Finite Automata and Regular Languages (part III)

Prof. Dan A. Simovici

UMB
Nondeterministic finite automata can be further generalized by allowing transitions between states without reading any input symbol.

Definition

A transition system (ts) is a 5-tuple $T = (A, Q, \theta, Q_0, F)$, where A, Q, and F are as in a finite automaton, θ is a finite relation, $\theta \subseteq Q \times A^* \times Q$, called the transition relation of T, and Q_0 is a nonempty subset of Q called the set of initial states, and F is the set of final states.

A transition in T is a triple $(q, x, q') \in \theta$. We refer to transitions of the form (q, λ, q') as null transitions.
Transition systems are conveniently represented by labeled directed multigraphs. Namely, if $\mathcal{T} = (A, Q, \theta, Q_0, F)$ is a transition system, then its graph is a labeled directed multigraph $G(\mathcal{T}) = (G, A^*, m)$ that has Q as its set of vertices. Each directed edge e with $s(e) = q$, $d(e) = q'$, and $m(e) = x$ corresponds to a triple $(q, x, q') \in \theta$, and every such triple is represented by an edge in G.

Observe that, unlike the graph of a dfa or an ndfa, the edges of the directed graph of a ts can be labelled with words, including the null word.
Example

The graph of the transition system

\[\mathcal{T}_1 = (\{a, b, c\}, \{q_0, q_1, q_2, q_3\}, \theta, \{q_0\}, \{q_3\}) \]

where \(\theta \) is given by

\[\theta = \{(q_0, ab, q_1), (q_0, \lambda, q_2), (q_1, bc, q_2), (q_1, \lambda, q_3), (q_2, c, q_3)\} \] is shown below:
As we did with the transition functions of dfas and ndfas, we wish to extend the transition relation θ of a transition system \mathcal{T} to the set $Q \times A^* \times Q$. The extension $\theta^* \subseteq Q \times A^* \times Q$ is given next.

1. For every $q \in Q$ define $(q, \lambda, q) \in \theta^*$.
2. Every triple $(q, x, q') \in \theta$ belongs to θ^*.
3. If $(q, x, q'), (q', y, q'') \in \theta^*$, then $(q, xy, q'') \in \theta^*$.

Note that $(q, w, q') \in \theta^*$ if and only if there is a path in $G(\mathcal{T})$ that begins with q and ends with q' such that the concatenated labels of the directed edges of this path form the word w.

Extending the transition relation
If \mathcal{T} is the above transition system, then $(q_0, abbcc, q_3) \in \theta^*$ because $(q_0, ab, q_1), (q_1, bc, q_2), (q_2, c, q_3) \in \theta$. Similarly, $(q_0, c, q_3) \in \theta$ because $(q_0, \lambda, q_2), (q_2, c, q_3) \in \theta$.
Definition

Let $\mathcal{T} = (A, Q, \theta, Q_0, F)$ be a transition system. The language accepted by \mathcal{T} is

$$L(\mathcal{T}) = \{ x \in A^* \mid (q_0, x, q) \in \theta^* \text{ for some } q_0 \in Q_0, q \in F \}.$$

Thus, a word x belongs to $L(\mathcal{T})$ if there is a path in $G(\mathcal{T})$ that begins in an initial state $q_0 \in Q_0$, labeled by x, such that the path ends in one of the states of F, the set of final states.
Transition systems generalize ndfas

If \(M = (A, Q, \delta, q_0, F) \) is a nondeterministic automaton, define the transition system \(\mathcal{J}_M = (A, Q, \theta, \{q_0\}, F) \), where

\[\theta = \{ (q, a, q') \mid q, q' \in Q, a \in A \text{ and } q' \in \delta(q, a) \} \]

It can be shown by induction on \(|x|\) that \((q, x, q') \in \theta^* \) if and only if \(q' \in \delta^*(q, x) \). This implies that \(L(\mathcal{J}_M) = L(M) \). Therefore, every regular language can be accepted by a transition system. Furthermore, any language that can be accepted by a transition system is regular.
Lemma

For every transition system $\mathcal{T} = (A, Q, \theta, Q_0, F)$ there exists a transition system $\mathcal{T}' = (A, Q', \theta', Q_0, F)$ such that $(q, x, q_1) \in \theta'$ implies $|x| \leq 1$ and $L(\mathcal{T}') = L(\mathcal{T})$.

Define the relation θ' and the set Q' as follows:

1. Every state $q \in Q$ also belongs to Q'.
2. Every triple $(q, x, q') \in \theta$ such that $|x| \leq 1$ also belongs to θ'.
3. If $t = (q, x, q') \in \theta$ such that $x = a_0 \ldots a_{n-1}$ and $n \geq 2$, add $n - 1$ new states $q^t_0, \ldots q^t_{n-2}$ to Q' and the triples

$$
(q, a_0, q^t_0), (q^t_0, a_1, q^t_1), \ldots, (q^t_{n-2}, a_{n-1}, q')
$$

The ts T' clearly satisfies the conditions of the lemma, since $(q, x, q') \in \theta^*$ if and only if $(q, x, q') \in \theta'^*$.
Theorem

For every transition system $T = (A, Q, \theta, Q_0, F)$ there exists a deterministic finite automaton M such that $L(T) = L(M)$.

