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Consider the following set of linear equalities

a11x1 + . . .+ a1nxn = b1,

a21x1 + . . .+ a2nxn = b2,

...
...

am1x1 + . . .+ amnxn = bm,

where aij and bi belong to a field F . This set constitutes a system of linear
equations. Solving this system means finding x1, . . . , xn that satisfy all
equalities.
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The system can be written succinctly in a matrix form as Axxx = bbb, where

A =


a11 · · · a1n
a21 · · · a2n
... · · ·

...
am1 · · · amn

 ,bbb =


b1
b2
...
bm

 ,

and

xxx =


x1
x2
...
xn

 .

If the set of solutions of a system Axxx = bbb is not empty we say that the
system is consistent. Note that Axxx = bbb is consistent if and only if
bbb ∈ range(A).
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Let Axxx = bbb be a linear system in matrix form, where A ∈ Cm×n. The
matrix [A bbb] ∈ Cm×(n+1) is the augmented matrix of the system Axxx = bbb.
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Theorem

Let A ∈ Cm×n be a matrix and let bbb ∈ Cn×1. The linear system Axxx = bbb is
consistent if and only if rank(A bbb) = rank(A).

Proof.

If Axxx = bbb is consistent and xxx ′ = (x1, . . . , xn) is a solution of this system,
then bbb = x1ccc1 + · · ·+ xncccn, where ccc1, . . . ,cccn are the columns of A. This
implies rank([A bbb]) = rank(A).
Conversely, if rank(A bbb) = rank(A), the vector bbb is a linear combination of
the columns of A, which means that Axxx = bbb is a consistent system.
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Definition

An homogeneous linear system is a linear system of the form Axxx = 000m,
where A ∈ Cm×n, xxx ∈ Cn,1 and 000 ∈ Cm×1.

Clearly, any homogeneous system Axxx = 000m has the solution xxx = 000n. This
solution is referred to as the trivial solution. The set of solutions of such a
system is null(A), the null space of the matrix A.
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Let uuu and vvv be two solutions of the system Axxx = bbb. Then A(uuu − vvv) = 000m,
so zzz = uuu − vvv is a solution of the homogeneous system Axxx = 000m, or
zzz ∈ null(A). Thus, the set of solutions of Axxx = bbb can be obtained as a
“translation” of the null space of A by any particular solution of Axxx = bbb.
In other words the set of solution of Axxx = bbb is {xxx + zzz | zzz ∈ null(A)}.
Thus, for A ∈ Cm×n, the system Axxx = bbb has a unique solution if and only
if null(A) = {000n}, that is, if rank(A) = n.
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Theorem

Let A ∈ Cn×n. Then, A is invertible (which is to say that rank(A) = n) if
and only if the system Axxx = bbb has a unique solution for every bbb ∈ Cn.

Proof.

If A is invertible, then xxx = A−1bbb, so the system Axxx = bbb has a unique
solution.
Conversely, if the system Axxx = bbb has a unique solution for every bbb ∈ Cn,
let ccc1, . . . ,cccn be the solution of the systems Axxx = eee1, . . . ,Axxx = eeen,
respectively. Then, we have

A(ccc1| · · · |cccn) = In,

which shows that A is invertible and A−1 = (ccc1| · · · |cccn).
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Corollary

An homogeneous linear system Axxx = 000, where A ∈ Cn×n has a non-trivial
solution if and only if A is a singular matrix.
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Definition

A matrix A ∈ Cn×n is diagonally dominant if
|aii | >

∑
{|aik | | 1 ⩽ k ⩽ n and k ̸= i}.

Theorem

A diagonally dominant matrix is non-singular.
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Proof
Suppose that A ∈ Cn×n is a diagonally dominant matrix that is singular.
The homogeneous system Axxx = 000 has a non-trivial solution xxx ̸= 000. Let xk
be a component of xxx that has the largest absolute value. Since xxx ̸= 000, we
have |xk | > 0. We can write

akkxk = −
∑

{akjxj | 1 ⩽ j ⩽ n and j ̸= k},

which implies

|akk | |xk | =
∣∣∣∑{akjxj | 1 ⩽ j ⩽ n and j ̸= k}

∣∣∣
⩽

∑
{|akj | |xj | | 1 ⩽ j ⩽ n and j ̸= k}

∣∣∣
⩽ |xk |

∑
{|akj | | 1 ⩽ j ⩽ n and j ̸= k}.

