1. Introduction

2. Singular Values and Singular Vectors

3. MATLAB Computations
The singular value decomposition has been described as the “Swiss Army knife of matrix decompositions” due to its many applications in the study of matrices; from our point of view, singular value decomposition is relevant for dimensionality reduction techniques in data mining.
Let $A \in \mathbb{C}^{n \times n}$ be a square matrix which is unitarily diagonalizable. There exists a diagonal matrix $D = \text{diag}(d_1, \ldots, d_n) \in \mathbb{C}^{n \times n}$ and a unitary matrix $X \in \mathbb{C}^{n \times n}$ such that $A = XDX^H$; equivalently, we have $AX = XD$. If we denote the columns of X by x_1, \ldots, x_n, then $Ax_i = d_i x_i$, which shows that x_i is a unit eigenvector that corresponds to the eigenvalue d_i for $1 \leq i \leq n$. Also, we have

$$A = (x_1 \cdots x_n)\text{diag}(d_1, \ldots, d_n) \begin{pmatrix} x_1^H \\ \vdots \\ x_n^H \end{pmatrix} = d_1 x_1 x_1^H + \cdots + d_n x_n x_n^H.$$

This is the spectral decomposition of A. Note that $\text{rank}(x_i x_i^H) = 1$ for $1 \leq i \leq n$.
The SVD theorem extends this decomposition to rectangular matrices.

Theorem

SVD Theorem *If* \(A \in \mathbb{C}^{m \times n} \) *is a matrix and* \(\text{rank}(A) = r \), *then* \(A \) *can be factored as* \(A = U D V^H \), *where* \(U \in \mathbb{C}^{m \times m} \) *and* \(V \in \mathbb{C}^{n \times n} \) *are unitary matrices,*

\[
D = \begin{pmatrix}
\sigma_1 & 0 & 0 & \cdots & 0 & 0 \\
0 & \sigma_2 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & \sigma_r & 0 & 0 \\
0 & 0 & \cdots & 0 & \sigma_r & 0 \\
\vdots & \vdots & \ddots & \ddots & \ddots & \ddots \\
0 & 0 & \cdots & 0 & \cdots & 0
\end{pmatrix} \in \mathbb{C}^{m \times n},
\]

and \(\sigma_1 \geq \ldots \geq \sigma_r \) *are real positive numbers.*
Proof

The square matrix $A^H A \in \mathbb{C}^{n \times n}$ has the same rank as the matrix A and is positive semidefinite. Therefore, there are r positive eigenvalues of this matrix, denoted by $\sigma_1^2, \ldots, \sigma_r^2$, where $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0$.

Let $\mathbf{v}_1, \ldots, \mathbf{v}_r$ be the corresponding pairwise orthogonal, unit eigenvectors in \mathbb{C}^n. We have $A^H A \mathbf{v}_i = \sigma_i^2 \mathbf{v}_i$ for $1 \leq i \leq r$.

Let V be the matrix $V = (\mathbf{v}_1 \cdots \mathbf{v}_r \mathbf{v}_{r+1} \cdots \mathbf{v}_n)$ obtained by completing the set $\{\mathbf{v}_1, \ldots, \mathbf{v}_r\}$ to an orthogonal basis for \mathbb{C}^n. If $V_1 = (\mathbf{v}_1 \cdots \mathbf{v}_r)$ and $V_2 = (\mathbf{v}_{r+1} \cdots \mathbf{v}_n)$, we can write $V = (V_1 \ V_2)$.
The equalities involving the eigenvectors can now be written as \(A^H AV_1 = V_1 E^2 \), where \(E = \text{diag}(\sigma_1, \ldots, \sigma_r) \).

Define \(U_1 = AV_1 E^{-1} \in \mathbb{C}^{m \times r} \). We have \(U_1^H = S^{-1} V_1^H A^H \), so

\[
U_1^H U_1 = S^{-1} V_1^H A^H AV_1 E^{-1} = E^{-1} V_1^H V_1 E^2 E^{-1} = I_r,
\]

which shows that the columns of \(U_1 \) are pairwise orthogonal unit vectors. Consequently, \(U_1^H AV_1 E^{-1} = I_r \), so \(U_1^H AV_1 = E \).
Proof cont’d