Proof.

By the previous Lemma we can assume that $(q, x, q') \in \theta$ implies $|x| \leq 1$. Define the deterministic finite automaton $M = (A, P(Q), \Delta, Q'_0, F')$, where the initial state of M is

$$Q'_0 = \{ q \in Q \mid (q_0, \lambda, q) \in \theta^* \text{ for some } q_0 \in Q_0 \},$$

the set of final states is $F' = \{ S \mid S \subseteq Q, S \cap F \neq \emptyset \}$, and the function Δ is defined by

$$\Delta(S, a) = \{ q' \in Q \mid (q, a, q') \in \theta^* \text{ for some } q \in S \},$$

for every $S \subseteq Q$ and $a \in A$.

\qed
Proof (cont’d)

It is not difficult to verify, by induction on $|x|$, that

$$\Delta^*(Q'_0, x) = \{ q' \in Q \mid (q_0, x, q') \in \theta^* \text{ for some } q_0 \in Q_0 \},$$

for $x \in A^*$. For the basis case, $|x| = 0$, so the above equality becomes

$$Q'_0 = \{ q' \in Q \mid (q_0, \lambda, q') \in \theta^* \text{ for some } q_0 \in Q_0 \},$$

which holds by the definition of Q'_0.
Proof (cont’d)

Suppose that the equality holds for words of length \(n \), and let \(y \) be a word of length \(n + 1 \). We can write \(y = xa \), so

\[
\Delta^*(Q'_0, y) = \Delta^*(Q'_0, xa) \\
= \Delta(\Delta^*(Q'_0, x), a) \\
= \Delta(\{q' \in Q \mid (q_0, x, q') \in \theta^* \text{ for some } q_0 \in Q_0\}, a) \\
\text{(by the inductive hypothesis)} \\
= \{r \in Q \mid (q', a, r) \in \theta^*, \text{ for some } q' \text{ such that} \\
(q_0, x, q') \in \theta^* \text{ for some } q_0 \in Q_0\} \\
\text{(by the definition of } \Delta) \\
= \{r \in Q \mid (q_0, xa, r) \in \theta^* \text{ for some } q_0 \in Q_0\} \\
\text{(by the definition of } \theta^*) \\
= \{r \in Q \mid (q_0, y, r) \in \theta^* \text{ for some } q_0 \in Q_0\},
\]

which concludes our inductive argument.
Proof (cont’d)

From this it follows that $L(\mathcal{M}) = L(\mathcal{I})$. By definition, $x \in L(\mathcal{M})$ if and only if $\Delta^*(Q_0', x) \in F'$. This is equivalent to $\Delta^*(Q_0', x) \cap F \neq \emptyset$. This is equivalent to the existence of a state $q' \in F'$ such that $(q_0, x, q') \in \theta^*$ for some $q_0 \in Q_0$, and this is equivalent to $x \in L(\mathcal{I})$.
Corollary

The class of languages that are accepted by transition systems is the class \mathcal{R} of regular languages.
Definition

Let $\mathcal{J} = (A, Q, \theta, Q_0, F)$ be a transition system. The λ-closure is the mapping $K_{\mathcal{J}} : \mathcal{P}(Q) \rightarrow \mathcal{P}(Q)$ given by

$$K_{\mathcal{J}}(S) = \{ q \in Q \mid (s, \lambda, q) \in \theta^* \text{ for some } s \in S \}.$$

The set $K_{\mathcal{J}}(S)$ comprises the states in S plus all the states that can be reached from a state in S using a series of λ-transitions.
Theorem

Let $\mathcal{T} = (A, Q, \theta, Q_0, F)$ be a transition system. The λ-closure of \mathcal{T} has the following properties.

1. $S \subseteq K_{\mathcal{T}}(S)$;
2. $S \subseteq S'$ implies $K_{\mathcal{T}}(S) \subseteq K_{\mathcal{T}}(S')$;
3. $K_{\mathcal{T}}(K_{\mathcal{T}}(S)) = K_{\mathcal{T}}(S),$

for every $S, S' \in \mathcal{P}(Q)$.
Proof

Since \((s, \lambda, s) \in \theta^*\) it is immediate that \(S \subseteq K_J(S)\) for every \(S \in \mathcal{P}(Q)\). The second part of the theorem is a direct consequence of the definition of \(K_J\).