Thus, we obtain

|akk | ⩽
∑

{|akj | | 1 ⩽ j ⩽ n and j ̸= k},

which contradicts the fact that A is diagonally dominant.
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We begin with a class of linear systems that can easily be solved.

Definition

A matrix C ∈ Cm×n is in row echelon form if the following conditions are
satisfied:

rows that contain a non-zero elements precede zero rows (that is,
rows that contain only zeros);
if cij is the first non-zero element of the row i , all elements in the j th

column located below cij , that is, entries of the form ckj with k > j
are zero;
if i < ℓ, ciji is the first non-zero element of the row i , and cℓjℓ is the
first non-zero element of the row ℓ, then ji < jℓ.

The first non-zero element of a row i (if it exists) is called the pivot of the
row i .
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Example

Let C ∈ R4×5 be the matrix

C =


1 2 0 2 0
0 2 3 0 1
0 0 0 −1 2
0 0 0 0 0


It is clear that C is in row echelon form; the pivots of the first, second and
third rows are c11 = 1, c22 = 2, and c34 = −1.
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Theorem

Let C ∈ Cm×n be a matrix in row echelon form such that the rows that
contain non-zero elements are the first r rows. Then, rank(C ) = r .

Proof: Let ccc1, . . . ,ccc r be the non-zero rows of C . Suppose that the row ccc i
has the first non-zero element in the column ji for 1 ⩽ i ⩽ r . By the
definition of the echelon form we have j1 < j2 < · · · < jr .
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Suppose that a1ccc1 + · · ·+ arccc r = 000. This equality can be written as:

a1c1j1 = 0,

a1c1j2 + a2c2j2 = 0,

...

a1c1n + a2c2n + . . .+ arcrn = 0.

Since c1j1 ̸= 0, we have a1 = 0. Substituting a1 by 0 in the second equality
implies a2 = 0 because c2j2 ̸= 0, etc. Thus, we obtain
a1 = a2 = . . . = ar = 0, which proves that the rows ccc1, . . . ,ccc r are linearly
independent. Since this is a maximal set of rows of C that is linearly
independent, it follows that rank(C ) = r .
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Linear systems whose augmented matrices are in row echelon form can be
easily solved using a process called back substitution. Consider the
augmented matrix in row echelon form of a system with m equations and
n unknowns: 

0 · · · 0 a1j1 · · · · · · · · · a1n b1
0 · · · 0 0 · · · a2j2 · · · a2n b2
... · · ·

...
... · · ·

... · · ·
...

...
0 · · · 0 0 · · · · · · arjr · · · br
0 · · · 0 0 · · · · · · 0 · · · br+1

... · · ·
...

... · · ·
... · · ·

...
...

0 · · · 0 0 · · · · · · 0 · · · bm


The system of equations has the form:

a1j1xj1 + · · · · · · · · ·+ a1nxn = b1

a2j2xj2 + · · · · · ·+ a2nxn = b2
...

arjr xjr + · · ·+ arnxn = br

0 = br+1

... =
...

0 = bm.
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The variables xj1 , xj2 , . . . , xjr that correspond to the columns where the
pivot element occur are referred to as the basic variables. The remaining
variables are non-basic.
Note that we have r ⩽ min{m, n}. If r < m and there exists bℓ ̸= 0 for
r < ℓ ⩽ m, then the system is inconsistent and no solutions exist. If r = m
or bℓ = 0 for r < ℓ ⩽ m ⩽ n, one can choose the variables that do not
correspond to the pivot elements, {xi | i ̸∈ {j1, j2, . . . , jr} as parameters
and express the basic variables as functions of these parameters.
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The process starts with the last basic variable, xjr (because every other
variable in the equation arjr xjr + · · ·+ arnxn = br is a parameter), and then
substitutes this variable in the previous equality. This allows us to express
xjr−1 as a function of parameters, etc. This explains the term back
substitution previously introduced. If r = n, then no parameters exist.
To conclude, if r < m the system has a solution if and only if bj = 0 for
j > r . If r = m, the system has a solution. This solution is unique if r = n.
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Example

