Codes I

Prof. Dan A. Simovici

UMB

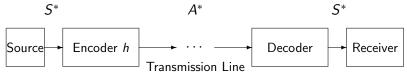
Outline

Definition

An *information source* (in short, a *source*) is a pair S = (S, D), where $S = \{s_0, s_1, \ldots\}$ is a nonempty, countable set referred to as the *source set*, and D is is a probability distribution

$$D = \left(\begin{array}{ccc} s_0 & s_1 & \cdots \\ p_0 & p_1 & \cdots \end{array}\right)$$

where $\sum_{i \in \mathbb{N}} p_i = 1$. If S is a finite set, then we refer to S = (S, D) as a finite source. The symbols generated by the source are encoded as words over an alphabet A, which is, of course, finite, using a morphism $h: S^* \longrightarrow A^*$ referred to as the *encoding morphism*. The encoding of a word $s_0 \cdots s_{m-1}$ generated by the source, $h(s_0) \cdots h(s_{m-1}) \in A^*$, is sent through a communication line to a decoder that converts the word $h(s_0) \cdots h(s_{m-1})$ back to a word over the set S.



Different words produced by the source must yield distinct coded messages. This amounts to requiring that h be an injective morphism between S^* and A^* .

Definition

Let A be an alphabet and let S = (S, D) be a source. A *code* on an alphabet A is a triple C = (S, A, h), where $h : S^* \longrightarrow A^*$ is an injective morphism.

The *code set* of *C* is the set of images of symbols of *S* under the morphism h,

$$h(S) = \{h(s) \mid s \in S\}.$$

Often, when the source and the alphabet are clear from context we will use the term *code* to refer to either h or the code set h(S).

Outline

Example

Let S be a finite source set, A be an alphabet such that $|A| \ge 2$, and $k \in \mathbb{N}$ be a number such that $|S| \le |A|^k$. Any injective mapping $h: S \longrightarrow A^*$ such that h(s) is a word of length k can be extended to an injective morphism from S^* to A^* . Codes constructed in this manner are known as *block codes of length* k. For instance, let $S = \{s_0, s_1, s_2\}$ and let $A = \{0, 1\}$. By choosing k = 2, we can define a block code of length 2 by $h(s_0) = 00$, $h(s_1) = 01$, and

 $h(s_2) = 10.$

If we do not require that |h(s)| = k for each $s \in S$, then even if $h: S \longrightarrow A^*$ is an injective mapping, its extension $h: S^* \longrightarrow A^*$ is not necessarily an injective morphism as shown in the next example.

Example

Let $S = \{s_0, s_1, s_2\}$, $A = \{0, 1\}$, and let $h : S \longrightarrow A^*$ be the injective mapping $h(s_0) = 0$, $h(s_1) = 01$, and $h(s_2) = 10$. Observe that the extension $h : S^* \longrightarrow A^*$ is not injective because $h(s_1s_0) = h(s_0s_2) = 010$.

Definition

Let A be an alphabet, and let $L = \{x_0, x_1, ...\}$ be a language on A, $L \neq \emptyset$. L is *uniquely decipherable* if the equality

$$x_{i_0}\cdots x_{i_{m-1}}=x_{j_0}\cdots x_{j_{n-1}}$$

implies m = n and $x_{i_{\ell}} = x_{j_{\ell}}$, for $0 \le \ell \le n - 1$.

If *L* is a code set, then $\lambda \notin L$. Indeed, if $\lambda \in L$, then we would have $x = \lambda x$ for every $x \in A^*$, which contradicts the uniquely decipherability property.

Theorem

A language $L \subseteq A^*$ is uniquely decipherable if and only if it is code set.

