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Consider the following set of linear equalities

axy+ ...+ anxn = b1,
X1+ ...+ amxp = b,
amiXx1+ ...+ amnXn = bm,

where aj; and b; belong to a field F. This set constitutes a system of linear
equations. Solving this system means finding xi, ..., x, that satisfy all
equalities.
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The system can be written succinctly in a matrix form as Ax = b, where

and

ai

azi
A=

aml

ain b
azn by
M b — M
dmn bm
X1
X2
Xn

If the set of solutions of a system Ax = b is not empty we say that the
system is consistent. Note that Ax = b is consistent if and only if

b € range(A).
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Let Ax = b be a linear system in matrix form, where A € C™*". The
matrix [A b] € C™*("*1) is the augmented matrix of the system Ax = b.
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Theorem

Let A€ C™" be a matrix and let b € C"™*1. The linear system Ax = b is
consistent if and only if rank(A b) = rank(A).

Proof.
If Ax = b is consistent and x’ = (x1, ..., xp) is a solution of this system,
then b = x;¢1 + - - - + x,Cp, Where ¢q, ..., c, are the columns of A. This

implies rank([A b]) = rank(A).
Conversely, if rank(A b) = rank(A), the vector b is a linear combination of
the columns of A, which means that Ax = b is a consistent system. O

v
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Definition
An homogeneous linear system is a linear system of the form Ax = 0,
where A € C™*" x € C™! and 0 € C™*1.

Clearly, any homogeneous system Ax = 0,, has the solution x = 0,. This
solution is referred to as the trivial solution. The set of solutions of such a
system is null(A), the null space of the matrix A.
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Let u and v be two solutions of the system Ax = b. Then A(u —v) =0,
so z = u — v is a solution of the homogeneous system Ax = 0,,, or

z € null(A). Thus, the set of solutions of Ax = b can be obtained as a
“translation” of the null space of A by any particular solution of Ax = b.
In other words the set of solution of Ax = b is {x +z | z € null(A)}.
Thus, for A € C™*" the system Ax = b has a unique solution if and only
if null(A) = {0,}, that is, if rank(A) = n.

%

UMASS
BOSTON

Prof. Dan A. Simovici CS724: Topics in Algorithms Solving Lineat 7/72




Theorem

Let A€ C"™". Then, A is invertible (which is to say that rank(A) = n) if
and only if the system Ax = b has a unique solution for every b € C".

Proof.

If A is invertible, then x = A™1b, so the system Ax = b has a unique
solution.

Conversely, if the system Ax = b has a unique solution for every b € C”,
let c1,...,cn be the solution of the systems Ax =ej,...,Ax = e,
respectively. Then, we have

A(e1l---len) = In,

which shows that A is invertible and A™! = (¢1|---|c,). O
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Corollary

An homogeneous linear system Ax = 0, where A € C"*" has a non-trivial
solution if and only if A is a singular matrix.
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Definition

A matrix A € C"™*" is diagonally dominant if
laiil > > {laix] | 1< k < nand k #i}.

Theorem

A diagonally dominant matrix is non-singular.
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Proof

Suppose that A € C"*" is a diagonally dominant matrix that is singular.
The homogeneous system Ax = 0 has a non-trivial solution x £ 0. Let xx
be a component of x that has the largest absolute value. Since x # 0, we
have |xx| > 0. We can write

auxk =— > fagx | 1<j<nandj+#k},

which implies

|lakk| Ixk| = ‘Z{aijj \ lgjgnandj;ék}’
< D layl byl | 1< <nandj # kY
< Il ) A{lawl | 1<j<nandj#k}.

Thus, we obtain

ol <D {lawl | 1< <nand j# K} pa

which contradicts the fact that A is diagonally dominant. *™"
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We begin with a class of linear systems that can easily be solved.
Definition

A matrix C € C™*" is in row echelon form if the following conditions are
satisfied:

@ rows that contain a non-zero elements precede zero rows (that is,
rows that contain only zeros);

@ if ¢jj is the first non-zero element of the row /, all elements in the e
column located below cj;, that is, entries of the form c¢,; with k > j
are zero;

e if i </, cjj is the first non-zero element of the row /, and ¢, is the
first non-zero element of the row ¢, then j; < jy.