Consider the system

x1 + 2x2 + 2x4 = b1
2x2 + 3x3 + x5 = b2

−x4 + x5 = b3
0 = b4

The augmented matrix of this system is
1 2 0 2 0 b1
0 2 3 0 1 b2
0 0 0 −1 2 b3
0 0 0 0 0 b4

 .

The basic variables are x1, x2 and x4. If b4 = 0 the system is consistent.
Under this assumption we can choose x3 and x5 as parameters. Let x3 = p
and x5 = q.
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Example

The third equation yields x4 = q − b3. Similarly, the second equation
implies x2 = 0.5(b2 − 3p − q). Substituting these value in the first
equation allows us to write x1 = b1 − b2 + 2b3 − 3p − q.
Further transformations of this system allow us to construct an equivalent
linear system whose matrix contain the columns of the matrix I3.
Subtracting the second row from the first yields:

1 0 −3 2 −1 b1 − b2
0 2 3 0 1 b2
0 0 0 −1 2 b3
0 0 0 0 0 b4

 .
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Example

Then, dividing the second row by 2 will produce:
1 0 −3 2 −1 b1 − b2
0 1 3/2 0 1/2 b2/2
0 0 0 −1 2 b3
0 0 0 0 0 b4

 .

which creates the second column of I3. Next, multiply the third row by −1:
1 0 −3 2 −1 b1 − b2
0 1 3

2 0 1
2

b2
2

0 0 0 1 −2 −b3
0 0 0 0 0 b4

 .

Finally, multiply the third by −2 and add it to the first row:
1 0 −3 0 1 b1 − b2 + 2b3
0 1 3

2 0 1
2

b2
2

0 0 0 1 −2 −b3
0 0 0 0 0 b4

 .
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Example

Thus, if we choose for the basic variables

x1 = b1 − b2 + 2b3, x2 =
b2
2
, and x4 = −b3

and for the non-basic variables x3 = x5 = 0 we obtain a solution of the
system.
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We shall see that the extended echelon form of a system can be achieved
by applying certain transformations on the rows of the augmented matrix
of the system (which amount to transformations involving the equations of
the system). In preparation, a few special invertible matrices are
introduced in the next examples.
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Example

Consider the matrix

T (i)↔(j) =



1 · · · · · ·
...

...
...

...
...

· · · 0 · · · 1 · · ·
...

...
...

...
...

· · · 1 · · · 0 · · ·
...

...
...

...
...

· · · 1


,

where line i contains exactly one 1 in position j and line j contains exactly
one 1 in position i . If T (i)↔(j) ∈ Cp×p and A ∈ Cp×q, it is easy to see that
the matrix T (i)↔(j)A is obtained from the matrix A by permuting the lines
i and j .
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Example

For instance, consider the matrix T (2)↔(4) ∈ C4×4 defined by:

T (2)↔(4) =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0


and the matrix A ∈ C4×5.
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Example

We have:

T (2)↔(4)A =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0



a11 a12 a13 a14 a15
a21 a22 a23 a24 a25
a31 a32 a33 a34 a35
a41 a42 a43 a44 a45



=


a11 a12 a13 a14 a15
a41 a42 a43 a44 a45
a31 a32 a33 a34 a35
a21 a22 a23 a24 a25

 .

The inverse of T (i)↔(j) is T (i)↔(j) itself.
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Example

Let T a(i) ∈ Cp×p be the matrix

T a(i) =



1 0 · · · 0 · · · 0
0 1 · · · 0 · · · 0
...

... · · ·
... · · · 0

· · · · · · · · · a · · · 0
...

