Finite Automata and Regular Languages (part I)

Prof. Dan A. Simovici

UMB
Informally, a deterministic finite automaton consists of:

- an **input tape** divided into cells;
- a **control device** equipped with a **reading head** that scans the input tape one cell at a time.

Each cell of the input tape contains a symbol $a \in A$, where A is an alphabet, called the **input alphabet**. The tape can accommodate words of arbitrary finite length. Thus, although the tape is thought of as being infinitely long, only a **finite initial segment** of it contains input symbols.
Main Components of a Finite Automaton

Control device

Read head

\[a_{i_0} \quad a_{i_1} \quad a_{i_2} \quad a_{i_3} \quad a_{i_4} \quad \ldots \]

input tape
How a finite automaton works

- A dfa works discretely. Consider a clock that advances in discrete units; at any time on the clock, the automaton is resting in one of its states.
- Between two successive clock times, the automaton consumes its next available input and goes into a new state (which may happen to be the same state it was in at the previous time).
- The time scale of the automaton is the set \mathbb{N} of natural numbers.
Definition

A deterministic finite automaton (DFA) is a quintuple

\[M = (A, Q, \delta, q_0, F), \]

where \(A \) and \(Q \) are two finite, disjoint sets called the input alphabet of \(M \), and the set of states of \(M \), respectively, \(\delta : Q \times A \rightarrow Q \) is the transition function, \(q_0 \) is the initial state of \(M \), and \(F \subseteq Q \) is the set of final states of \(M \).
Example

Let $\mathcal{M} = (\{a, b\}, \{q_0, q_1, q_2, q_3\}, \delta, q_0, \{q_3\})$ be the dfa defined by the following table:

<table>
<thead>
<tr>
<th>Input</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>q_0</td>
</tr>
<tr>
<td>a</td>
<td>q_1</td>
</tr>
<tr>
<td>b</td>
<td>q_2</td>
</tr>
</tbody>
</table>

The entry that corresponds to the input line labeled i and the state column labeled q gives the value of $\delta(q, i)$.
The graph of the deterministic finite automaton $\mathcal{M} = (A, Q, \delta, q_0, F)$ is the graph $\mathcal{G}(\mathcal{M})$ whose set of vertices is the set of states Q.

The set of edges of $\mathcal{G}(\mathcal{M})$ consists of all pairs (q, q') such that there is a transition from q to q'; an edge (q, q') is labeled by the symbol a if $\delta(q, a) = q'$.

The initial state q_0 is denoted by an incoming arrow with no source, and the final states are circled.
Example
The graph of the previous DFA is:
The Work of a dfa

- the symbols of a word $x = a_{i_0} \cdots a_{i_{n-1}}$ are read by the automaton one at a time;
- to compute the state reached by the dfa after the application of x, the function δ must be extended from single symbols to a function δ^* defined for words.
Extending the Transition Function

Starting from a function $\delta : Q \times A \rightarrow Q$ we define the function $\delta^* : Q \times A^* \rightarrow Q$ by:

$$
\begin{align*}
\delta^*(q, \lambda) & = q \\
\delta^*(q, xa) & = \delta(\delta^*(q, x), a),
\end{align*}
$$

for every $x \in A^*$ and $a \in A$.

Note that for single character words, e.g., $y = a$, where $a \in A$, $\delta^*(q, y) = \delta(q, a)$. This follows from by setting $x = \lambda$ and noticing that $y = \lambda a$. Thus,

$$
\delta^*(q, a) = \delta(q, a) \text{ for all } q \in Q \text{ and } a \in A,
$$

justifying our observation that δ^* extends δ.

Theorem

Let $\delta : Q \times A \rightarrow Q$ be a function, and let δ^* be its extension to $Q \times A^*$. Then

$$\delta^*(q, xy) = \delta^*(\delta^*(q, x), y)$$

for every $x, y \in A^*$.

Proof.