The first non-zero element of a row i (if it exists) is called the pivot of the
row i.

v
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Example

Let C € R**® be the matrix

120 2 0
023 0 1
€= 0 00 -1 2
000 O O

It is clear that C is in row echelon form; the pivots of the first, second and
third rows are ¢c;1 = 1, co» = 2, and ¢34 = —1.

o

%

UMASS
BOSTON

Prof. Dan A. Simovici CS724: Topics in Algorithms Solving Linea 13/72



Theorem

Let C € C™*" be a matrix in row echelon form such that the rows that
contain non-zero elements are the first r rows. Then, rank(C) = r.

Proof: Let c1,...,c, be the non-zero rows of C. Suppose that the row c;
has the first non-zero element in the column j; for 1 < i < r. By the
definition of the echelon form we have ji < o < --+ < j;.
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Suppose that a;c; + - - + a,¢, = 0. This equality can be written as:

aa; = 0,
acy, + a0, = 0,
aicin+ axcon+...+acy = 0.

Since cyj, # 0, we have a; = 0. Substituting a; by 0 in the second equality
implies ap = 0 because ¢p;, # 0, etc. Thus, we obtain

ap =ay =...= a, =0, which proves that the rows c1,...,c, are linearly
independent. Since this is a maximal set of rows of C that is linearly
independent, it follows that rank(C) = r.
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Linear systems whose augmented matrices are in row echelon form can be
easily solved using a process called back substitution. Consider the
augmented matrix in row echelon form of a system with m equations and
n unknowns:

0 -~ 0 ay, - - - ai, b
0 -~ 0 0 - ay - am b
0 0 O arj, b,
0 0 O 0 bri1
0 --- 0 0 -« -+ 0 - by
The system of equations has the form:
aljlle 4 + aipxp, = bl
azﬂxj2 + ...... _|_ a2an — b2
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The variables x;,, x;,, ..., x;, that correspond to the columns where the
pivot element occur are referred to as the basic variables. The remaining
variables are non-basic.

Note that we have r < min{m, n}. If r < m and there exists by # 0 for

r < £ < m, then the system is inconsistent and no solutions exist. If r = m
or by = 0 for r < £ < m < n, one can choose the variables that do not
correspond to the pivot elements, {x; | i & {Jj1,/2,-..,Jr} as parameters
and express the basic variables as functions of these parameters.
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The process starts with the last basic variable, x;, (because every other
variable in the equation a,, xj, + -+ amx, = by is a parameter), and then
substitutes this variable in the previous equality. This allows us to express
xj,_, as a function of parameters, etc. This explains the term back
substitution previously introduced. If r = n, then no parameters exist.

To conclude, if r < m the system has a solution if and only if b; = 0 for

Jj > r. If r = m, the system has a solution. This solution is unique if r = n.
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Example

Consider the system

X1 + 2X2 +
2x>  + 3X3 +

The augmented matrix of this system is

120 2
023 0
0 00 -1
000 O

—X4

O N = O

by
b
b3
by

2X4
X5
X5

by
b3
by

The basic variables are x1,xo and x4. If by = 0 the system is consistent.

Under this assumption we can choose x3 and x5 as parameters. Let x3 = p

and x5 = gq.
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Example

The third equation yields x4, = g — bs. Similarly, the second equation
implies xo = 0.5(b2 — 3p — q). Substituting these value in the first
equation allows us to write x; = by — bp +2b3 — 3p — gq.

Further transformations of this system allow us to construct an equivalent
linear system whose matrix contain the columns of the matrix /5.
Subtracting the second row from the first yields:

10 -3 2 -1 b—»b
02 3 0 1 by
00 0 -1 2 b3
00 0 O O ba
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Example

Then, dividing the second row by 2 will produce:

1 0 -3 2 -1 b—b
01 3/2 0 1/2 b/
00 0 -1 2 bs
00 0 0 0 by

which creates the second column of /5. Next, multiply the third row by —1:

1 0 -3 2 -1 b—b
01 3 0 3 2
00 0 1 —2 —b
00 0 0 0 b

Finally, multiply the third by —2 and add it to the first row:

1 0 =3 0 1 by—by+2bs
01 3 0 3 3
00 0 1 -2 —bs
00 0 0 0 by
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Example
Thus, if we choose for the basic variables

b
xi = by — by + 2b3, 30 = ?2 and x4 = —bs

and for the non-basic variables x3 = x5 = 0 we obtain a solution of the
system.
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We shall see that the extended echelon form of a system can be achieved
by applying certain transformations on the rows of the augmented matrix
of the system (which amount to transformations involving the equations of
the system). In preparation, a few special invertible matrices are
introduced in the next examples.
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Example