If \(U_1 = (u_1 \cdots, u_r) \), let \(U_2 = (u_{r+1}, \ldots, u_m) \) be the matrix whose columns constitute the extension of the set \(\{u_1 \cdots, u_r\} \) to an orthogonal basis of \(\mathbb{C}^m \). Define \(U \in \mathbb{C}^{m \times m} \) as \(U = (U_1 \ U_2) \). Note that

\[
U^H AV = \begin{pmatrix} U_1^H \\ U_2^H \end{pmatrix} A \begin{pmatrix} V_1 \\ V_2 \end{pmatrix}
\]

\[
= \begin{pmatrix} U_1^H AV_1 & U_1^H AV_2 \\ U_2^H AV_1 & U_2^H AV_2 \end{pmatrix} = \begin{pmatrix} U_1^H AV_1 & U_1^H AV_2 \\ U_2^H AV_1 & U_2^H AV_2 \end{pmatrix}
\]

\[
= \begin{pmatrix} U_1^H AV_1 & O \\ O & O \end{pmatrix} = \begin{pmatrix} E & O \\ O & O \end{pmatrix},
\]

which is the desired decomposition.
Observe that in the SVD described above known as the *full SVD* of A, the diagonal matrix D has the same format as A, while both U and V are square unitary matrices.
Definition

Let \(A \in \mathbb{C}^{m \times n} \) be a matrix. A number \(\sigma \in \mathbb{R}_{>0} \) is a singular value of \(A \) if there exists a pair of vectors \((u, v) \in \mathbb{C}^n \times \mathbb{C}^m \) such that

\[
Av = \sigma u \quad \text{and} \quad A^H u = \sigma v. \tag{1}
\]

The vector \(u \) is the left singular vector and \(v \) is the right singular vector associated to the singular value \(\sigma \).
Note that if \((u, v)\) is a pair of vectors associated to \(\sigma\), then \((au, av)\) is also a pair of vectors associated with \(\sigma\) for every \(a \in \mathbb{C}\).

Let \(A \in \mathbb{C}^{m \times n}\) and let \(A = UDV^H\), where \(U \in \mathbb{C}^{m \times m}\), \(D = \text{diag}(\sigma_1, \ldots, \sigma_r, 0, \ldots, 0) \in \mathbb{C}^{m \times n}\) and \(V \in \mathbb{C}^{n \times n}\). Note that

\[
A v_j = UDv_j = UDe_j
\]
(because \(V\) is a unitary matrix)
\[
= \sigma_j Ue_j = \sigma_j u_j
\]

and

\[
A^H u_j = VD^H U^H u_j = VDU^H u_j
\]
\[
VDe_j
\]
(because \(U\) is a unitary matrix)
\[
= \sigma_j Ve_j = \sigma_j v_j.
\]

Thus, the \(j^{\text{th}}\) column of the matrix \(U\), \(u_j\) and the \(j^{\text{th}}\) column of the matrix \(V\), \(v_j\) are left and right singular vectors, respectively, associated to the singular value \(\sigma_j\).
Corollary

Let $A \in \mathbb{C}^{m \times n}$ be a matrix and let $A = UDV^H$ be the singular value decomposition of A. If $\| \cdot \|$ is a unitarily invariant norm, then

$$\| A \| = \| D \| = \| \text{diag}(\sigma_1, \ldots, \sigma_r, 0, \ldots, 0) \|.$$

Proof.

This statement follows from the fact that the matrices $U \in \mathbb{C}^{m \times m}$ and $V \in \mathbb{C}^{n \times n}$ are unitary.

In other words, the value of a unitarily invariant norm of a matrix depends only on its singular values. As we saw, $\| \cdot \|_2$ and $\| \cdot \|_F$ are unitarily invariant. Therefore, the Frobenius norm can be written as

$$\| A \|_F = \sqrt{\sum_{i=1}^{r} \sigma_i^2}.$$
Definition

Two matrices $A, B \in \mathbb{C}^{m \times n}$ are **unitarily equivalent** (denoted by $A \equiv_u B$) if there exist two unitary matrices W_1 and W_2 such that $A = W_1^H B W_2$. Clearly, if $A \sim_u B$, then $A \equiv_u B$.

Theorem

Let A and B be two matrices in $\mathbb{C}^{m \times n}$. If A and B are unitarily equivalent, then they have the same singular values.
Proof

Suppose that $A \equiv_u B$, that is, $A = W_1^H B W_2$ for some unitary matrices W_1 and W_2. If A has the SVD $A = U^H \text{diag}(\sigma_1, \ldots, \sigma_r, 0, \ldots, 0) V$, then

$$B = W_1 A W_2^H = (W_1 U^H) \text{diag}(\sigma_1, \ldots, \sigma_r, 0, \ldots, 0)(V W_2^H).$$

Since $W_1 U^H$ and $V W_2^H$ are both unitary matrices, it follows that the singular values of B.
Let \(\mathbf{v} \in \mathbb{C}^n \) be an eigenvector of the matrix \(A^H A \) that corresponds to a non-zero, positive eigenvalue \(\sigma^2 \), that is, \(A^H A \mathbf{v} = \sigma^2 \mathbf{v} \). Define \(\mathbf{u} = \frac{1}{\sigma} A \mathbf{v} \). We have \(A \mathbf{v} = \sigma \mathbf{u} \). Also,

\[
A^H \mathbf{u} = A^H \left(\frac{1}{\sigma} A \mathbf{v} \right) = \sigma \mathbf{v}.
\]

This implies \(A A^H \mathbf{u} = \sigma^2 \mathbf{u} \), so \(\mathbf{u} \) is an eigenvector of \(A A^H \) that corresponds to the same eigenvalue \(\sigma^2 \).