... · · ·
... · · · 0

0 0 · · · 0 · · · 1


that has a ∈ F − {0} on the i th diagonal element, 1 on the remaining
diagonal elements and 0 everywhere else. The product T a(i)A is obtained

from A by multiplying the i th row by a. The inverse of this matrix is T
1
a
(i).
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Example

Consider the matrix T 3(2) ∈ C4×4 given by

T 3(2) =


1 0 0 0
0 3 0 0
0 0 1 0
0 0 0 1

 .

If A ∈ C4×5 the matrix T 3(2)A is obtained from A by multiplying its second line
by 3. We have
1 0 0 0
0 3 0 0
0 0 1 0
0 0 0 1



a11 a12 a13 a14 a15
a21 a22 a23 a24 a25
a31 a32 a33 a34 a35
a41 a42 a43 a44 a45

 =


a11 a12 a13 a14 a15
3a21 3a22 3a23 3a24 3a25
a31 a32 a33 a34 a35
a41 a42 a43 a44 a45

 .
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Example

Let T (i)+a(j) ∈ Cp×p be the matrix whose entries are identical to the
matrix Ip with the exception of the element located in row i and column j
that equals a:

T (i)+a(j) =



1 0 · · · · · · · · · 0 · · · 0
0 1 · · · · · · · · · 0 · · · 0
...

... · · ·
... · · ·

... · · · 0
0 0 · · · a · · · 1 · · · 0
...

... · · ·
... · · ·

... · · · 1

 .

The result of the multiplication T (i)+a(j)A is a matrix that can be
obtained from A by adding the j th line of A multiplied by a to the i th line
of A. The inverse of the matrix T (i)+a(j)A is T (i)−a(j)A.
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Example

We have

T (4)+2(2)A =


1 0 0 0
0 1 0 0
0 0 1 0
0 2 0 1



a11 a12 a13 a14 a15
a21 a22 a23 a24 a25
a31 a32 a33 a34 a35
a41 a42 a43 a44 a45



=


a11 a12 a13 a14 a15
a21 a22 a23 a24 a25
a31 a32 a33 a34 a35

a41 + 2a21 a42 + 2a22 a43 + 2a23 a44 + 2a24 a45 + 2a25

 .
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It is easy to see that if one multiplies a matrix A at the right by T (i)↔(j),
T a(i), and T (i)+a(j) the effect on A consists of exchanging the columns i
and j , multiplying the i th column by a, and adding the j th column
multiplied by a to the i th column, respectively.
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Definition

Let F be a field, A,C ∈ Fm×n and let bbb,ddd ∈ Fm×1. Two systems of linear
equations Axxx = bbb and Cxxx = ddd are equivalent if they have the same set of
solutions.

If Axxx = bbb is a system of linear equations in matrix form, where A ∈ Cm×n

and bbb ∈ Cm×1, and T ∈ Cm×m is a matrix that has an inverse, then the
systems Axxx = bbb and (TA)xxx = (Tbbb) are equivalent. Indeed, any solution of
Axxx = bbb satisfies the system (TA)xxx = (Tbbb). Conversely, if (TA)xxx = (Tbbb),
by multiplying this equality by T−1 to the left, we get
(T−1T )Axxx = (T−1T )bbb, that is, Axxx = bbb.
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The matrices T (i)↔(j), T a(i), and T (i)+a(j) play a special role in an
algorithm that transforms a linear system Axxx = bbb into an equivalent
system in row echelon form. These transformations are known as
elementary transformation matrices.
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Algorithm for the Row Echelon Form of a Matrix

Data:An matrix A ∈ Fp×q.
Result: A row echelon form of A.

r = 1; c = 1;
while(r ⩽ p and c ⩽ q) do {

while (A(∗, c) = 000) {c=c+1}
j = r ;
while (A(j , c) = 0) {j = j+1}
if (j ̸= r) {exchange line r with line j}

multiply line r by 1
A(r ,c)

ForEach (k = r + 1 to p)
{add line r multiplied by −A(k , c) to line k}

r = r + 1; c = c + 1;
}
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Example

Consider the linear system

x1 + 2x2 + 3x3 = 4

x1 + 2x2 + x3 = 3

x1 + 3x2 + x3 = 1.