Consider the matrix

Te0) —

1
where line i/ contains exactly one 1 in position j and line j contains exactly
one 1 in position i. If T()<0) € CP*P and A € CPXY, it is easy to see that

the matrix T(D<U)A is obtained from the matrix A by permuting the lines
i and j.

| () |
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Example

For instance, consider the matrix T(2¢(4) € C**4 defined by:

T(@)e(8) _

O O O+
= O O O
o = O O
O O = O

and the matrix A € C**,
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Example
We have:

d11 d12 4d13 4di4 4dis
a1 da22 a3 dz4 axp
d31 4d32 433 d34 ass
d41 442 443  d44 445

T@e@) 4 _

o O O
= O O O
O = O O
O O = O

a11 412 413 414 4ais
d41 @42 a43 d44  a4s
a31 a32 a33 434 ass
a1 a2 423 a4 axs

The inverse of T(N0) js T(<0) jtself,
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Example

Let T2() € CPXP be the matrix

1 0 ---0

A )
T a ---0
: : : .0

that has a € F — {0} on the i*'" diagonal element, 1 on the remaining
diagonal elements and 0 everywhere else. The product T2() A is obtained

from A by multiplying the i*" row by a. The inverse of this matrix is T30,
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Example

Consider the matrix T3 e C*** given by

1000
3 _ |0 300
T 0010

000 1

If A e C*° the matrix T3@A is obtained from A by multiplying its second line
by 3. We have

100 0 a1 a2 a3 du  as a1 a2 a3 du A
0 3 00 a1 a» a3 ax ax | _ |3ax 3ax 3ax3 3ax 3ax
0 0 1 Of |as a2 a as as| | as ax a3 au  ass
0 0 01 aql  aAs 43 A ass as1  Ax a3 a4 ags

v
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Example

Let T(D+20) € CPXP be the matrix whose entries are identical to the
matrix /, with the exception of the element located in row / and column j
that equals a:

1 0 - 0 ---0

01 - 0 ---0

T(N+al) — : .0
00 a 1 ---0

1

The result of the multiplication T()+2U) A is a matrix that can be
obtained from A by adding the j* line of A multiplied by a to the i*" line
of A. The inverse of the matrix T(N+al) A js T()=al) 4,
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Example
We have
1000 ail a2 a3 adi4 ais
T(+2(2) 4 — 0 1 0 O [ax ax a3 axu ax
0010 as1 a3 a3 a4 ass
0 201 341 A42 43 aAss  Ass
an a2 ai3 aia ais
_ an ax a3 ax ars
as a2 as3 a4 ass
ag1 +2ap1  anp +2axp as3 +2ax3  aga + 2axs  ass + 2axs
v
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It is easy to see that if one multiplies a matrix A at the right by T()<0),
T2() and T()+20) the effect on A consists of exchanging the columns i
and j, multiplying the i*" column by a, and adding the j** column
multiplied by a to the i** column, respectively.
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Definition

Let F be a field, A, C € F™*" and let b,d € F™*1. Two systems of linear
equations Ax = b and Cx = d are equivalent if they have the same set of
solutions.

If Ax = b is a system of linear equations in matrix form, where A € C"*"
and b € C™! and T € C™ ™ is a matrix that has an inverse, then the
systems Ax = b and (TA)x = (Tb) are equivalent. Indeed, any solution of
Ax = b satisfies the system (TA)x = (Tb). Conversely, if (TA)x = (Tb),
by multiplying this equality by T~ to the left, we get

(T71T)Ax = (T~1T)b, that is, Ax = b.
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The matrices T(<0) Ta() and T(D+20) play a special role in an
algorithm that transforms a linear system Ax = b into an equivalent
system in row echelon form. These transformations are known as
elementary transformation matrices.
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Algorithm for the Row Echelon Form of a Matrix

Data:An matrix A € FP*9,
Result: A row echelon form of A.
r=1,c=1;
while(r < p and ¢ < g) do {
while (A( c) =0) {c=c+1}
Jj=r
while (A(j,c) =0) {j = j+1}
if (j # r) {exchange line r with line j}
multiply line r by ﬁ
ForEach (k =r+1 to p)
{add line r multiplied by —A(k, ¢) to line k}
r=r+1,c=c+1;

}
%

UMASS
BOSTON

Prof. Dan A. Simovici CS724: Topics in Algorithms Solving Lineat 34/72



Example
Consider the linear system

X1+ 2x0 +3x3 =
xX1+2x0+x3 = 3
X1+3X2+X3 = 1.