Conversely, if \(\mathbf{u} \in \mathbb{C}^m \) is an eigenvector of the matrix \(A A^H \) that corresponds to a non-zero, positive eigenvalue \(\sigma^2 \), we have \(A A^H \mathbf{u} = \sigma^2 \mathbf{u} \). Thus, if \(\mathbf{v} = \frac{1}{\sigma} A \mathbf{u} \) we have \(A \mathbf{v} = \sigma \mathbf{u} \) and \(\mathbf{v} \) is an eigenvector of \(A^H A \) for the eigenvalue \(\sigma^2 \).
The Courant-Fisher Theorem for eigenvalues allows the formulation of a similar result for singular values.

Theorem

Let A be a matrix, $A \in \mathbb{C}^{m \times n}$. If $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_k \geq \cdots$ is the non-increasing sequence of singular values of A, then

$$
\sigma_k = \min_{\text{dim}(S)=n-k+1} \max \{|Ax|_2 \mid x \in S \text{ and } |x|_2 = 1\}
$$

$$
\sigma_k = \max_{\text{dim}(T)=k} \min \{|Ax|_2 \mid x \in T \text{ and } |x|_2 = 1\},
$$

where S and T range over subspaces of \mathbb{C}^n.
Proof

We give the argument only for the second equality of the theorem; the first can be shown in a similar manner.

We saw that σ_k equals the k^{th} largest absolute value of the eigenvalue $|\lambda_k|$ of the matrix $A^H A$. By Courant-Fisher Theorem, we have

$$\lambda_k = \max_{\text{dim}(T)=k} \min_x \{ x^H A^H A x \mid x \in T \text{ and } \|x\|_2 = 1 \}$$

$$= \max_{\text{dim}(T)=k} \min_x \{ \| A x \|_2^2 \mid x \in T \text{ and } \|x\|_2 = 1 \},$$

which implies the second equality of the theorem.
Theorem

Let A be a matrix, $A \in \mathbb{C}^{m \times n}$. If $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_k \geq \cdots$ is the non-increasing sequence of singular values of A, then

$$\sigma_k = \min_{w_1, \ldots, w_{k-1}} \max \left\{ \| Ax \|_2 \mid x \perp w_1, \ldots, x \perp w_{k-1} \text{ and } \| x \|_2 = 1 \right\}$$

$$= \max_{w_1, \ldots, w_{n-k}} \min \left\{ \| Ax \|_2 \mid x \perp w_1, \ldots, x \perp w_{n-k} \text{ and } \| x \|_2 = 1 \right\}.$$
Corollary

The smallest singular value of a matrix $A \in \mathbb{C}^{m \times n}$ equals

$$\min \{ \| Ax \|_2 \mid x \in \mathbb{C}^n \text{ and } \| x \|_2 = 1 \}.$$

The largest singular value of a matrix $A \in \mathbb{C}^{m \times n}$ equals

$$\max \{ \| Ax \|_2 \mid x \in \mathbb{C}^n \text{ and } \| x \|_2 = 1 \}.$$
The SVD theorem can also be proven by induction on \(q = \min\{m, n\} \). In the base case, \(q = 1 \), we have \(A \in \mathbb{C}^{1 \times 1} \), or \(A \in \mathbb{C}^{m \times 1} \), or \(A \in \mathbb{C}^{1 \times n} \). Suppose, for example, that \(A = a \in \mathbb{C}^{m \times 1} \), where

\[
 a = \begin{pmatrix}
 a_1 \\
 \vdots \\
 a_m
 \end{pmatrix}
\]

and let \(a = \|a\|_2 \). We seek \(U \in \mathbb{C}^{m \times m} \), \(V = (v) \in \mathbb{C}^{1 \times 1} \) such that

\[
a = U \text{diag}(a) v,
\]

where

\[
 \text{diag}(a) = \begin{pmatrix}
 a \\
 0 \\
 \vdots \\
 0
 \end{pmatrix} \in \mathbb{C}^{m \times 1}.
\]
The role of the matrix U is played by any unitary matrix which has the first column equal to

$$
\begin{pmatrix}
a_1 \\
ad_1 \\
a_2 \\
ad_2 \\
\vdots \\
\vdots \\
a_n \\
ad_n
\end{pmatrix},
$$

and we can adopt $v = 1$. The remaining base subcases can be treated in a similar manner.
Suppose now that the statement holds when at least one of the numbers m and n is less than q and let us prove the assertion when at least one of m and n is less than $q + 1$.

