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Definition

An information source (in short, a source) is a pair S = (S ,D), where
S = {s0, s1, . . .} is a nonempty, countable set referred to as the source set,
and D is is a probability distribution

D =

(
s0 s1 · · ·
p0 p1 · · ·

)
where

∑
i∈N pi = 1.

If S is a finite set, then we refer to S = (S ,D) as a finite source.
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Outline

The symbols generated by the source are encoded as words over an
alphabet A, which is, of course, finite, using a morphism h : S∗ −→ A∗

referred to as the encoding morphism. The encoding of a word s0 · · · sm−1

generated by the source, h(s0) · · · h(sm−1) ∈ A∗, is sent through a
communication line to a decoder that converts the word h(s0) · · · h(sm−1)
back to a word over the set S .

Source Encoder h- - · · · - Decoder - Receiver

Transmission Line

A∗S∗ S∗
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Different words produced by the source must yield distinct coded
messages. This amounts to requiring that h be an injective morphism
between S∗ and A∗.

Definition

Let A be an alphabet and let S = (S ,D) be a source. A code on an
alphabet A is a triple C = (S,A, h), where h : S∗ −→ A∗ is an injective
morphism.
The code set of C is the set of images of symbols of S under the
morphism h,

h(S) = {h(s) | s ∈ S}.

Often, when the source and the alphabet are clear from context we will
use the term code to refer to either h or the code set h(S).
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Example

Let S be a finite source set, A be an alphabet such that |A| ≥ 2, and
k ∈ N be a number such that |S | ≤ |A|k . Any injective mapping
h : S −→ A∗ such that h(s) is a word of length k can be extended to an
injective morphism from S∗ to A∗. Codes constructed in this manner are
known as block codes of length k .
For instance, let S = {s0, s1, s2} and let A = {0, 1}. By choosing k = 2,
we can define a block code of length 2 by h(s0) = 00, h(s1) = 01, and
h(s2) = 10.
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If we do not require that |h(s)| = k for each s ∈ S , then even if
h : S −→ A∗ is an injective mapping, its extension h : S∗ −→ A∗ is not
necessarily an injective morphism as shown in the next example.

Example

Let S = {s0, s1, s2}, A = {0, 1}, and let h : S −→ A∗ be the injective
mapping h(s0) = 0, h(s1) = 01, and h(s2) = 10. Observe that the
extension h : S∗ −→ A∗ is not injective because h(s1s0) = h(s0s2) = 010.
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Unique Decipherability

Definition

Let A be an alphabet, and let L = {x0, x1, . . .} be a language on A, L 6= ∅.
L is uniquely decipherable if the equality

xi0 · · · xim−1 = xj0 · · · xjn−1

implies m = n and xi` = xj` , for 0 ≤ ` ≤ n − 1.

If L is a code set, then λ 6∈ L. Indeed, if λ ∈ L, then we would have x = λx
for every x ∈ A∗, which contradicts the uniquely decipherability property.
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Unique Decipherability

Theorem

A language L ⊆ A∗ is uniquely decipherable if and only if it is code set.
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Unique Decipherability

Proof

Suppose that L = {x0, . . . , xk−1, . . .} is a uniquely decipherable language.
Let S be a source set such that S has the same cardinality as L. There
exists a bijection h : S −→ L such that h(si ) = xi for every xi ∈ L.
Suppose that h(si0 . . . sim−1) = h(sj0 . . . sjn−1). This is equivalent to
xi0 · · · xim−1 = xj0 · · · xjn−1 , so m = n and xi` = xj` for 0 ≤ ` ≤ n − 1 by the
unique decipherability condition, which, in turn, implies h(si`) = h(sj`) for
0 ≤ ` ≤ m − 1. Since h : S −→ L is a bijection, si` = sj` for
0 ≤ ` ≤ m − 1, which means that si0 . . . sim−1 = sj0 . . . sjn−1 . This shows
that the morphism h : S∗ −→ A∗ is injective, so L = h(S) is a code set.
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Unique Decipherability

(Proof cont’d)

Conversely, suppose that L is a code set, that is, L = h(S), where
h : S −→ A∗ is an injective mapping whose extension to S∗ is an injective
morphism, and that h(si ) = xi for every xi ∈ L. If
xi0 , . . . , xim−1 , xj0 , . . . , xjn−1 are words in L such that
xi0 · · · xim−1 = xj0 · · · xjn−1 , then si0 · · · sim−1 = sj0 · · · sjn−1 , because of the
injectivity of the morphism h : S∗ −→ A∗. Consequently, m = n, si` = sj`
for 0 ≤ ` ≤ n − 1, so h is a code, and L is a code set.
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Unique Decipherability

Corollary

A language L ⊆ A+ is not a code set if and only if there exist words
xi0 , . . . , xim−1 , xj0 , . . . , xjn−1 in L such that xi0 · · · xim−1 = xj0 · · · xjn−1 and xi0
is a proper prefix of xj0 .
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Unique Decipherability