The augmented matrix of this system is

123
A= |1 2 1
1 31

= W b

By subtracting the first row from the second and the third we obtain the
matrix

12 3 4
T TE-1WAB = |0 0 —2 -1
01 —2 -3
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Example
Next, the second and third row are exchanged yielding the matrix

12 3 4
T@E) TE-1OTEWA = [0 1 —2 -3
00 —2 -1

To obtain an 1 in the pivot of the third row we multiply the third row by
1.

L
12 3 4

T-050) T@+() 7O T@-10Ap = [0 1 -2 3],
00 1 05

which is the row echelon form of the matrix [A|b].
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Example
To achieve the row echelon form we needed to multiply the matrix [A|b]
by the matrix

T = T-056) T)=() T(3)-1(1) 7()-1(1),

The solutions of the system can now be obtained by back substitution
from the linear system

x1+2x0+3x3 = 4,
X — 2X3 = —3,
X3 = 0.5.

The last equation yields x3 = 0.5. Substituting x3 in the second equation
implies xo, = —2; finally, from the first equality we have x; = 6.5.
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Theorem

Let T20) TP)(a) apd T()+al) pe the matrices in R™<™ that

correspond to the row transformations applied to matrices in R™*", where
i #j and p # q. We have:

TP)=(a) Tali)  jf Z{p,ql,
720) T(P)=(a)  — TP)=(a) Tala) jfj = P,
TWP(@TalP) i = q,

)

T(P)=(a) T()+ali) if{i,j}n{p,q} =0,
T+a0) T(P)=(a) — T@+OT@D if i = p and j # q,

TO+aP) T(P)(a)  jfj £ pandj = q,

T@+ap) T(P)= (@) jfj=p and j = q.
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The matrices that describe elementary transformations are of two types:
lower triangular matrices of the form T2() or T()+20) or permutations
matrices of the form T(P)<(a).

If all pivots encountered in the construction of the row echelon form of the
matrix A are not-zero then there is no need to have any permutation
matrix T(P)<(9) among the matrices that multiply A at the left. Thus,
there is a lower matrix T and an upper triangular matrix U such that
TA=U.

The matrix T is a product of invertible matrices and therefore it is
invertible. Since the inverse L = T~! of a lower triangular matrix is lower
triangular, it follows that A = LU; in other words, A can be decomposed
into a product of a lower triangular and an upper triangular matrix. This
decomposition is known as an LU-decomposition of A.
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Example

Let A € R3*3 be the matrix
1 0 1
A=12 1 1
1 -1 2
Initially, we add the first row multiplied by —2 to the second row, and the
same first row, multiplied by —1 to the third row. This amounts to

1 0 1
7@ -MT@-2Ma =0 1 -1
0 -1 1
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Example
Next, we add the second row to the third to produce the matrix

10 1
7O+ TE-OT@. 20— (o 1 _1
00 0

bl

which is an upper triangular matrix. We can conclude that rank(A) = 2
and we can write:

A = (T@=2))=1(76)=W)=1(T)+(2)) -1

o O =
o = O
I
=
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Example

Thus, the lower triangular matrix we are seeking is

L = (T@-20)1(7O)-0)LTE+@)-1 = TR+ TE+D) T3)-()
100\ /100 /1 0 0 1 0 0
= (2 10)l0o10]||0 1 0)]=[2 1 0],
001/ \101/\o -1 1 1 -1 1

which shows that A can be written as:

1 0 0 1 0 1
A=12 1 0 01 —-1],
1 -1 1 0 0 O

where the first matrix is lower triangular and the second is upper triangular.
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Suppose that during the construction of the matrix U some of the
elementary transformation matrices are permutations matrices of the form
T(P)=>(a)

Matrices of the form T(P)<(9) can be shifted to the right. Therefore,
instead on the previous factorization of the matrix A we have a lower
triangular matrix T and a permutation matrix (which results as a product
of all permutation matrices of the form T(P)<(9) used in the algorithm
such that TPA = U. In this case we obtain an LU-factorization of PA

instead of A.
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Theorem

Let A€ R™*" be a matrix. If rank(A) = k, then a largest non-singular
square submatrix B of A is a k X k-matrix.