Let \mathbf{u}_1 be a unit eigenvector of AA^H that corresponds to the eigenvalue σ_1^2 and let $\mathbf{v}_1 = \frac{1}{\sigma_1} A^H \mathbf{u}_1$. We have $\|\mathbf{v}_1\|_2 = 1$ and

$$A\mathbf{v}_1 = \frac{1}{\sigma_1} AA^H \mathbf{u}_1 = \sigma_1 \mathbf{u}_1,$$

which shows that $(\mathbf{v}_1, \mathbf{u}_1)$ is a pair of singular vectors corresponding to the singular value σ_1. We have also

$$\mathbf{u}_1^H A^H \mathbf{v}_1 = \frac{1}{\sigma_1} \mathbf{u}_1^H AA^H \mathbf{u}_1 = \sigma_1.$$
Define $U = (u_1 \ U_1)$ and $V = (v_1 \ V_1)$ as unitary matrices having u_1 and v_1 as their first columns, respectively. Then,

$$U^H A^H V = \begin{pmatrix} u_1^H \\ U_1^H \end{pmatrix} A^H \begin{pmatrix} v_1 \\ V_1 \end{pmatrix}$$

$$= \begin{pmatrix} u_1^H A^H \\ U_1^H A^H \end{pmatrix} \begin{pmatrix} v_1 \\ V_1 \end{pmatrix}$$

$$= \begin{pmatrix} u_1^H A^H v_1 \\ U_1^H A v_1 \end{pmatrix} \begin{pmatrix} u_1^H A V_1 \\ U_1^H A V_1 \end{pmatrix}$$
Since U is a unitary matrix every column of U_1 is orthogonal to u_1. Therefore,

$$U_1^H A v_1 = \frac{1}{\sigma_1} U_1^H A A^H u_1 = \sigma_1 U_1^H u_1 = 0,$$

and, similarly,

$$u_1^H A^H V_1 = \sigma_1 v_1^H V_1 = 0',$$

because v_1 is orthogonal on all columns of V_1. Thus,

$$U^H A V = \begin{pmatrix} \sigma_1 & 0' \\ 0 & U_1^H A V_1 \end{pmatrix}.$$

The matrix $U_1^H A V_1$ has fewer rows and columns than $U^H A V$, so we can apply the inductive hypothesis to $B = U_1^H A V_1$. Therefore, by the inductive hypothesis, B can be written as $B = X D Y^H$, where X and Y are unitary matrices and D is a diagonal matrix.
This allows us to write

\[U^H AV = \begin{pmatrix} \sigma_1 & 0' \\ 0 & XDY^H \end{pmatrix} = \begin{pmatrix} 1 & 0' \\ 0 & X \end{pmatrix} \begin{pmatrix} \sigma_1 & 0' \\ 0 & D \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & Y^H \end{pmatrix}. \]

Since the matrices

\[\begin{pmatrix} 1 & 0' \\ 0 & X \end{pmatrix} \text{ and } \begin{pmatrix} 1 & 0 \\ 0 & Y^H \end{pmatrix} \]

are unitary, we obtain the desired conclusion.
If $A \in \mathbb{C}^{n \times n}$ is an invertible matrix and σ is a singular value of A, then $\frac{1}{\sigma}$ is a singular value of the matrix A^{-1}.

Example

Let

$$a = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}$$

be a non-zero vector in \mathbb{C}^n, which can also be regarded as a matrix in $\mathbb{C}^{n \times 1}$. The square of a singular value of A is an eigenvalue of the matrix $A^H A = \begin{pmatrix} \bar{a}_1a_1 & \cdots & \bar{a}_na_1 \\ \bar{a}_1a_2 & \cdots & \bar{a}_na_2 \\ \vdots & \cdots & \vdots \\ \bar{a}_1a_n & \cdots & \bar{a}_na_n \end{pmatrix}$ and we have seen that the unique non-zero eigenvalue of this matrix is $\| a \|_2^2$. Thus, the unique singular value of a is $\| a \|_2$.
Example

Let $A \in \mathbb{R}^{3 \times 2}$ be the matrix

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \\ 1 & 0 \end{pmatrix}.$$

The matrices $A^H A$ and $A A^H$ are given by:

$$A A^H = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 1 \end{pmatrix} \quad \text{and} \quad A^H A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}.$$

The eigenvalues of $A^H A$ are the roots of the polynomial $\lambda^2 - 4\lambda + 3$, and therefore, they are $\lambda_1 = 3$ and $\lambda_2 = 1$. The eigenvalues of AA^H are 3, 1 and 0.
Example

Unit eigenvectors of $A^H A$ that correspond to 3 and 1 are

$$v_1 = \alpha_1 \begin{pmatrix} \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{pmatrix} \text{ and } v_2 = \alpha_2 \begin{pmatrix} \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} \end{pmatrix},$$

respectively, where $\alpha_i \in \{-1, 1\}$ for $i = 1, 2$.
Example

Unit eigenvectors of A^HA that correspond to 3, 1 and 0 are:

$$u_1 = \beta_1 \begin{pmatrix} \sqrt{6} \\ 6 \\ 6 \end{pmatrix}, \quad u_2 = \beta_2 \begin{pmatrix} \sqrt{2} \\ 2 \\ 0 \end{pmatrix}, \quad u_3 = \beta_3 \begin{pmatrix} \sqrt{3} \\ 3 \\ 3 \end{pmatrix},$$

respectively, where $\beta_i \in \{-1, 1\}$ for $i = 1, 2, 3$.
Example

The choice of the columns of the matrices U and V must be done such that for a pair of eigenvectors (u, v) that correspond to a singular values σ we have $v = \frac{1}{\sigma}A^H u$ or, equivalently, $u = \frac{1}{\sigma}Av$. For instance, if we choose $\alpha_1 = \alpha_2 = 1$, then

\[v_1 = \begin{pmatrix} \sqrt{2} \\ 2 \\ \sqrt{2} \\ 2 \end{pmatrix}, \quad v_2 = \begin{pmatrix} \sqrt{2} \\ 2 \\ -\sqrt{2} \\ 2 \end{pmatrix}, \]

\[u_1 = \frac{1}{\sqrt{3}}Av_1 \text{ and } u_2 = Av_2, \]

that is,

\[u_1 = \begin{pmatrix} \sqrt{6} \\ 6 \\ \sqrt{6} \\ 6 \end{pmatrix}, \quad u_2 = \begin{pmatrix} -\sqrt{2} \\ 2 \\ 0 \\ \sqrt{2} \\ 2 \end{pmatrix}, \]

which means that $\beta_1 = 1$ and $\beta_2 = -1$; the value of β_3 that corresponds to the eigenvalue of 0 can be chosen arbitrarily.
Example

Thus, an SVD of A is:

$$A = \begin{pmatrix}
\frac{\sqrt{6}}{6} & -\frac{\sqrt{2}}{2} & \frac{\sqrt{3}}{3} \\
\frac{\sqrt{6}}{3} & 0 & -\frac{\sqrt{2}}{2} \\
\frac{\sqrt{6}}{6} & \frac{\sqrt{2}}{2} & \frac{\sqrt{3}}{3}
\end{pmatrix} \begin{pmatrix}
\sqrt{3} & 0 \\
0 & 1 \\
0 & 0
\end{pmatrix} \begin{pmatrix}
\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\
\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2}
\end{pmatrix}.$$
A variant of the SVD Decomposition Theorem is given next.

Corollary

(The Thin SVD Decomposition Corollary) Let \(A \in \mathbb{C}^{m \times n} \) be a matrix having non-zero singular values \(\sigma_1, \sigma_2, \ldots, \sigma_r \), where \(\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0 \) and \(r \leq \min\{m, n\} \). Then, \(A \) can be factored as \(A = UDV^H \), where \(U \in \mathbb{C}^{m \times r} \) and \(V \in \mathbb{C}^{n \times r} \) are matrices having orthonormal sets of columns and \(D \) is the diagonal matrix

\[
D = \begin{pmatrix}
\sigma_1 & 0 & \cdots & 0 \\
0 & \sigma_2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \sigma_r
\end{pmatrix}.
\]

Proof.

The statement is an immediate consequence of the theorem. \(\square \)
The decomposition described above is known as a *thin SVD decomposition* of the matrix A.

Example

The thin SVD decomposition of the matrix A introduced in Example ??, $$A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \\ 1 & 0 \end{pmatrix},$$
is $$A = \begin{pmatrix} \frac{\sqrt{6}}{6} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{6}}{6} & 0 \\ \frac{\sqrt{6}}{6} & \frac{\sqrt{2}}{2} \end{pmatrix} \begin{pmatrix} \sqrt{3} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \end{pmatrix}.$$
Since U and V in the thin SVD have orthonormal columns it is easy to see that

$$U^H U = V^H V = I_p.$$

(2)
Lemma

Let \(D \in \mathbb{R}^{n \times n} \) be a diagonal matrix, where \(D = \text{diag}(\sigma_1, \ldots, \sigma_r) \) and \(\sigma_1 \geq \cdots \geq \sigma_r \). Then, we have \(\| D \|_2 = \sigma_1 \), and \(\| D \|_F = \sqrt{\sum_{i=1}^{r} \sigma_i^2} \).

Proof.

By the definition of \(\| D \|_2 \) we have:

\[
\| D \|_2 = \max\{ \| Dx \|_2 | \| x \| = 1 \} = \max\{ \sqrt{\sum_{i=1}^{r} \sigma_i^2 |x_i|^2} | \sum_{i=1}^{n} |x_i|^2 = 1} \}.
\]

Since \(\sum_{i=1}^{n} |x_i|^2 = 1 \), we have: \(\sum_{i=1}^{r} \sigma_i^2 |x_i|^2 \leq \sigma_1^2 \left(\sum_{i=1}^{r} |x_i|^2 \right) \leq \sigma_1^2 \).

It follows that

\[
\max \left\{ \sqrt{\sum_{i=1}^{r} \sigma_i^2 |x_i|^2} | \sum_{i=1}^{n} |x_i|^2 = 1} \} = \sigma_1.
\]

The second part is immediate.
Theorem

Let $A \in \mathbb{C}^{m \times n}$ be a matrix whose singular values are $\sigma_1 \geq \cdots \geq \sigma_r$. Then $\|A\|_2 = \sigma_1$, and $\|A\|_F = \sqrt{\sum_{i=1}^{r} \sigma_i^2}$.

Proof.

Suppose that the SVD of A is $A = UDV^H$, where U and V are unitary matrices. Then, by previous results, we have:

$$\|A\|_2 = \|UDV^H\|_2 = \|D\|_2 = \sigma_1,$$

$$\|A\|_F = \|UDV^H\|_F = \|D\|_F = \sqrt{\sum_{i=1}^{r} \sigma_i^2}.$$
Corollary

If $A \in \mathbb{C}^{m \times n}$ is a matrix, then $\|A\|_2 \leq \|A\|_F \leq \sqrt{n}\|A\|_2$.

Proof.

Suppose that $\sigma_1(A)$ is the largest of the singular values of A. Then, since $\|A\|_F = \sqrt{\sum_{i=1}^{r} \sigma_i^2}$, we have

$$\sigma_1(A) \leq \|A\|_F \leq \sqrt{n \max_i \sigma_i(A)^2} = \sigma_1(A)\sqrt{n},$$

which is desired double inequality.
Theorem

Let $A \in \mathbb{C}^{n \times n}$ be an invertible matrix. If the singular values of A are $\sigma_1 \geq \cdots \geq \sigma_n > 0$, then

$$\text{cond}(A) = \frac{\sigma_1}{\sigma_n}.$$

Proof.

We have shown in Theorem 18 that $\|A\|_2 = \sigma_1$. Since the singular values of A^{-1} are

$$\frac{1}{\sigma_n} \geq \cdots \geq \frac{1}{\sigma_1},$$

it follows that $\|A^{-1}\|_2 = \frac{1}{\sigma_n}$. The desired equality follows immediately. \qed
Corollary

Let $A \in \mathbb{C}^{n \times n}$ be an invertible matrix. We have $\text{cond}(A^H A) = (\text{cond}(A))^2$.

Proof.

Let σ be a singular value of A and let u, v be two left and right singular vectors corresponding to σ, respectively. We have

$$A v = \sigma u \quad \text{and} \quad A^H u = \sigma v.$$

This implies $A^H A v = \sigma A^H u = \sigma^2 v$, which shows that the singular values of the matrix $A^H A$ are the squares of the singular values of A, which produces the desired conclusion.
Let $A = UDV^H$ be an SVD of A. If we write U and V using their columns as $U = (u_1 \cdots u_m)$ and $V = (v_1 \cdots v_n)$, then A can be written as:

$$A = UDV^H$$

$$= (u_1 \cdots u_n) \begin{pmatrix} \sigma_1 & 0 & \cdots & \cdots & 0 \\ 0 & \sigma_2 & \cdots & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_r & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} v_1^H \\ \vdots \\ v_m^H \end{pmatrix}$$

$$= (u_1 \cdots u_m) \begin{pmatrix} \sigma_1 v_1^H \\ \vdots \\ \sigma_r v_p^H \end{pmatrix}$$

$$= \sigma_1 u_1 v_1^H + \cdots + \sigma_r u_r v_p^H.$$
Since $u_i \in \mathbb{C}^m$ and $v_i \in \mathbb{C}^n$, each of the matrices $u_i v_i^H$ is a $m \times n$ matrix of rank 1. Thus, the SVD yields an expression of A as a sum of r matrices of rank 1, where r is the number of non-zero singular values of A.
Theorem

The rank-1 matrices of the form $u_i v_i^H$, where $1 \leq i \leq r$ that occur in Equality (??) are pairwise orthogonal. Moreover, $\| u_i v_i^H \|_F = 1$ for $1 \leq i \leq r$.

Proof.

For $i \neq j$ and $1 \leq i, j \leq r$ we have:

$$\text{trace}\left(u_i v_i^H (u_j v_j^H)^H\right) = \text{trace}\left(u_i v_i^H v_j u_j\right) = 0,$$

because the vectors v_i and v_j are orthogonal. Thus, $(u_i v_i^H, u_j v_j^H) = 0$. By Equality (??) we have

$$\| u_i v_i^H \|_F^2 = \text{trace}\left((u_i v_i^H)^H u_i v_i^H\right) = \text{trace}\left(v_i u_i^H u_i v_i^H\right) = 1,$$

because the matrices U and V are unitary.
Theorem

Let \(A \in \mathbb{C}^{m \times n} \) be a matrix that has the singular value decomposition \(A = UDV^H \). If \(\text{rank}(A) = r \), then the first \(r \) columns of \(U \) form an orthonormal basis for \(\text{range}(A) \), and the last \(n - r \) columns of \(V \) constitute an orthonormal basis for \(\text{null}(A) \).
Proof

Since both U and V are unitary matrices, it is clear that $\{u_1, \ldots, u_r\}$, the set of the first r columns of U, and $\{v_{r+1}, \ldots, v_n\}$, the set of the last $n - r$ columns of V, are linearly independent sets. Thus, we only need to show that $\langle u_1, \ldots, u_r \rangle = \text{range}(A)$ and $\langle v_{r+1}, \ldots, v_n \rangle = \text{null}(A)$. By Equality (??), we have

$$A = \sigma_1 u_1 v_1^H + \cdots + \sigma_r u_r v_r^H.$$

If $t \in \text{range}(A)$, then $t = As$ for some $s \in \mathbb{C}^n$. Therefore,

$$t = \sigma_1 u_1 (v_1^H s) + \cdots + \sigma_r u_r (v_r^H s),$$

and, since the every product $v_j^H s$ is a scalar for $1 \leq j \leq r$, it follows that $t \in \langle u_1, \ldots, u_r \rangle$, so $\text{range}(A) \subseteq \langle u_1, \ldots, u_r \rangle$.

To prove the reverse inclusion note that

\[A \left(\frac{1}{\sigma_i} \mathbf{v}_i \right) = \mathbf{u}_i, \]

for \(1 \leq i \leq r\), due to the orthogonality of the columns of \(V\). Thus, \(\langle \mathbf{u}_1, \ldots, \mathbf{u}_r \rangle = \text{range}(A)\).

Thus, \(A\mathbf{v}_j = 0\) for \(r + 1 \leq j \leq n\), so \(\langle \mathbf{v}_{r+1}, \ldots, \mathbf{v}_n \rangle \subseteq \text{null}(A)\). Conversely, suppose that \(A\mathbf{r} = \mathbf{0}\). Since the columns of \(V\) form a basis of \(\mathbb{C}^n\) we have \(\mathbf{r} = a_1 \mathbf{v}_1 + \cdots + a_n \mathbf{v}_n\), so \(A\mathbf{r} = a_1 A\mathbf{v}_1 + \cdots + a_r \mathbf{v}_r = \mathbf{0}\). The linear independence of \(\{\mathbf{v}_1, \ldots, \mathbf{v}_r\}\) implies \(a_1 = \cdots = a_r = 0\), so \(\mathbf{r} = a_{r+1} \mathbf{v}_{r+1} + \cdots + a_n \mathbf{v}_n\), which shows that \(\text{null}(A) \subseteq \langle \mathbf{v}_{r+1}, \ldots, \mathbf{v}_n \rangle\).

Thus, \(\text{null}(A) = \langle \mathbf{v}_{r+1}, \ldots, \mathbf{v}_n \rangle\).
Corollary

Let \(A \in \mathbb{C}^{m \times n} \) be a matrix that has the singular value decomposition \(A = UDV^H \). If \(\text{rank}(A) = r \), then the first \(r \) transposed columns of \(V \) form an orthonormal basis for the subspace of \(\mathbb{R}^n \) generated by the rows of \(A \).

Proof.

This statement follows immediately from the previous theorem applied to \(A^H \).
The singular value decomposition of a matrix can be computed in MATLAB using the function `svd`. To illustrate its use in the simplest form consider the matrix

\[
A = \begin{pmatrix}
\frac{1}{3} & \frac{4}{3} & \frac{5}{3} \\
\frac{11}{5} & \frac{4}{5} & \frac{5}{3} \\
\frac{1}{7} & \frac{4}{7} & \frac{5}{7} \\
\frac{1}{9} & \frac{4}{9} & \frac{5}{9}
\end{pmatrix},
\]

defined in MATLAB by

\[
A = \begin{bmatrix}
1/3 & 4/3 & 5/3 \\
11/5 & 4/5 & 3 \\
1/7 & 4/7 & 5/7 \\
1/9 & 4/9 & 5/9
\end{bmatrix}
\]

A call the `svd(A)` function yields a vector containing the singular values of \(A \), as in

\[
\text{>> } \text{svd}(A) \\
\text{ans =}
\begin{align*}
4.3674 \\
1.2034 \\
0.0000
\end{align*}
\]
It is interesting to note that rank(A) = 2 since the last column of A is the sum of the first two columns. Thus, we would expect to see two non-zero singular values.

To compute $\|A\|_2$, which equals the largest singular value of A we can use $\max(\text{svd}(A))$.
Another variant of the `svd` function, \([U, S, V] = \text{svd}(A)\) yields a diagonal matrix \(S\), of the same format as \(A\) and with nonnegative diagonal elements in decreasing order, and unitary matrices \(U\) and \(V\) so that \(A = USV^H\). For the matrix \(A\) shown above we obtain:
Example

\[
\begin{align*}
\text{>> } \quad [U, S, V] &= \text{svd}(A) \\
U &= \\ &\begin{bmatrix}
-0.4487 & 0.7557 & 0.4769 & 0.0161 \\
-0.8599 & -0.5105 & 0.0000 & -0.0000 \\
-0.1923 & 0.3239 & -0.6726 & -0.6370 \\
-0.1496 & 0.2519 & -0.5658 & 0.7707 \\
\end{bmatrix} \\
S &= \\ &\begin{bmatrix}
4.3674 & 0 & 0 \\
0 & 1.2034 & 0 \\
0 & 0 & 0.0000 \\
0 & 0 & 0 \\
\end{bmatrix} \\
V &= \\ &\begin{bmatrix}
-0.4775 & -0.6623 & 0.5774 \\
-0.3349 & 0.7447 & 0.5774 \\
-0.8123 & 0.0823 & -0.5774 \\
\end{bmatrix}
\end{align*}
\]
The “economical form” of the \texttt{svd} function is

\[[U, S, V] = \texttt{svd}(A, 'econ') \]

If \(A \in \mathbb{R}^{m \times n} \) and \(m > n \), only the first \(n \) columns of \(U \) are computed and \(S \in \mathbb{R}^{n \times n} \). If \(m < n \) only the first \(m \) columns of \(V \) are computed.

Example

Starting from the matrix

\[
A = \begin{pmatrix}
18 & 8 & 20 \\
-4 & 20 & 1 \\
25 & 8 & 27 \\
9 & 4 & 10 \\
\end{pmatrix} \in \mathbb{R}^{4 \times 3}
\]

a call the economical variant of the \texttt{svd} function yields
Example

```matlab
>> [U,D,V] = svd(A,'econ')

U =
    -0.5717   -0.0211    0.8095
    -0.0721   -0.9933   -0.0669
    -0.7656    0.1133   -0.4685
    -0.2859   -0.0105   -0.3474

S =
     49.0923     0     0
    0     20.2471     0
    0     0     0.0000

V =
    -0.6461    0.3127    0.6963
    -0.2706   -0.9468    0.1741
    -0.7137    0.0760   -0.6963
```
The function \texttt{svapprox} given below computes the successive approximations \(B(k) = \sum_{i=1}^{k} \sigma_i u_i v_i^H \) of a matrix \(A \in \mathbb{R}^{m \times n} \) having the SVD \(A = UDV^H \) and produces a three-dimensional array \(C \in \mathbb{R}^{m \times n \times r} \), where \(r \) is the numerical rank of \(A \) and \(C(:, :, k) = B(k) \) for \(1 \leq k \leq r \).
function [C] = svapprox(A)
%SVAPPROX computes the successive approximations
% of A using the singular component decomposition.
% The number of approximations equals the
% numerical rank of A.

% determine the format of A and its numerical rank
[m, n] = size(A);
r = rank(A,10^(-5));
% compute the SVD of A
[U,D,V] = svd(A);
C = zeros(m,n,r);
C(:, :, 1) = D(1,1) * U(:,1) * (V(:,1))';
for k=2:r
 C(:, :, k) = D(k,k) * U(:,k) * (V(:,k))' + C(:, :, k-1);
end;
In the next figure we have an image of the digit 4 created from a pgm file that contains the representation of this digit. The numerical rank of the matrix A introduced in the example mentioned above is 8. Therefore, the array C computed by $C = \text{svapprox}(A)$ consists of 8 matrices. To represent these matrices in the pgm format we cast the components of C to integers of the type uint8 using $D = \min(16, \text{uint8}(C))$. Thus, $D(:,:,j)$ contains the rounded j^{th} approximation of A.
The images for the first four approximations are represented next:

(a) (b) (c) (d)

Successive Approximations of A.
Note that the digit four is easily recognizable beginning with the second approximation.