The augmented matrix of this system is

[A|bbb] =

1 2 3 4
1 2 1 3
1 3 1 1

 .

By subtracting the first row from the second and the third we obtain the
matrix

T (3)−1(1)T (2)−1(1)[A|bbb] =

1 2 3 4
0 0 −2 −1
0 1 −2 −3

 .
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Example

Next, the second and third row are exchanged yielding the matrix

T (2)↔(3)T (3)−1(1)T (2)−1(1)[A|bbb] =

1 2 3 4
0 1 −2 −3
0 0 −2 −1

 .

To obtain an 1 in the pivot of the third row we multiply the third row by
−1

2 :

T−0.5(3)T (2)↔(3)T (3)−1(1)T (2)−1(1)[A|bbb] =

1 2 3 4
0 1 −2 −3
0 0 1 0.5

 ,

which is the row echelon form of the matrix [A|bbb].
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Example

To achieve the row echelon form we needed to multiply the matrix [A|bbb]
by the matrix

T = T−0.5(3)T (2)↔(3)T (3)−1(1)T (2)−1(1).

The solutions of the system can now be obtained by back substitution
from the linear system

x1 + 2x2 + 3x3 = 4,

x2 − 2x3 = −3,

x3 = 0.5.

The last equation yields x3 = 0.5. Substituting x3 in the second equation
implies x2 = −2; finally, from the first equality we have x1 = 6.5.
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Theorem

Let T a(i), T (p)↔(q), and T (i)+a(j) be the matrices in Rm×m that
correspond to the row transformations applied to matrices in Rm×n, where
i ̸= j and p ̸= q. We have:

T a(i)T (p)↔(q) =


T (p)↔(q)T a(i) if i ̸∈ {p, q},
T (p)↔(q)T a(q) if i = p,

T (p)↔(q)T a(p) if i = q,

,

T (i)+a(j)T (p)↔(q) =


T (p)↔(q)T (i)+a(j) if {i , j} ∩ {p, q} = ∅,
T (q)+a(j)T (p)↔(q) if i = p and j ̸= q,

T (i)+a(p)T (p)↔(q) if i ̸= p and j = q,

T (q)+a(p)T (p)↔(q) if i = p and j = q.
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The matrices that describe elementary transformations are of two types:
lower triangular matrices of the form T a(i) or T (i)+a(j) or permutations
matrices of the form T (p)↔(q).
If all pivots encountered in the construction of the row echelon form of the
matrix A are not-zero then there is no need to have any permutation
matrix T (p)↔(q) among the matrices that multiply A at the left. Thus,
there is a lower matrix T and an upper triangular matrix U such that
TA = U.
The matrix T is a product of invertible matrices and therefore it is
invertible. Since the inverse L = T−1 of a lower triangular matrix is lower
triangular, it follows that A = LU; in other words, A can be decomposed
into a product of a lower triangular and an upper triangular matrix. This
decomposition is known as an LU-decomposition of A.
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Example

Let A ∈ R3×3 be the matrix

A =

1 0 1
2 1 1
1 −1 2


Initially, we add the first row multiplied by −2 to the second row, and the
same first row, multiplied by −1 to the third row. This amounts to

T (3),−(1)T (2),−2(1)A =

1 0 1
0 1 −1
0 −1 1


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Example

Next, we add the second row to the third to produce the matrix

T (3)+(2)T (3),−(1)T (2),−2(1)A =

1 0 1
0 1 −1
0 0 0

 ,

which is an upper triangular matrix. We can conclude that rank(A) = 2
and we can write:

A = (T (2),−2(1))−1(T (3),−(1))−1(T (3)+(2))−1

1 0 1
0 1 −1
0 0 0



Prof. Dan A. Simovici CS724: Topics in Algorithms Solving Linear Systems Slide Set 6 41 / 72



Example

Thus, the lower triangular matrix we are seeking is

L = (T (2)−2(1))−1(T (3),−(1))−1(T (3)+(2))−1 = T (2)+2(1)T (3)+(1)T (3)−(2)

