1. Let $A = \{0, 1\}$ be an alphabet that consists of two binary digits. Denote by $f(x)$ the numerical equivalent of x, as we did in class. Design a dfa that accepts the set of words $\{x \in \{0, 1\}^* \mid f(x) \text{ is a multiple of } 6\}$.

2. Determine the languages accepted by the automata M_0 and M_1 shown in Figure 1.

3. Construct deterministic finite automata that accept the following languages over the alphabet $A = \{a, b, c\}$:

 (a) The set of all words that begin with ab and end with ba.
 (b) The set $\{bab\}$.
 (c) The set $A^* - \{bab\}$.
4. Draw a transition diagram for a nondeterministic finite automaton M that accepts the language L over the alphabet $A = \{0, 1\}$ that begin in 10 and end in 00. Note that $100 \in L$.

Construct the dfa that accepts the same language as M.

5. Let A be an alphabet and let $a \in A$ be a symbol. If k is a natural number, construct a nondeterministic finite automaton that accepts the language $L_{k,a} = \{uav \mid u, v \in A^* \text{ and } |v| = k\}$.