1 - iH_2) x,
\]

because \(H_1 \) and \(H_2 \) are Hermitian. This implies \(x^H H_2 x = 0 \) for every \(x \in \mathbb{C}^n \), which, in turn, implies \(H_2 = O_{n,n} \). Consequently, \(A = H_1 \), so \(A \) is indeed Hermitian. \(\square \)
Definition

A matrix $A \in \mathbb{C}^{n \times n}$ is **positive semidefinite** if $x^H A x$ is a non-negative real number for every $x \in \mathbb{C}^n - \{0\}$.

Positive definiteness (positive semidefiniteness) is denoted by $A \succ 0$ ($A \succeq 0$, respectively).
The definition of positive definite (semidefinite) matrix can be specialized for real matrices as follows.

Definition

A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is **positive definite** if $\mathbf{x}'A\mathbf{x} > 0$ for every $\mathbf{x} \in \mathbb{R}^n - \{0\}$.

If A satisfies the weaker inequality $\mathbf{x}'A\mathbf{x} \geq 0$ for every $\mathbf{x} \in \mathbb{R}^n - \{0\}$, then we say that A is **positive semidefinite**.

$A \succ 0$ denotes that A is positive definite and $A \succeq 0$ means that A is positive semidefinite.
Note that in the case of real-valued matrices we need to require explicitly the symmetry of the matrix because, unlike the complex case, the inequality \(\mathbf{x}'A\mathbf{x} > 0 \) for \(\mathbf{x} \in \mathbb{R}^n - \{\mathbf{0}_n\} \) does not imply the symmetry of \(A \). For example, consider the matrix

\[
A = \begin{pmatrix} a & b \\ -b & a \end{pmatrix},
\]

where \(a, b \in \mathbb{R} \) and \(a > 0 \). We have

\[
\mathbf{x}'A\mathbf{x} = (x_1 \ x_2) \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = a(x_1^2 + x_2^2) > 0
\]

if \(\mathbf{x} \neq \mathbf{0}_2 \).
Example

The symmetric real matrix

\[A = \begin{pmatrix} a & b \\ b & c \end{pmatrix} \]

is positive definite if and only if \(a > 0 \) and \(b^2 - ac < 0 \). Indeed, we have \(x'Ax > 0 \) for every \(x \in \mathbb{R}^2 - \{0\} \) if and only if \(ax_1^2 + 2bx_1x_2 + cx_2^2 > 0 \), where \(x' = (x_1 \; x_2) \); elementary algebra considerations lead to \(a > 0 \) and \(b^2 - ac < 0 \).
A positive definite matrix is non-singular. Indeed, if $Ax = 0$, where $A \in \mathbb{R}^{n \times n}$ is positive definite, then $x^H Ax = 0$, so $x = 0$. Therefore, A is non-singular.

Example

If $A \in \mathbb{C}^{m \times n}$, then the matrices $A^H A \in \mathbb{C}^{n \times n}$ and $AA^H \in \mathbb{C}^{m \times m}$ are positive semidefinite. For $x \in \mathbb{C}^n$ we have

$$x^H (A^H A)x = (x^H A^H)(Ax) = (Ax)^H (Ax) = \| Ax \|_2^2 \geq 0.$$

The argument for AA^H is similar. If $\text{rank}(A) = n$, then the matrix $A^H A$ is positive definite because $x^H (A^H A)x = 0$ implies $Ax = 0$, which, in turn, implies $x = 0$.
Theorem

If \(A \in \mathbb{C}^{n \times n} \) is a positive definite matrix, then any principal submatrix \(B = A_{i_1 \cdots i_k} \) is a positive definite matrix.

Proof.

Let \(x \in \mathbb{C}^n - \{0\} \) be a vector such that all components located on positions other than \(i_1, \ldots, i_k \) equal 0 and let \(y = x_{i_1 \cdots i_k}^T \in \mathbb{C}^k \) be the vector obtained from \(x \) by retaining only the components located on positions \(i_1, \ldots, i_k \). Since \(y^H B y = x^H A x > 0 \) it follows that \(B \succ 0 \). \(\Box \)
Corollary

If $A \in \mathbb{C}^{n \times n}$ is a positive definite matrix, then any diagonal element a_{ii} is a real positive number for $1 \leq i \leq n$.
Theorem

If $A, B \in \mathbb{C}^{n \times n}$ are two positive semidefinite matrices and a, b are two non-negative numbers, then $aA + bB \succeq 0$.

Proof.