Proof

Suppose that $L = \{x_0, \ldots, x_{k-1}, \ldots\}$ is a uniquely decipherable language. Let S be a source set such that S has the same cardinality as L. There exists a bijection $h: S \longrightarrow L$ such that $h(s_i) = x_i$ for every $x_i \in L$. Suppose that $h(s_{i_0} \ldots s_{i_{m-1}}) = h(s_{j_0} \ldots s_{j_{n-1}})$. This is equivalent to $x_{i_0} \cdots x_{i_{m-1}} = x_{j_0} \cdots x_{j_{n-1}}$, so m = n and $x_{i_\ell} = x_{j_\ell}$ for $0 \le \ell \le n-1$ by the unique decipherability condition, which, in turn, implies $h(s_{i_\ell}) = h(s_{j_\ell})$ for $0 \le \ell \le m-1$. Since $h: S \longrightarrow L$ is a bijection, $s_{i_\ell} = s_{j_\ell}$ for $0 \le \ell \le m-1$, which means that $s_{i_0} \ldots s_{i_{m-1}} = s_{j_0} \ldots s_{j_{n-1}}$. This shows that the morphism $h: S^* \longrightarrow A^*$ is injective, so L = h(S) is a code set.

(Proof cont'd)

Conversely, suppose that *L* is a code set, that is, L = h(S), where $h: S \longrightarrow A^*$ is an injective mapping whose extension to S^* is an injective morphism, and that $h(s_i) = x_i$ for every $x_i \in L$. If $x_{i_0}, \ldots, x_{i_{m-1}}, x_{j_0}, \ldots, x_{j_{n-1}}$ are words in *L* such that $x_{i_0} \cdots x_{i_{m-1}} = x_{j_0} \cdots x_{j_{n-1}}$, then $s_{i_0} \cdots s_{i_{m-1}} = s_{j_0} \cdots s_{j_{n-1}}$, because of the injectivity of the morphism $h: S^* \longrightarrow A^*$. Consequently, m = n, $s_{i_\ell} = s_{j_\ell}$ for $0 < \ell < n - 1$, so *h* is a code, and *L* is a code set.

Corollary

A language $L \subseteq A^+$ is not a code set if and only if there exist words $x_{i_0}, \ldots, x_{i_{m-1}}, x_{j_0}, \ldots, x_{j_{n-1}}$ in L such that $x_{i_0} \cdots x_{i_{m-1}} = x_{j_0} \cdots x_{j_{n-1}}$ and x_{i_0} is a proper prefix of x_{j_0} .

Suppose that *L* is not a code set. Then there exist words

$$x_{i_0},\ldots,x_{i_{m-1}},x_{j_0},\ldots,x_{j_{n-1}}\in L$$

such that $x_{i_0} \cdots x_{i_{m-1}} = x_{j_0} \cdots x_{j_{n-1}}$. Suppose that we choose these words such that $\ell = m + n$ is minimal. Then, $x_{i_0} \neq x_{j_0}$ since otherwise, we would have $x_{i_1} \cdots x_{i_{m-1}} = x_{j_1} \cdots x_{j_{n-1}}$ and this would contradict the minimality of ℓ . Therefore, one of the words x_{i_0}, x_{i_0} is a proper prefix of the other.

Conversely, if $x_{i_0} \cdots x_{i_{m-1}} = x_{j_0} \cdots x_{j_{n-1}}$ and x_{i_0} is a proper prefix of x_{j_0} for some words $x_{i_0}, \ldots, x_{i_{m-1}}, x_{j_0}, \ldots, x_{j_{n-1}}$ in *L*, then *L* is not uniquely decipherable, so it is not a code set.

Example

Let A be an alphabet and $L \subseteq A^*$ be a language such that for every $x, y \in L$ with $x \neq y$ we have $x \notin \mathsf{PREF}(y)$. By the previous Corollary L is a code set.

Definition

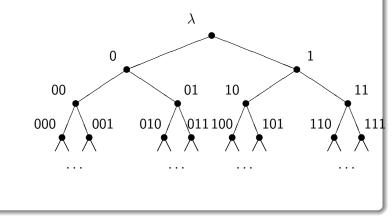
Let A be an alphabet. A *prefix code* on A is a language $L \subseteq A^*$ such that for every $x, y \in L$ with $x \neq y$ we have $x \notin \mathsf{PREF}(y)$.

Example

Let $k \in \mathbb{N}$, and let $L_k \subseteq \{a, b\}^*$ be defined by $L_k = \{a^n b \mid 0 \le n \le k\}$. Then, L_k is a prefix code, since each code word has exactly one symbol b, which marks its end. Prefix codes can be obtained using a labeled ordered tree T_A as a representation of the set of words over an alphabet A. The root of T_A is labeled by λ ; if $A = \{a_0, \ldots, a_{k-1}\}$, then every node labeled by a word $x \in A^*$ has k successors labeled (from left to right) by the words $xa_0, xa_1, \ldots, xa_{k-1}$.

