Finite Automata and Regular Languages
(part VI)

Prof. Dan A. Simovici

UMB
1 Minimal Automata
For any regular language L there are several automata that are capable of recognizing it. Naturally, we are interested in finding among these automata the ones that have the smallest number of states.
Definition

The **Nerode equivalence** of a language $L \subseteq A^*$ is the relation:

$$\nu_L = \{(x, y) \in A^* \times A^* \mid xw \in L \text{ if and only if } yw \in L \text{ for every } w \in A^*\}.$$
The relation ν_L is a right-invariant equivalence relation. In other words: if $(x, y) \in \nu_L$, then $(xu, yu) \in \nu_L$ for every $u \in A^*$. In terms of equivalence classes, $[x]_{\nu_L} = [y]_{\nu_L}$ implies $[xu]_{\nu_L} = [yu]_{\nu_L}$ for every $u \in A^*$. Recall that $[x]_{\nu_L}$ denotes the ν_L-equivalence class of the word x. The set of all equivalence classes of ν_L will be denoted by A^*/ν_L.
Lemma

Let $L \subseteq A^*$ be a language over an alphabet A. We have $(x, y) \in \nu_L$ if and only if $x^{-1}L = y^{-1}L$.
Proof

Let $x, y \in A^*$ such that $(x, y) \in \nu_L$, and let $t \in x^{-1}L$. This means that $xt \in L$, which implies $yt \in L$ because of the definition of ν_L. Therefore, $t \in y^{-1}L$, so $x^{-1}L \subseteq y^{-1}L$. The reverse inclusion can be obtained in the same manner, so $x^{-1}L = y^{-1}L$.

Conversely, if $x^{-1}L = y^{-1}L$, then $xt \in L$ if and only if $yt \in L$ for every $t \in A^*$, which means that $(x, y) \in \nu_L$.

Definition

Let $L \subseteq A^*$ be a language over the alphabet A. The *set of left derivatives of L* is the set $Q_L = \{ t^{-1}L \mid t \in A^* \}$.
Lemma

Let \(L \subseteq \Sigma^* \) be a language over an alphabet \(\Sigma \). The set of left derivatives of \(L \) is finite if and only if \(\Sigma^*/\nu_L \) is finite.

Proof.

The function \(h_L : \Sigma^*/\nu_L \rightarrow Q_L \) defined by \(h_L([x]_{\nu_L}) = x^{-1}L \) is a bijection. The desired conclusion follows immediately.
Lemma

Any language $L \subseteq A^*$ is a ν_L-saturated set.

Proof.

In order to prove that L is ν_L-saturated, it suffices to show that the ν_L-equivalence class of every $x \in L$ is included in L. Let $x \in L$. If $(x, y) \in \nu_L$, then $yz \in L$ whenever $xz \in L$ for any $z \in A^*$. Selecting $z = \lambda$ gives the required result.
Note that the previous lemma is equivalent to saying that for all words $x, y \in A^*$, if $x \in L$ and $x^{-1}L = y^{-1}L$, then $y \in L$.

No assumption is made about the language L; in particular, L need not be regular.
Definition

Let $L \subseteq A^*$ be a language over the alphabet A. The automaton of the language L is the deterministic automaton $M_L = (A, Q_L, \delta_L, L, F_L)$ is defined by $\delta_L(t^{-1}L, a) = (ta)^{-1}L$ for $t \in A^*$ and $a \in A$, and $F_L = \{x^{-1}L \mid x \in L\}$.
Remarks

- The mapping δ_L is well defined; that is, $t^{-1}L = y^{-1}L$ implies $(ta)^{-1}L = (ya)^{-1}L$. Indeed, let $w \in (ta)^{-1}L$. We have $taw \in L$ which implies $aw \in t^{-1}L = y^{-1}L$. Consequently, $yaw \in L$, so $w \in (ya)^{-1}L$. Thus, $(ta)^{-1}L \subseteq (ya)^{-1}L$. The reverse inclusion can be shown similarly, so $(ta)^{-1}L = (ya)^{-1}L$.

- We have $\delta(t^{-1}L, a) = a^{-1}(t^{-1}L)$ for every $t \in A^*$ and $a \in A$. This remark is very important for the algorithm discussed next.
We have
\[\delta^*_L(x^{-1}L, y) = (xy)^{-1}L \]
for every \(x, y \in A^* \).

