1. Let \(A = \{0, 1\} \) be an alphabet that consists of two binary digits. Denote by \(f(x) \) the numerical equivalent of \(x \), as we did in class. Design a dfa that accepts the set of words \(\{x \in \{0, 1\}^* \mid f(x) \text{ is a multiple of } 6\} \).

2. Construct deterministic finite automata that accept the following languages over the alphabet \(A = \{a, b, c\} \):

 (a) The set of all words that begin with \(ab \) and end with \(ba \).
 (b) The set \(\{bab\} \).
 (c) The set \(A^* - \{bab\} \).

 Justify your solutions.

3. Construct non-deterministic finite automata that accept the following languages over the alphabet \(A = \{a, b, c\} \):

 (a) The set of all words that begin with \(ab \) and end with \(ba \).
 (b) The set \(\{bab\} \).
 (c) The set \(A^* - \{bab\} \).

 Justify your solutions.

4. Prove or disprove the following statements. Proving requires an argument; disproving requires a counterexample.

 (a) Every language is contained in a regular language.
 (b) Every nonempty language contains a nonempty regular language.
(c) The union of a collection of regular languages is a regular language.

(d) If L_0, L_1 are regular languages and $L_0 \subseteq L \subseteq L_1$, then L is a regular language.

5. Let A be an alphabet and let $a \in A$ be a symbol. If k is a natural number, construct a nondeterministic finite automaton that accepts the language $L_{k,a} = \{uav \mid u, v \in A^* \text{ and } |v| = k\}$.