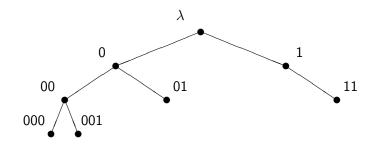
Example

Let $A = \{0, 1\}$ be an alphabet. The labeled ordered tree T_A is shown here:



(Example cont'd)

Note that a word u is a prefix of another word v if and only if u is the label of a node that occurs on the path that joins the root with v. Therefore, to obtain a prefix code we need to consider a subtree T of T_A . The prefix code that corresponds to T comprises the labels of the leaves of T. For instance, the prefix code that corresponds to the subtree shown below is $\{000, 001, 01, 11\}$.



Definition

A language $L \subseteq A^*$ is *catenatively independent* if $L \cap L^n = \emptyset$ for every $n \ge 2$.

In other words, *L* is catenatively independent if no word $w \in L$ can be written as $w = w_0 \cdots w_{n-1}$ where $n \ge 2$ and $w_i \in L$ for $0 \le i \le n-1$.

Example

The language $L = \{a, aba, baba, bb, bbba\}$ over the alphabet $\{a, b\}$ is catenatively independent. Also, the language $\{x \in A^* \mid |x| = n\}$ is catenatively independent for any n.

No catenatively independent language may contain λ .

Theorem

(Schützenberger Theorem) A language L over the alphabet A is a code if and only if L is catenatively independent and $L^*w \cap L^* \neq \emptyset$, $wL^* \cap L^* \neq \emptyset$ for a word $w \in A^*$ imply $w \in L^*$.

Proof

The conditions of the theorem are sufficient:

Let $L \subseteq A^*$ be a language that satisfies these conditions. Note that $\lambda \notin L$ because of the catenative independence of L.

If *L* were not a code, we would have words $x_{i_0}, \ldots, x_{i_{n-1}}, x_{j_0}, \ldots, x_{j_{m-1}}$ from *L* such that

$$x_{i_0}\cdots x_{i_{n-1}}=x_{j_0}\cdots x_{j_{m-1}}$$

and $x_{j_0} = x_{i_0}z$ for some $z \neq \lambda$. Thus, $Lz \cap L \neq \emptyset$, which implies $L^*z \cap L^* \neq \emptyset$. This also gives, by the cancellation property,

$$x_{i_1}\cdots x_{i_{n-1}}=zx_{j_1}\cdots x_{j_{m-1}},$$

so $zL^* \cap L^* \neq \emptyset$. Hence, $z \in L^*$ and $z \neq \lambda$. Since $x_{j_0} = x_{i_0}z$, this contradicts the catenative independence of L.

To prove that the conditions are necessary, assume that L is a code. The catenative independence of L is immediate.

Suppose that $L^* w \cap L^* \neq \emptyset$ and $wL^* \cap L^* \neq \emptyset$ for a word $w \in A^*$. This means that we have words $x_{i_0}, \ldots, x_{i_{m-1}}, x_{j_0}, \ldots, x_{j_{n-1}}$ and $x_{k_0}, \ldots, x_{k_{p-1}}, x_{l_0}, \ldots, x_{l_{q-1}}$ in L such that

Combining the above equalities, we obtain

$$x_{i_0}\cdots x_{i_{m-1}}x_{l_0}\cdots x_{l_{q-1}}=x_{j_0}\cdots x_{j_{n-1}}x_{k_0}\cdots x_{k_{p-1}}.$$

The fact that *L* is a code implies m + q = n + p, and in addition, $x_{i_0} = x_{j_0}, \ldots, x_{l_{q-1}} = x_{k_{p-1}}.$ We must have $m \le n$, because if m > n, then $x_{i_n} \ldots x_{i_{m-1}} w = \lambda$, and this would imply $x_{i_n} = \cdots = x_{i_{m-1}} = w = \lambda$, which contradicts the catenative independence of the language *L*. If m = n, then $w = \lambda \in L^*$; otherwise, m < n, and this implies $w = x_{i_m} \cdots x_{i_{n-1}}$, which gives $w \in L^*$.