The statement holds because $\mathbf{x}^\mathsf{H}(aA + bB)\mathbf{x} = a\mathbf{x}^\mathsf{H}A\mathbf{x} + b\mathbf{x}^\mathsf{H}B\mathbf{x} \geq 0$, due to the fact that A and B are positive semidefinite.
Definition

Let $L = (v_1, \ldots, v_m)$ be a sequence of vectors in \mathbb{R}^n. The **Gram matrix of** L is the matrix $G_L = (g_{ij}) \in \mathbb{R}^{m \times m}$ defined by $g_{ij} = v_i'v_j$ for $1 \leq i, j \leq m$.

Note that if $A_L = (v_1 \cdots v_m) \in \mathbb{R}^{n \times m}$, then $G_L = A_L' A_L$. Also, note that G_L is a symmetric matrix.
Example

Let

\[v_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}, \quad v_3 = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}. \]

The Gram matrix of the set \(L = \{v_1, v_2, v_3\} \) is

\[G_L = \begin{pmatrix} 2 & -1 & 2 \\ -1 & 9 & 4 \\ 2 & 4 & 5 \end{pmatrix}. \]

Note that \(\det(G_L) = 1 \).
Theorem

Let $L = (\mathbf{v}_1, \ldots, \mathbf{v}_m)$ be a sequence of m vectors in \mathbb{R}^n, where $m \leq n$. If L is linearly independent, then the Gram matrix G_L is positive definite.

Proof.

Suppose that L is linearly independent. Let $\mathbf{x} \in \mathbb{R}^m$. We have

$$\mathbf{x}' G_L \mathbf{x} = \mathbf{x}' A_L' A_L \mathbf{x} = (A_L \mathbf{x})' A_L \mathbf{x} = \| A_L \mathbf{x} \|^2_2.$$

Therefore, if $\mathbf{x}' G_L \mathbf{x} = 0$, we have $A_L \mathbf{x} = \mathbf{0}$, which is equivalent to $x_1 \mathbf{v}_1 + \cdots + x_n \mathbf{v}_n = \mathbf{0}$. Since $\{\mathbf{v}_1, \ldots, \mathbf{v}_m\}$ is linearly independent it follows that $x_1 = \cdots = x_m = 0$, so $\mathbf{x} = \mathbf{0}$. Thus, A is indeed, positive definite.
The Gram matrix of an arbitrary sequence of vectors is positive semidefinite, as the reader can easily verify.

Definition

Let $L = (\mathbf{v}_1, \ldots, \mathbf{v}_m)$ be a sequence of m vectors in \mathbb{R}^n, where $m \leq n$. The Gramian of L is the number $\det(G_L)$.
Theorem

If \(L = (v_1, \ldots , v_m) \) is a sequence of \(m \) vectors in \(\mathbb{R}^n \). Then, \(L \) is linearly independent if and only if \(\det(G_L) \neq 0 \).

Proof.

Suppose that \(\det(G_L) \neq 0 \) and that \(L \) is not linearly independent. In other words, the numbers \(a_1, \ldots , a_m \) exists such that at least one of them is not 0 and \(a_1x_1 + \cdots + a_mx_m = 0 \). This implies the equalities

\[
a_1(x_1, x_j) + \cdots + a_m(x_m, x_j) = 0,
\]

for \(1 \leq j \leq m \), so the system \(G_La = 0 \) has a non-trivial solution in \(a_1, \ldots , a_m \). This implies \(\det(G_L) = 0 \), which contradicts the initial assumption.
Conversely, suppose that L is linearly independent and $\det(G_L) = 0$. Then, the linear system

$$a_1(x_1, x_j) + \cdots + a_m(x_m, x_j) = 0,$$

for $1 \leq j \leq m$, has a non-trivial solution in a_1, \ldots, a_m. If $\mathbf{w} = a_1\mathbf{x}_1 + \cdots + a_m\mathbf{x}_m$, this amounts to $(\mathbf{w}, \mathbf{x}_i) = 0$ for $1 \leq i \leq n$. This, in turn, implies $(\mathbf{w}, \mathbf{w}) = \|\mathbf{w}\|_2^2 = 0$, so $\mathbf{w} = 0$, which contradicts the linear independence of L.
The Gram-Schmidt algorithm constructs an orthonormal basis for a subspace U of \mathbb{C}^n, starting from an arbitrary basis of $\{u_1, \ldots, u_m\}$ of U. The orthonormal basis is constructed sequentially such that $\langle w_1, \ldots, w_k \rangle = \langle u_1, \ldots, u_k \rangle$ for $1 \leq k \leq m$.
Gram-Schmidt Orthogonalization Algorithm