Note that Parts (i) and (ii) imply \(K_J(S) \subseteq K_J(K_J(S))\). Let \(q \in K_J(K_J(S))\). There is a state \(s \in S\) and a state \(r \in K_J(S)\) such that \((s, \lambda, r) \in \theta^*\) and \((r, \lambda, q) \in \theta^*\). By the definition of \(\theta^*\) we obtain \((s, \lambda, q) \in \theta^*\), so \(q \in K_J(S)\). This implies \(K_J(K_J(S)) \subseteq K_J(S)\), which gives the last part of the theorem.
Definition

Let $\mathcal{T} = (A, Q, \theta, Q_0, F)$ be a transition system. A $K_\mathcal{T}$-closed subset of Q is a set S such that $S \subseteq Q$ and $K_\mathcal{T}(S) = S$.
Example

Consider the transition system

\[\mathcal{T} = (\{a, b\}, \{q_0, q_1, q_2, q_3\}, \theta, \{q_0\}, \{q_2, q_3\}) \]

whose graph is shown
The closed subsets of Q are \emptyset, $\{q_3\}$, $\{q_1, q_2, q_3\}$, and Q itself.
Theorem

Let $\mathcal{T} = (A, Q, \theta, Q_0, F)$ be a transition system and let $M = (A, \mathcal{P}(Q), \Delta, Q'_0, F')$ be the DFA constructed in earlier. The set $\Delta(S, a)$ is a $K_{\mathcal{T}}$-closed set of states for every subset S of Q and $a \in A$.
Proof

To prove the theorem it suffices to show that $K_T(\Delta(S, a)) \subseteq \Delta(S, a)$. Let $p \in K_T(\Delta(S, a))$. There is $p_1 \in \Delta(S, a)$ such that $(p_1, \lambda, p) \in \theta^*$. The definition of $\Delta(S, a)$ implies the existence of $q \in S$ such that $(q, a, p_1) \in \theta^*$. Thus, $(q, a, p) \in \theta^*$, so $p \in \Delta(q, a)$.
Corollary

Let $\mathcal{T} = (A, Q, \theta, Q_0, F)$ be a transition system, and let $\mathcal{M} = (A, \mathcal{P}(Q), \Delta, Q'_0, F')$ be the constructed dfa. The accessible states of the dfa \mathcal{M} are $K_\mathcal{T}$-closed subsets of Q.

Proof.

The initial state Q'_0 of \mathcal{M} is obviously closed. If Q' is an accessible state of \mathcal{M}, then $Q' = \Delta(S, a)$ for some $S \subseteq Q$. Therefore Q' is closed. \qed
Theorem

Let $\mathcal{T} = (A, Q, \theta, Q_0, F)$ be a transition system, and let $\mathcal{M} = (A, \mathcal{P}(Q), \Delta, Q_0', F')$ be the DFA constructed earlier. Then,

$$\Delta(S, a) = K_{\mathcal{T}}(\{q \in Q \mid (s, a, q) \in \theta \text{ for some } s \in S\}),$$

where S is an accessible state of \mathcal{M}.

Proof

Let \(s \in S \). Note that if \((s, a, q) \in \theta\) and \((q, \lambda, q_1) \in \theta^*\), then by the definition of \(\theta^* \) we have \((s, a, q_1) \in \theta^*\). Therefore, \(K_T(\{q \in Q \mid (s, a, q) \in \theta\}) \subseteq \Delta(S, a) \).

To prove the converse inclusion, \(\Delta(S, a) \subseteq K_T(\{q \in Q \mid (s, a, q) \in \theta\}) \), let \((s, a, q_1) \in \theta^*\). Then, there is a path in \(G(T) \) that begins with \(s \) and ends with \(q_1 \) such that the concatenated labels of the directed edges of this path form the word \(a \). This implies the existence of the states \(p, p' \in Q \) such that \((s, \lambda, p) \in \theta^*, (p, a, p_1) \in \theta, \) and \((p_1, \lambda, q_1) \in \theta^*\). Since \(S \) is \(K_T \)-closed it follows that \(p \in S \) and this gives the desired conclusion.
An Algorithm for Constructing a dfa corresponding to a ts

Input: A transition system $\mathcal{T} = (A, Q, \theta, Q_0, F)$.
Output: An accessible dfa \mathcal{M}_1 such that $L(\mathcal{M}_1) = L(\mathcal{T})$.
Method: Compute the increasing sequence of collections of subsets of Q, Q_0, \ldots, Q_i, \ldots, where

\[
Q_0 = \{ Q'_0 \}
\]

\[Q_{i+1} = Q_i \cup \{ U \in \mathcal{P}(Q) \mid U = \Delta(S, a) \text{ for some } S \in Q_i \text{ and } a \in A \} \]
the computation of $U = \Delta(S, a)$ can be done by computing first the set $W = \{q \in Q \mid (s, a, q) \in \theta \text{ for some } s \in S\}$ and then $U = K_I(W)$. Stop when $Q_{i+1} = Q_i$. The set Q_i is the set of accessible states of M. Output $M' = \text{ACC}(M)$, the accessible component of M.
For the transition system
the transition system is: