Homework 1
Due Monday October 7, 2013

Please print your name here:

1. Using macros write a program in \(S \) that computes the function \(f(x) = 2x \) for \(x \in \mathbb{N} \); write the same program without using macros.

2. Write a program that computes the greatest common divisor of \(x_1 \) and \(x_2 \), \(\text{gcd}(x_1, x_2) \). You may use macros.

3. Let \(\mathcal{P} \) be the program

 \[
 \begin{align*}
 Y & \leftarrow X \\
 [A] & \text{IF } X_2 = 0 \text{ GOTO E} \\
 & Y \leftarrow Y + 1 \\
 & Y \leftarrow Y + 1 \\
 & X_2 \leftarrow X_2 - 1 \\
 & \text{GOTO A}
 \end{align*}
 \]

 What is \(\psi^{(1)}_{\mathcal{P}}(r_1), \psi^{(2)}_{\mathcal{P}}(r_1, r_2), \) and \(\psi^{(3)}_{\mathcal{P}}(r_1, r_2, r_3) \)?

4. A straightline program in \(S \) is a program that contains no instruction of the form

 \[
 \text{IF } V \neq 0 \text{ GOTO L.}
 \]

 Show by induction on the length of the program that if the length of a straightline program \(\mathcal{P} \) is \(k \), then \(\psi^{(1)}_{\mathcal{P}}(x) \leq k \) for every \(x \in \mathbb{N} \).

5. Let \(P(x) \) be a computable predicate. Show that the function \(f \) defined by

 \[
 f(x_1, x_2) = \begin{cases}
 x_1x_2 & \text{if } P(x_1 + x_2), \\
 \uparrow & \text{otherwise}
 \end{cases}
 \]

 is partially computable.