%

UMASS
BOSTON

Prof. Dan A. Simovici CS724: Topics in Algorithms Solving Linear



The function inv computes the inverse of an invertible square matrix.
Example
Let A be the invertible matrix

A =

1 2
2 3
Its inverse is given by;

>> inv(4)
ans =

-3.0000 2.0000
2.0000 -1.0000
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Example
On other hand, if inv is applied to a singular matrix

A =
1 2
2 4

an error message is posted:

Warning: Matrix is singular to working precision.
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If A is non-singular, the function inv can be used to solve the system
Ax = b by writing x = inv(A)*D, although a better method is described
below.

Example

For

1 2 13
o 2 ()

the solution of the system Ax = b is

x = inv(A)*b
X =
7.0000
3.0000
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This is not the best way for solving a system of linear equations. In certain
circumstances, this method produces errors and has a poor time
performance.

A better approach is for solving a linear system Ax = b is to use the
backslash operator x = A \ bor x = mldivide(A,b). The term
mldivide is related to the position of the matrix A at the left of x.
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Example
Define A and b as

> A =[511 2; 10 6 -4; -2 9 7]
A =
5 11 2
10 6 -4
-2 9 7
>> b=[53;26;48]
b =
53
26
48

Then either x=A\b or x=mldivide(A,b) produces

x =
1.0000
4.0000
2.0000
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The system xA = ¢, where A € R™™ and ¢/ € R™ can be solved using
eitherx = A / borx = mrdivide(A,b).
It is easy to see that these operations are related by:

A\b = (A'/b).
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The function rref produces the reduced row echelon form of a matrix A,
when called as R = rref(4).

A variant of this function, [R,r] = rref(A) also yields a vector r so that
r indicates the non-zero pivots, length(r) is the rank of A, and A(:,r)
is a basis for the range of A. Roundoff errors may cause this algorithm to
produce a rank for A that is different from the actual rank.

A pivot tolerance tol used by the algorithm to determine negligible
columns can be specified using rref (A,tol).
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Example

Starting from the matrix

A =
1 2 3 4 5 6
7 8 9 10 11 12
1 3 5 7 9 11

R =
1 0 -1 -2 -3 -4
0 1 2 3 4 5
0 0 0 0 0 0
r =
1 2

showing that the rank of A is 2.
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Let Au = b be a linear system, where A € C"*" is a non-singular matrix
and b € R".

We examine the sensitivity of the solution of this system to small
variations of b. So, together with the original system, we work with a
system of the form Av = b + h, where h € R" is the perturbation of b.
Note that A(v — u) = h, so v —u = A~th. Using a vector norm || - || and
its corresponding matrix norm || - || we have

v —ul=l A7 < TATH AL
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Since
fv—ul=ATh|<|ATY A .

and || b ||=|| Au ||< ||A|l || u ||, it follows that

_ -1
[v—ul _ JANIA]

fal” S I
Al
_ lAmAT A (1)
b |l
Thus, the relative variation of the solution, ”'|/|;|'|'” is upper bounded by the
IALIA— Al
[l '

number
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Definition

Let A € C"™*" be a non-singular matrix. The condition number of A

relative to the matrix norm || - || is the number cond(A) = ||A||||A~

-

Prof. Dan A. Simovici
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The Equality
lv—ull _ JAIAZMI A 1L

o] b

implies that if the condition number is large, then small variations in b may
generate large variations in the solution of the system Au = b, especially
when b is close to 0. When this is the case, we say that the system Au= b
is ill-conditioned. Otherwise, the system Au = b is well-conditioned.
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Theorem

Let A € C"™" be a non-singular matrix. The following statements hold for
every matrix norm induced by a vector norm:

e cond(A) = cond(A™1);

e cond(cA) = |c|cond(A);

e cond(A) > 1.
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Proof.

We prove here only Part (iii). Since AA~! = I, by the properties of a

matrix norm induced by a vector norm we have:

cond(A) = [JAJIIATH] > IAATH = I/l = 1.
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Let A, B be two non-singular matrices in C"*" such that B = aA, where
aeC.

We have B-1 = a~1A~L, |B] = a[||B]| and [|B-1] = |a| " LJA"" so
cond(B) = cond(A).