Suppose that L is not a code set. Then there exist words

xi0 , . . . , xim−1 , xj0 , . . . , xjn−1 ∈ L

such that xi0 · · · xim−1 = xj0 · · · xjn−1 . Suppose that we choose these words
such that ` = m + n is minimal. Then, xi0 6= xj0 since otherwise, we would
have xi1 · · · xim−1 = xj1 · · · xjn−1 and this would contradict the minimality of
`. Therefore, one of the words xi0 , xj0 is a proper prefix of the other.
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Unique Decipherability

Conversely, if xi0 · · · xim−1 = xj0 · · · xjn−1 and xi0 is a proper prefix of xj0 for
some words xi0 , . . . , xim−1 , xj0 , . . . , xjn−1 in L, then L is not uniquely
decipherable, so it is not a code set.
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Prefix Codes

Example

Let A be an alphabet and L ⊆ A∗ be a language such that for every
x , y ∈ L with x 6= y we have x 6∈ PREF(y). By the previous Corollary L is
a code set.

Definition

Let A be an alphabet. A prefix code on A is a language L ⊆ A∗ such that
for every x , y ∈ L with x 6= y we have x 6∈ PREF(y).
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Prefix Codes

Example

Let k ∈ N, and let Lk ⊆ {a, b}∗ be defined by Lk = {anb | 0 ≤ n ≤ k}.
Then, Lk is a prefix code, since each code word has exactly one symbol b,
which marks its end.
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Prefix Codes

Prefix codes can be obtained using a labeled ordered tree TA as a
representation of the set of words over an alphabet A. The root of TA is
labeled by λ; if A = {a0, . . . , ak−1}, then every node labeled by a word
x ∈ A∗ has k successors labeled (from left to right) by the words
xa0, xa1, . . . , xak−1.
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Prefix Codes

Example

Let A = {0, 1} be an alphabet. The labeled ordered tree TA is shown here:
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Prefix Codes

(Example cont’d)

Note that a word u is a prefix of another word v if and only if u is the label
of a node that occurs on the path that joins the root with v . Therefore, to
obtain a prefix code we need to consider a subtree T of TA. The prefix
code that corresponds to T comprises the labels of the leaves of T.
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Prefix Codes

For instance, the prefix code that corresponds to the subtree shown below
is {000, 001, 01, 11}.
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0 1

00 01 11

000 001
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Catenative Independence

Definition

A language L ⊆ A∗ is catenatively independent if L ∩ Ln = ∅ for every
n ≥ 2.

In other words, L is catenatively independent if no word w ∈ L can be
written as w = w0 · · ·wn−1 where n ≥ 2 and wi ∈ L for 0 ≤ i ≤ n − 1.
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Catenative Independence

Example

The language L = {a, aba, baba, bb, bbba} over the alphabet {a, b} is
catenatively independent.
Also, the language {x ∈ A∗ | |x | = n} is catenatively independent for any
n.

No catenatively independent language may contain λ.
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Catenative Independence

Theorem

(Schützenberger Theorem) A language L over the alphabet A is a code
if and only if L is catenatively independent and L∗w ∩ L∗ 6= ∅,
wL∗ ∩ L∗ 6= ∅ for a word w ∈ A∗ imply w ∈ L∗.
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Catenative Independence

Proof

The conditions of the theorem are sufficient:
Let L ⊆ A∗ be a language that satisfies these conditions. Note that λ 6∈ L
because of the catenative independence of L.
If L were not a code, we would have words xi0 , . . . , xin−1 , xj0 , . . . , xjm−1 from
L such that

xi0 · · · xin−1 = xj0 · · · xjm−1

and xj0 = xi0z for some z 6= λ. Thus, Lz ∩ L 6= ∅, which implies
L∗z ∩ L∗ 6= ∅. This also gives, by the cancellation property,

xi1 · · · xin−1 = zxj1 · · · xjm−1 ,

so zL∗ ∩ L∗ 6= ∅. Hence, z ∈ L∗ and z 6= λ. Since xj0 = xi0z , this
contradicts the catenative independence of L.
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Catenative Independence

To prove that the conditions are necessary, assume that L is a code. The
catenative independence of L is immediate.
Suppose that L∗w ∩ L∗ 6= ∅ and wL∗ ∩ L∗ 6= ∅ for a word w ∈ A∗. This
means that we have words xi0 , . . . , xim−1 , xj0 , . . . , xjn−1 and
xk0 , . . . , xkp−1 , xl0 , . . . , xlq−1 in L such that

xi0 · · · xim−1w = xj0 · · · xjn−1 ,

wxk0 · · · xkp−1 = xl0 · · · xlq−1 .

Combining the above equalities, we obtain

xi0 · · · xim−1xl0 · · · xlq−1 = xj0 · · · xjn−1xk0 · · · xkp−1 .

The fact that L is a code implies m + q = n + p, and in addition,
xi0 = xj0 , . . . , xlq−1 = xkp−1 .
We must have m ≤ n, because if m > n, then xin . . . xim−1w = λ, and this
would imply xin = · · · = xim−1 = w = λ, which contradicts the catenative
independence of the language L.
If m = n, then w = λ ∈ L∗; otherwise, m < n, and this implies
w = xjm · · · xjn−1 , which gives w ∈ L∗.
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