Data: A basis \{\textbf{u}_1, \ldots, \textbf{u}_m\} for a subspace \textit{U} of \mathbb{C}^n

Result: An orthonormal basis \{\textbf{w}_1, \ldots, \textbf{w}_m\} for \textit{U}

\[
\textit{W} = O_{n,m} \\
\textit{W}(:, 1) = \textit{W}(:, 1) + \frac{1}{\|\textit{U}(:, 1)\|_2} \textit{U}(:, 1)
\]

For (\textit{k} = 2 to \textit{m}) \{

\[
\text{\textit{P} = I_n - \textit{W}(:, 1 : (k - 1)) \textit{W}(:, 1 : (k - 1))}^H \\
\text{\textit{W}(:, k) = \textit{W}(:, k) + \frac{1}{\|\text{\textit{PU}(:, k)}\|_2} \text{\textit{PU}(:, k)}}
\]

\} return \textit{W} = (\textbf{w}_1 \cdots \textbf{w}_m)
Theorem

Let \((w_1, \ldots, w_m)\) be the sequence of vectors constructed by the Gram-Schmidt algorithm starting from the basis \(\{u_1, \ldots, u_m\}\) of an \(m\)-dimensional subspace \(U\) of \(\mathbb{C}^n\). The set \(\{w_1, \ldots, w_m\}\) is an orthogonal basis of \(U\) and \(\langle w_1, \ldots, w_k \rangle = \langle u_1, \ldots, u_k \rangle\) for \(1 \leq k \leq m\).
Proof

In the algorithm the matrix W is initialized as $O_{n,m}$. Its columns will contain eventually the vectors of the orthonormal basis $\mathbf{w}_1, \ldots, \mathbf{w}_m$. The argument is by induction on $k \geq 1$.

The base case, $k = 1$, is immediate.

Suppose that the statement of the theorem holds for k, that is, the set $\{\mathbf{w}_1, \ldots, \mathbf{w}_k\}$ is an orthonormal basis for $U_k = \langle \mathbf{u}_1, \ldots, \mathbf{u}_k \rangle$ and constitutes the set of the initial k columns of the matrix W, that is, $W_k = W(:, 1:k)$. Then,

$$P_k = I_n - W_k W_k^H$$

is the projection matrix on the subspace U_k^\perp, so $P_k \mathbf{u}_k$ is orthogonal on every \mathbf{w}_i, where $1 \leq i \leq k$. Therefore, $\mathbf{w}_{k+1} = W(:, (k+1))$ is a unit vector orthogonal on all its predecessors $\mathbf{w}_1, \ldots, \mathbf{w}_k$, so $\{\mathbf{w}_1, \ldots, \mathbf{w}_m\}$ is an orthonormal set.
The equality \(\langle u_1, \ldots, u_k \rangle = \langle w_1, \ldots, w_k \rangle \) clearly holds for \(k = 1 \). Suppose that it holds for \(k \). Then, we have

\[
\begin{align*}
\mathbf{w}_{k+1} &= \frac{1}{\| P_k u_{k+1} \|_2} (u_{k+1} - \mathbf{W}_k \mathbf{W}_k^H u_{k+1}) \\
&= \frac{1}{\| P_k u_{k+1} \|_2} (u_{k+1} - (\mathbf{w}_1 \cdots \mathbf{w}_k) \mathbf{W}_k^H u_{k+1}).
\end{align*}
\]

Since \(\mathbf{w}_1, \ldots, \mathbf{w}_k \) belong to the subspace \(\langle u_1, \ldots, u_k \rangle \) (by inductive hypothesis), it follows that \(\mathbf{w}_{k+1} \in \langle u_1, \ldots, u_k, u_{k+1} \rangle \), so \(\langle \mathbf{w}_1, \ldots, \mathbf{w}_{k+1} \rangle \subseteq \langle u_1, \ldots, u_k \rangle \).
For the converse inclusion, since

\[u_{k+1} = \| P_k u_{k+1} \|_2 \mathbf{w}_{k+1} + (\mathbf{w}_1 \cdots \mathbf{w}_k) W_k^H u_{k+1}, \]

it follows that \(u_{k+1} \in \langle \mathbf{w}_1, \ldots, \mathbf{w}_k, \mathbf{w}_{k+1} \rangle \). Thus,

\[\langle u_1, \ldots, u_k, u_{k+1} \rangle \subseteq \langle \mathbf{w}_1, \ldots, \mathbf{w}_k, \mathbf{w}_{k+1} \rangle. \]
Example