The argument is by induction on \(\ell = |y| \). The basis case, \(\ell = 0 \), is immediate. Suppose that the equality holds for words of length less than \(\ell \), and let \(y \) be a word of length \(\ell \). We have \(y = za \), where \(z \in A^* \), \(a \in A \) and \(|z| = \ell - 1 \). This gives:

\[
\begin{align*}
\delta^*_L(x^{-1}L, y) &= \delta^*_L(x^{-1}L, za) = \delta_L(\delta^*_L(x^{-1}L, z), a) \\
&= \delta_L((xz)^{-1}L, a) = (xza)^{-1}L = (xy)^{-1}L
\end{align*}
\]
The set of final states of M_L can now be written as

$$F_L = \{ \delta^*(L, x) \mid x \in L \},$$

which allows us to compute the set F_L, once we have computed the transition function.
Nerode’s Theorem:

Theorem

The language L is regular if and only if the set Q_L is finite.
Suppose that the set Q_L is finite. In this case M_L is a dfa and we have

$$L(M_L) = \{ x \in A^* \mid \delta^*_L(L, x) \in F_L \}$$
$$= \{ x \in A^* \mid x^{-1}L \in F_L \}.$$

From the definition of F_L it follows that $x \in L(M_L)$ implies that $x^{-1}L = z^{-1}L$ for some word $z \in L$, which shows that $(x, z) \in \nu_L$. Since L is a ν_L-saturated set, this implies $x \in L$. The reverse inclusion, $L \subseteq L(M_L)$ is immediate, and it is left to the reader. Therefore, L is accepted by the dfa M_L, so L is regular.

Conversely, suppose that L is a regular language. The finiteness of the set Q_L follows from a previous Corollary.
Theorem

Let L be a regular language. The automaton \mathcal{M}_L has the least number of states among all dfas that accept L.

Proof

Let \(M = (A, Q, \delta, q_0, F) \) be a dfa such that \(L = L(M) \). We intend to show that \(|Q_L| \leq |Q| \). Clearly, if \(M \) is to be minimal, it must be accessible, otherwise the automaton resulting from removing inaccessible states accepts the same language but has fewer states. In other words, we assume that for every state \(q \in Q \) there exists a word \(t \in A^* \) such that \(\delta^*(q_0, t) = q \).

Define the mapping \(f : Q \rightarrow Q_L \) by \(f(q) = t^{-1}L \) if \(\delta^*(q_0, t) = q \).
We need to verify that \(f \) is well-defined, that is, that \(\delta^*(q_0, u) = \delta^*(q_0, v) \) implies \(u^{-1}L = v^{-1}L \). If \(x \in u^{-1}L \), then \(ux \in L \), that is, \(\delta^*(q_0, ux) \in F \). Since \(\delta^*(q_0, ux) = \delta^*(\delta^*(q_0, u), x) \) and \(\delta^*(q_0, u) = \delta^*(q_0, v) \), it follows that \(\delta^*(\delta^*(q_0, v), x) = \delta^*(q_0, vx) \in F \), so \(vx \in L \) and \(x \in v^{-1}L \). The reverse implication can be obtained by exchanging \(u \) and \(v \), so \(f \) is indeed well-defined.

It is clear that the mapping \(f \) is surjective, so \(|\mathcal{Q}_L| \leq |Q| \), which shows that \(M_L \) has the least number of states among all dfas that accept the language \(L \).
The Algorithm

Input: A regular language \(L \) over an alphabet \(A \).
Output: The set \(Q_L \) of left derivatives of \(L \).
Method: Construct an increasing chain \(Q_0, \ldots, Q_k, \ldots \) of finite subsets of \(Q_L \) as follows:

\[
Q_0 = \{ L \} \\
Q_{k+1} = Q_k \cup \{ a^{-1}K \mid a \in A \text{ and } K \in Q_k \}
\]

Continue until \(Q_{k+1} = Q_k \); then stop and output \(Q_k \).
Proof of Correctness:
The algorithm must stop, since Q_L is a finite set. It is easy to see that $K \in Q_p$ if and only if the set K (considered as a state of the automaton M_L) can be reached by a word of length less than or equal to p in M_L. Every state of the automaton M_L can be reached through a word of length less than $|Q_L|$. Therefore, when the algorithm stops, all members of Q_L have been computed.
We recall several equalities previously shown that are useful in the computation of left derivatives of languages. Namely, if L, K are two languages over the alphabet A and $a \in A$, then we have:

- $a^{-1}(L \cup K) = a^{-1}L \cup a^{-1}K$
- $a^{-1}(LK) = (a^{-1}L)K \cup (L \cap \{\lambda\})a^{-1}K$
- $a^{-1}L^* = (a^{-1}L)L^*$
Example

Let $A = \{a, b\}$. Consider the regular language L that consists of all words from A^* that contain the infix aba. In other words, $L = A^*abaA^*$.
We have $Q_0 = \{L\}$ and $Q_1 = Q_0 \cup \{a^{-1}L, b^{-1}L\}$. Note that

\[
a^{-1}L = a^{-1}(A^*abaA*)
= (a^{-1}A^*)(abaA*) \cup (A^* \cap \{\lambda\})a^{-1}(abaA*)
= A^*abaA^* \cup baA^*
= L \cup baA^*
\]

and

\[
b^{-1}L = b^{-1}(A^*abaA*)
= (b^{-1}A^*)(abaA*) \cup (A^* \cap \{\lambda\})b^{-1}(abaA*)
= A^*abaA^*
= L,
\]

because $b^{-1}(abaA^*) = \emptyset$, $(A^* \cap \{\lambda\})b^{-1}(abaA^*) = \emptyset$, and $b^{-1}A^* = A^*$.
Thus,
\[Q_1 = \{ L, L \cup baA^* \}. \]

Next, in order to compute \(Q_2 \), observe that
\[
\begin{align*}
 a^{-1}baA^* &= \emptyset \\
 b^{-1}baA^* &= aA^*.
\end{align*}
\]

We obtain:
\[
\begin{align*}
 a^{-1}(L \cup baA^*) &= a^{-1}L = L \cup baA^* \\
 b^{-1}(L \cup baA^*) &= b^{-1}L \cup aA^* = L \cup aA^*,
\end{align*}
\]
To compute Q_2, observe that

$$a^{-1}baA^* = \emptyset$$
$$b^{-1}baA^* = aA^*.$$

We obtain:

$$a^{-1}(L \cup baA^*) = a^{-1}L = L \cup baA^*$$
$$b^{-1}(L \cup baA^*) = b^{-1}L \cup aA^* = L \cup aA^*,$$

The collection Q_2 is

$$Q_2 = \{ L, L \cup baA^*, L \cup aA^* \}$$
Now we have

\[a^{-1}aA^* = A^* \]
\[b^{-1}aA^* = \emptyset, \]

which allows us to write:

\[a^{-1}(L \cup aA^*) = a^{-1}L \cup A^* = A^* \]
\[b^{-1}(L \cup aA^*) = b^{-1}L = L. \]

The collection \(Q_3 \) is given by

\[Q_3 = \{ L, L \cup baA^*, L \cup aA^*, A^* \}. \]
Since $a^{-1}A^* = b^{-1}A^* = A^*$, it follows that $Q_4 = Q_3$, so

$$Q_L = \{L, L \cup baA^*, L \cup aA^*, A^*\}.$$

The automaton M_L is defined by the following table:

<table>
<thead>
<tr>
<th>Input</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L_1</td>
</tr>
<tr>
<td>a</td>
<td>$L \cup baA^*$</td>
</tr>
<tr>
<td>b</td>
<td>L</td>
</tr>
</tbody>
</table>
Since $F_L = \{ \delta^*(L, x) \mid x \in L \}$, we can compute F_L by determining those members of Q_L that can be reached from the initial state L using words from L of length not greater than 3.

The language L contains only one word of length 3, namely aba, so $F_L = \{ \delta^*(L, aba) \} = \{ A^* \}$. The graph of M_L is given next.
\[
L \cup aA^* \\
L \cup baA^* \\
L \cup b \\
\]

\[
A^* \\
A^* \\
\]

\[
L \cup aA^* \\
L \cup baA^* \\
L \cup b \\
\]

\[
A^* \\
A^* \\
\]

\[
L \cup aA^* \\
L \cup baA^* \\
L \cup b \\
\]

\[
A^* \\
A^* \\
\]