On another hand, det(B) = a" det(A). Thus, if n is large enough and

a < 1, then det(B) can be quite close to 0, while the condition number of
B may be quite large. This shows that the determinant and the condition
number are relatively independent.
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Example

Let A € C2%2 be the matrix
A— a a+« ,
ata a+t2a

where a > 0 and o« < 0. We have

_at2a  ata
_ ata ’
a? o

Rl

[

so [|All: = a and [|[A"}]1 = %. Thus, cond(A) = (5)2 and, if |/ is small
a system of the for Au = b may be ill-conditioned.
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Theorem

Let A € C™" be an invertible matrix and let || - || be a norm on C". We

have:

1
min{|| Ax || || x [|= 1}’

lAH) =

where || - || is the matrix norm generated by || - ||.
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Proof

We claim that
1
aaennel=1={ g e =1},
I Ax ||
Let a =|| A=1t || for some t € c” such that | t ||= 1. Define x as
1
x=——"Alt.
A TE]
Clearly, we have || x ||= 1. In addition,
2]l 1 1
“ Ax ||: _ = _ =
A=t ]| [fA-te ] a

s0a € {HTlx” 1 x ||= 1}. Thus,

{HA_ltH\HtH=1}§{m [ x I=1 %4
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Proof (cont'd)

Let b= m for some x such that || x ||= 1.
Define y = mAx We have || y ||= 1. Also,

sobe {||[ Az ||| z|l=1}. Thus

—1z Z||= # X ||=
WAz zl=12 { g lxl=1}.

hence we have the equality.
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[ll-conditioned linear systems Au = b may occur when large differences in
scale exists among the columns of A, or among the rows of A.

Theorem

Let A= (a1 --- ap) be an invertible matrix in C"*", where ai, ..., a, are
the columns of A. Then,

cond(A)}max{” :': H | 1<i,j<n}.
J
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Proof

Since cond(A) = ||A|lIA7Y]|, we have

max{|| Ax || || x ||= 1}

cond(A) = il Ax | x = 1)

Note that Aex = ax, where ay is the k' column of A and that || e, ||= 1.
Therefore,

max{[| Ax [| || x [|=1
min{|[ Ax [|[ || x [=1

Iai |l
a1l

AN\

—

which implies

for all 1 < /,j < n. This yields the inequality of the theore
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Example

Let
1 0
2=(1 o)

where & € R and o« > 0. The matrix A is invertible and

_ 1 0

It is easy to see that the condition number of A relative to the Frobenius

norm is )
2
cond(A) = tar
o

Thus, if « is sufficiently close to 0, the condition number can reach
arbitrarily large values.
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In general, we use as matrix norms, norms of the form | - ||,. The
corresponding condition number of a matrix A is denoted by cond,(A).

Example

Let A = diag(az,...,an) be a diagonal matrix. Then,

IAll2 = maxi<i<n |ai|]. Since A~! = diag (l 1 ) it follows that

a1’ an

1 . 1 _ maxigi<n |ail
”’A |”2 = m, SO C0nd2(A) = ﬁ
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The condition number of a matrix A is computed using the function
cond(A,p) which returns the p-norm condition of matrix A. When used

with a single parameter, as in cond(A), the 2-norm condition number of A
is returned.
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Example

Let A be the matrix

>> A=[10.1 6.2; 5.1 3.1]
A =
10.1000 6.2000
5.1000 3.1000

The condition number cond (A) is 567.966, which is quite large indicating
significant sensitivity to inverse calculations. The inverse of A is

>> inv(A)
ans =
-10.0000 20.0000
16.4516 -32.5806
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Example
If we make a small change in A yielding the matrix

>> B=[10.2 6.3;5.1 3.1]
B =
10.2000 6.3000
5.1000 3.1000

the inverse of B changes completely:

>> inv(B)

ans =
-6.0784 12.3529
10.0000 -20.0000
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Values of the condition number close to 1 indicate a well-conditioned
matrix, and the opposite is true for large values of the condition number.

Example

Consider the linear systems:

10.1x3 +6.2x, = 12 and 10.2x1 + 6.3 = 12
51x +3.1x0 =6 51x+3.1x, = 6

that correspond to Ax = b and Bx = b, where b = 162 . In view of the

resemblance of A and B one would expect their solutions to be close.
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Example
However, this is not the case. The solution of Ax = b is

>> x=inv(A)*b
57 =
0
1.9355

while the solution of Bx = b is

>> x=inv(B)*b
=
1.1765
0
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