=

1 0 0
2 1 0
0 0 1

1 0 0
0 1 0
1 0 1

1 0 0
0 1 0
0 −1 1

 =

1 0 0
2 1 0
1 −1 1

 ,

which shows that A can be written as:

A =

1 0 0
2 1 0
1 −1 1

1 0 1
0 1 −1
0 0 0

 ,

where the first matrix is lower triangular and the second is upper triangular.
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Suppose that during the construction of the matrix U some of the
elementary transformation matrices are permutations matrices of the form
T (p)↔(q).
Matrices of the form T (p)↔(q) can be shifted to the right. Therefore,
instead on the previous factorization of the matrix A we have a lower
triangular matrix T and a permutation matrix (which results as a product
of all permutation matrices of the form T (p)↔(q) used in the algorithm
such that TPA = U. In this case we obtain an LU-factorization of PA
instead of A.
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Theorem

Let A ∈ Rm×n be a matrix. If rank(A) = k, then a largest non-singular
square submatrix B of A is a k × k-matrix.
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The function inv computes the inverse of an invertible square matrix.

Example

Let A be the invertible matrix

A =

1 2

2 3

Its inverse is given by;

>> inv(A)

ans =

-3.0000 2.0000

2.0000 -1.0000
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Example

On other hand, if inv is applied to a singular matrix

A =

1 2

2 4

an error message is posted:

Warning: Matrix is singular to working precision.
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If A is non-singular, the function inv can be used to solve the system
Axxx = bbb by writing x = inv(A)*b, although a better method is described
below.

Example

For

A =

(
1 2
2 3

)
and bbb =

(
13
23

)
the solution of the system Axxx = bbb is

x = inv(A)*b

x =

7.0000

3.0000
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This is not the best way for solving a system of linear equations. In certain
circumstances, this method produces errors and has a poor time
performance.
A better approach is for solving a linear system Axxx = bbb is to use the
backslash operator x = A \ b or x = mldivide(A,b). The term
mldivide is related to the position of the matrix A at the left of xxx .
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Example

Define A and bbb as

>> A = [5 11 2; 10 6 -4; -2 9 7]

A =

5 11 2

10 6 -4

-2 9 7

>> b=[53;26;48]

b =

53

26

48

Then either x=A\b or x=mldivide(A,b) produces

x =

1.0000

4.0000

2.0000
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The system xxxA = ccc , where A ∈ Rn×m and ccc ′ ∈ Rm can be solved using
either x = A / b or x = mrdivide(A,b).
It is easy to see that these operations are related by:

A\b = (A′/b′)′.
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The function rref produces the reduced row echelon form of a matrix A,
when called as R = rref(A).
A variant of this function, [R,r] = rref(A) also yields a vector r so that
r indicates the non-zero pivots, length(r) is the rank of A, and A(:,r)

is a basis for the range of A. Roundoff errors may cause this algorithm to
produce a rank for A that is different from the actual rank.
A pivot tolerance tol used by the algorithm to determine negligible
columns can be specified using rref(A,tol).
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Example

Starting from the matrix

A =

1 2 3 4 5 6

7 8 9 10 11 12

1 3 5 7 9 11

the function call [R,r]=rref(A) returns

R =

1 0 -1 -2 -3 -4

0 1 2 3 4 5

0 0 0 0 0 0

r =

1 2

showing that the rank of A is 2.
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Let Auuu = bbb be a linear system, where A ∈ Cn×n is a non-singular matrix
and bbb ∈ Rn.
We examine the sensitivity of the solution of this system to small
variations of bbb. So, together with the original system, we work with a
system of the form Avvv = bbb + hhh, where hhh ∈ Rn is the perturbation of bbb.
Note that A(vvv − uuu) = hhh, so vvv − uuu = A−1hhh. Using a vector norm ∥ · ∥ and
its corresponding matrix norm ||| · ||| we have

∥ vvv − uuu ∥=∥ A−1hhh ∥⩽ |||A−1||| ∥ hhh ∥ .
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Since
∥ vvv − uuu ∥=∥ A−1hhh ∥⩽ |||A−1||| ∥ hhh ∥ .