Let $A \in \mathbb{R}^{3 \times 2}$ be the matrix

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 0 \\ 1 & 3 \end{pmatrix}.$$

It is easy to see that $\text{rank}(A) = 2$. We have $\{u_1, u_2\} \subseteq \mathbb{R}^3$ and we construct an orthogonal basis for the subspace generated by these columns. The matrix W is initialized to $O_{3,2}$.
Example cont’d

we begin by defining

\[w_1 = \frac{1}{\| u_1 \|_2} u_1 = \left(\begin{array}{c} \frac{\sqrt{2}}{2} \\ 0 \\ \frac{\sqrt{2}}{2} \end{array} \right), \]

so

\[W = \left(\begin{array}{ccc} \frac{\sqrt{2}}{2} & 0 \\ 0 & 0 \\ \frac{\sqrt{2}}{2} & 0 \end{array} \right), \]

The projection matrix is

\[P = I_3 - W(:, 1)W(:, 1)' = I_3 - w_1 w_1' = \left(\begin{array}{ccc} \frac{1}{2} & 0 & -\frac{1}{2} \\ 0 & 1 & 0 \\ -\frac{1}{2} & 0 & \frac{1}{2} \end{array} \right). \]
The projection of u_2 is

$$Pu_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$

and the second column of W becomes

$$w_k = W(:, 2) = \frac{\|Pu_2\|_2}{P} u_2 = \begin{pmatrix} -\frac{\sqrt{2}}{2} \\ 0 \\ \frac{\sqrt{2}}{2} \end{pmatrix}.$$
Thus, the orthonormal basis we are seeking consists of the vectors

\[
\begin{pmatrix}
\frac{\sqrt{2}}{2} \\
0 \\
\frac{\sqrt{2}}{2}
\end{pmatrix}
\quad \text{and} \quad
\begin{pmatrix}
-\frac{\sqrt{2}}{2} \\
0 \\
\frac{\sqrt{2}}{2}
\end{pmatrix}.
\]
We describe a factorization algorithm for rectangular matrices which allows us to express a matrix as a product of a rectangular matrix with orthogonal columns and an upper triangular invertible matrix (the \textit{thin QR factorization}).
Theorem
(The Thin QR Factorization Theorem) Let $A \in \mathbb{C}^{m \times n}$ be a full-rank matrix such that $m \geq n$. Then, A can be factored as $A = QR$, where $Q \in \mathbb{C}^{m \times n}$, $R \in \mathbb{C}^{n \times n}$ such that

- the columns of Q constitute an orthonormal basis for $\text{range}(A)$, and
- $R = (r_{ij})$ is an upper triangular invertible matrix such that its diagonal elements are real non-negative numbers, that is, $r_{ii} \geq 0$ for $1 \leq i \leq n$.
Let \(u_1, \ldots, u_n \) be the columns of \(A \). Since \(\text{rank}(A) = n \), these columns constitute a basis for \(\text{range}(A) \). Starting from this set of columns construct an orthonormal basis \(w_1, \ldots, w_n \) for the subspace \(\text{range}(A) \) using the Gram-Schmidt algorithm. Define \(Q \) as the orthogonal matrix

\[
Q = (w_1 \, \cdots \, w_n).
\]

By the properties of the Gram-Schmidt algorithm we have
\[
\langle u_1, \ldots, u_k \rangle = \langle w_1, \ldots, w_k \rangle
\]
for \(1 \leq k \leq n \), so it is possible to write
\[
\begin{align*}
 u_k &= r_{1k} w_1 + \cdots + r_{kk} w_k \\
 &= (w_1 \, \cdots \, w_n) \begin{pmatrix} r_{1k} \\ \vdots \\ r_{kk} \\ 0 \\ \vdots \\ 0 \end{pmatrix} = Q \begin{pmatrix} r_{1k} \\ \vdots \\ r_{kk} \\ 0 \\ \vdots \\ 0 \end{pmatrix}
\end{align*}
\]

We can assume that \(r_{kk} \geq 0 \); otherwise, that is, if \(r_{kk} < 0 \), replace \(w_k \) by \(-w_k\). Clearly, this does not affect the orthonormality of the set \(\{w_1, \ldots, w_n\} \).
Example

Let us determine a QR factorization for the matrix

\[A = \begin{pmatrix}
1 & 1 \\
0 & 0 \\
1 & 3
\end{pmatrix}. \]

which has rank 2. We constructed an orthonormal basis for \(\text{range}(A) \) that consists of the vectors

\[\mathbf{w}_1 = \begin{pmatrix}
\frac{1}{\sqrt{2}} \\
0 \\
\frac{1}{\sqrt{2}}
\end{pmatrix} \]

and

\[\mathbf{w}_2 = \begin{pmatrix}
-\frac{1}{\sqrt{2}} \\
0 \\
\frac{1}{\sqrt{2}}
\end{pmatrix}. \]
Example cont’d