and ∥ bbb ∥=∥ Auuu ∥⩽ |||A||| ∥ uuu ∥, it follows that

∥ vvv − uuu ∥
∥ uuu ∥

⩽
|||A−1||| ∥ hhh ∥

∥bbb∥
|||A|||

=
|||A||||||A−1||| ∥ hhh ∥

∥ bbb ∥
. (1)

Thus, the relative variation of the solution, ∥vvv−uuu∥
∥uuu∥ is upper bounded by the

number |||A||||||A−1|||∥hhh∥
∥bbb∥ .
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Definition

Let A ∈ Cn×n be a non-singular matrix. The condition number of A
relative to the matrix norm ||| · ||| is the number cond(A) = |||A||||||A−1|||.
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The Equality
∥ vvv − uuu ∥
∥ uuu ∥

=
|||A||||||A−1||| ∥ hhh ∥

∥ bbb ∥
.

implies that if the condition number is large, then small variations in bbb may
generate large variations in the solution of the system Auuu = bbb, especially
when bbb is close to 000. When this is the case, we say that the system Auuu = bbb
is ill-conditioned. Otherwise, the system Auuu = bbb is well-conditioned.
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Theorem

Let A ∈ Cn×n be a non-singular matrix. The following statements hold for
every matrix norm induced by a vector norm:

cond(A) = cond(A−1);
cond(cA) = |c |cond(A);
cond(A) ⩾ 1.
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Proof.

We prove here only Part (iii). Since AA−1 = I , by the properties of a
matrix norm induced by a vector norm we have:

cond(A) = |||A||||||A−1||| ⩾ |||AA−1||| = |||In||| = 1.
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Let A,B be two non-singular matrices in Cn×n such that B = aA, where
a ∈ C.
We have B−1 = a−1A−1, |||B||| = |a||||B||| and |||B−1||| = |a|−1|||A−1||| so
cond(B) = cond(A).
On another hand, det(B) = an det(A). Thus, if n is large enough and
a < 1, then det(B) can be quite close to 0, while the condition number of
B may be quite large. This shows that the determinant and the condition
number are relatively independent.
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Example

Let A ∈ C2×2 be the matrix

A =

(
a a+ α

a+ α a+ 2α

)
,

where a > 0 and α < 0. We have

A−1 =

(
−a+2α

α2
a+α
α2

a+α
α2 − a

α2

)
,

so |||A|||1 = a and |||A−1|||1 = a
α2 . Thus, cond(A) =

(
a
α

)2
and, if |α| is small

a system of the for Auuu = bbb may be ill-conditioned.
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Theorem

Let A ∈ Cn×n be an invertible matrix and let ∥ · ∥ be a norm on Cn. We
have:

|||A−1||| = 1

min{∥ Axxx ∥ | ∥ xxx ∥= 1}
,

where ||| · ||| is the matrix norm generated by ∥ · ∥.
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Proof
We claim that

{∥ A−1ttt ∥ | ∥ ttt ∥= 1} =

{
1

∥ Axxx ∥
| ∥ xxx ∥= 1

}
.

Let a =∥ A−1ttt ∥ for some ttt ∈ Cn such that ∥ ttt ∥= 1. Define xxx as

xxx =
1

∥ A−1ttt ∥
A−1ttt.

Clearly, we have ∥ xxx ∥= 1. In addition,

∥ Axxx ∥= ∥ ttt ∥
∥ A−1ttt ∥

=
1

∥ A−1ttt ∥
=

1

a
,

so a ∈
{

1
∥Axxx∥ | ∥ xxx ∥= 1

}
. Thus,

{∥ A−1ttt ∥ | ∥ ttt ∥= 1} ⊆
{

1

∥ Axxx ∥
| ∥ xxx ∥= 1

}
.
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Proof (cont’d)

Let b = 1
∥Axxx∥ for some xxx such that ∥ xxx ∥= 1.

Define yyy = 1
∥Axxx∥Axxx . We have ∥ yyy ∥= 1. Also,

A−1yyy =
1

∥ Axxx ∥
xxx ,

so b ∈
{
∥ A−1zzz ∥ | ∥ zzz ∥= 1

}
. Thus

{∥ A−1zzz ∥ | ∥ zzz ∥= 1} ⊇
{

1

∥ Axxx ∥
| ∥ xxx ∥= 1

}
,

hence we have the equality.
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Ill-conditioned linear systems Auuu = bbb may occur when large differences in
scale exists among the columns of A, or among the rows of A.

Theorem

Let A = (aaa1 · · · aaan) be an invertible matrix in Cn×n, where aaa1, . . . ,aaan are
the columns of A. Then,

cond(A) ⩾ max

{
∥ aaai ∥
∥ aaaj ∥

| 1 ⩽ i , j ⩽ n

}
.
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Proof

Since cond(A) = |||A||||||A−1|||, we have

cond(A) =
max{∥ Axxx ∥ | ∥ xxx ∥= 1}
min{∥ Axxx ∥ | ∥ xxx ∥= 1}

Note that Aeeek = aaak , where aaak is the kth column of A and that ∥ eeek ∥= 1.
Therefore,

max{∥ Axxx ∥ | ∥ xxx ∥= 1} ⩾ ∥ aaai ∥,
min{∥ Axxx ∥ | ∥ xxx ∥= 1} ⩽ ∥ aaaj ∥,

which implies

cond(A) ⩾
∥ aaai ∥
∥ aaaj ∥

for all 1 ⩽ i , j ⩽ n. This yields the inequality of the theorem.
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Example

Let

A =

(
1 0
1 α

)
,

where α ∈ R and α > 0. The matrix A is invertible and

A−1 =

(
1 0
− 1

α
1
α

)
.

It is easy to see that the condition number of A relative to the Frobenius
norm is

cond(A) =
2 + α2

α
.

Thus, if α is sufficiently close to 0, the condition number can reach
arbitrarily large values.
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In general, we use as matrix norms, norms of the form ||| · |||p. The
corresponding condition number of a matrix A is denoted by condp(A).

Example

Let A = diag(a1, . . . , an) be a diagonal matrix. Then,

|||A|||2 = max1⩽i⩽n |ai |. Since A−1 = diag
(

1
a1
, . . . , 1

an

)
, it follows that

|||A−1|||2 = 1
min1⩽i⩽n |ai | , so cond2(A) =

max1⩽i⩽n |ai |
min1⩽i⩽n |ai | .
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The condition number of a matrix A is computed using the function
cond(A,p) which returns the p-norm condition of matrix A. When used
with a single parameter, as in cond(A), the 2-norm condition number of A
is returned.
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Example

Let A be the matrix

>> A=[10.1 6.2; 5.1 3.1]

A =

10.1000 6.2000

5.1000 3.1000

The condition number cond(A) is 567.966, which is quite large indicating
significant sensitivity to inverse calculations. The inverse of A is

>> inv(A)

ans =

-10.0000 20.0000

16.4516 -32.5806
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Example

If we make a small change in A yielding the matrix

>> B=[10.2 6.3;5.1 3.1]

B =

10.2000 6.3000

5.1000 3.1000

the inverse of B changes completely:

>> inv(B)

ans =

-6.0784 12.3529

10.0000 -20.0000
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Values of the condition number close to 1 indicate a well-conditioned
matrix, and the opposite is true for large values of the condition number.

Example

Consider the linear systems:

10.1x1 + 6.2x2 = 12
5.1x1 + 3.1x2 = 6

and
10.2x1 + 6.3x2 = 12
5.1x1 + 3.1x2 = 6

that correspond to Axxx = bbb and Bxxx = bbb, where bbb =

(
12
6

)
. In view of the

resemblance of A and B one would expect their solutions to be close.
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Example

However, this is not the case. The solution of Axxx = bbb is

>> x=inv(A)*b

x =

0

1.9355

while the solution of Bxxx = bbb is

>> x=inv(B)*b

x =

1.1765

0
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