Thus, the orthogonal matrix Q is

$$Q = \begin{pmatrix}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{pmatrix}. $$

To compute R we need to express u_1 and u_2 as linear combinations of w_1 and w_2. Since

$$u_1 = \sqrt{2}w_1$$
$$u_2 = 2\sqrt{2}w_1 + \sqrt{2}w_2$$

the matrix R is

$$R = \begin{pmatrix}
\sqrt{2} & 2\sqrt{2} \\
0 & \sqrt{2}
\end{pmatrix}. $$
Vector norms can be computed using the function \(\text{norm} \) which comes in two signatures: \(\text{norm}(v) \) and \(\text{norm}(v, p) \). The first variant computes \(\|v\|_2 \); the second computes \(\|v\|_p \) for any \(p, 1 \leq p \leq \infty \). In addition, \(\text{norm}(v, \infty) \) computes \(\|v\|_\infty = \max\{|v_i| \mid 1 \leq i \leq n\} \), where \(v \in \mathbb{R}^n \). If one uses \(-\infty\) as the second parameter, then \(\text{norm}(v, -\infty) \) returns \(\min\{|v_i| \mid 1 \leq i \leq n\} \).

Example

For the vector

\[v = [2 \ -3 \ 5 \ -4] \]

the computation

\[\text{norms} = [\text{norm}(v, 1), \text{norm}(v, 2), \text{norm}(v, 2.5), \text{norm}(v, \infty), \text{norm}(v, -\infty)] \]

returns

\[\text{norms} = [14.0000 \ 7.3485 \ 6.5344 \ 5.0000 \ 2.0000] \]
For matrices whose norm is expensive to compute, an approximative estimation of $\| A \|_2$ can be performed using the function `normest(A)`, or `normest(A,r)`, where r is the relative error; the default for r is 10^{-6}. The following function implements the Gram-Schmidt algorithm.

function [W] = gram(U)
%GRAM implements the classical Gram-Schmidt algorithm
[n,m] = size(U);
W = zeros(n,m);
W(:,1)= (1/norm(U(:,1)))*U(:,1);
for k = 2:1:m
 P = eye(n) - W*W';
 W(:,k) = W(:,k) + (1/norm(P*U(:,k)))* P*U(:,k);
end
end
The Cholesky decomposition of a Hermitian positive definite matrix is computed in MATLAB using the function `chol`. The function call
\[R = \text{chol}(A) \]
returns an upper triangular matrix \(R \), satisfying the equation \(R^H R = A \). If \(A \) is not positive definite an error message is generated. The matrix \(R \) is computed using the diagonal and the upper triangle of \(A \) and the computation makes sense only if \(A \) is Hermitian.
Example

Let A be the symmetric positive definite matrix

$$A = \begin{pmatrix} 3 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 1 & 2 \end{pmatrix}.$$

Then, $R = \text{chol}(A)$ yields

$$R = \begin{pmatrix} 1.7321 & 0 & 1.1547 \\ 0 & 1.4142 & 0.7071 \\ 0 & 0 & 0.4082 \end{pmatrix}.$$
The call \(L = \text{chol}(A, \text{\textquoteleft}lower\text{\textquoteright}) \) returns a lower triangular matrix \(L \) from the diagonal and lower triangle of matrix \(A \), satisfying the equation \(LL^H = A \). When \(A \) is sparse, this syntax of \text{chol} is faster.

Example

For the same matrix \(A \), \(L = \text{chol}(A, \text{\textquoteleft}lower\text{\textquoteright}) \) returns

\[
L =
\begin{bmatrix}
1.7321 & 0 & 0 \\
0 & 1.4142 & 0 \\
1.1547 & 0.7071 & 0.4082
\end{bmatrix}
\]

For added flexibility, \([R,p] = \text{chol}(A)\) and \([L,p] = \text{chol}(A, \text{\textquoteleft}lower\text{\textquoteright})\) set \(p \) to 0 if \(A \) is positive definite and to a positive number, otherwise, without returning an error message.
The thin QR decomposition of a matrix $A \in \mathbb{C}^{m \times n}$ is obtained using the function qr as in

$$[Q R] = \text{qr}(A)$$

To obtain the full decomposition we write

$$[Q R] = \text{qr}(A, 0)$$