The argument is by induction on $|y|$. The basis step, $|y| = 0$, is immediate since the equality of the theorem amounts to

$$\delta^*(q, x \lambda) = \delta^*(\delta^*(q, x), \lambda) = \delta^*(q, x).$$
Proof (cont’d)

For the induction step, suppose that the equality holds for words of length less or equal to n, and let y be a word of length $n + 1$, $y = za$, where $z \in A^*$ and $a \in A$. We have

$$
\delta^*(q, xy) = \delta^*(q, xza)
$$

$$
= \delta(\delta^*(q, xz), a) \text{ (since } \delta^* \text{ extends } \delta)
$$

$$
= \delta(\delta^*(\delta^*(q, x), z), a) \text{ (ind. hyp.)}
$$

$$
= \delta^*(\delta^*(q, x), za) \text{ (since } \delta^* \text{ extends } \delta)
$$

$$
= \delta^*(\delta^*(q, x), y).
$$
Definition

The language accepted by the dfa $\mathcal{M} = (A, Q, \delta, q_0, F)$ is the set

$$L(\mathcal{M}) = \{ x \in A^* \mid \delta^*(q_0, x) \in F \}.$$

A language $L \subseteq A^*$ is regular if it is accepted by some finite automaton \mathcal{M} whose input alphabet is A.
Example
Let $\mathcal{M} = (A, Q, \delta, q_0, F)$ be the dfa whose graph is given below, where $A = \{a, b\}$ and $Q = \{q_0, q_1, q_2\}$.
The language accepted by \(\mathcal{M} \) consists of all words over \(A \) that contain at least two consecutive \(b \) symbols; in other words, \(L(\mathcal{M}) = A^* bbA^* \).
if $x \in L(M)$, then x contains two consecutive b symbols since q_2 cannot be reached otherwise from q_0 using the symbols of x;

conversely, suppose that x contains two consecutive b symbols; we can decompose $x = ubbv$, where bb is the leftmost occurrence of bb in x.

The definition of M implies that $\delta^*(q_0, u) = q_0$, $\delta^*(q_0, bb) = q_2$ and $\delta^*(q_2, v) = q_2$. Thus, $\delta^*(q_0, x) = q_2$, and this implies $x \in L(M)$. We conclude that $L(M) = A^* bb A^*$.
Counting Numbers

The DFA with n states shown below accepts only inputs whose length is 0 (mod n), that is, an integral multiple of n.
Example

The DFA given below accepts those words in \(\{a, b\}^\ast \) that have \(0(\text{mod } n) \) \(a \)'s, regardless of how many \(b \)'s are in the input.
Example

Next, we present a dfa that accepts words over the alphabet \{0, 1\} only when their binary equivalents are multiples of a fixed integer, say \(m \in \mathbb{N}\).

Let \(B = \{0, 1\}\). A word \(x \in B^*\) can be regarded as a binary number as follows. Define the function \(f : B^* \rightarrow \mathbb{N}\) by

\[
\begin{align*}
f(\lambda) &= 0 \\
f(xb) &= \begin{cases}
2f(x) + 0 & \text{if } b = 0 \\
2f(x) + 1 & \text{if } b = 1,
\end{cases}
\end{align*}
\]

for every \(x \in B^*\) and \(b \in B\). Note that \(f(x)\) is the value represented by \(x\) regarded as a binary number.
Let \(m \in \mathbb{N} \) be a number such that \(m > 1 \). Note that for every \(x \in B^* \), there exists a number \(k \), \(0 \leq k \leq m - 1 \), such that \(f(x) \equiv k(\text{mod } m) \). Of course, if \(f(x) \equiv 0(\text{mod } m) \), then \(f(x) \) is a multiple of \(m \), so \(x \) will be accepted by the automaton that we intend to define.

We design an automaton \(M_m \) that accepts the set of words \(x \) such that \(f(x) \) is a multiple of a fixed number \(m \). The states of \(M_m \) are defined such that \(\delta^*(q_0, x) = q_h \) if and only if \(f(x) \equiv h(\text{mod } m) \). In other words, if \(M_m \) reaches the state \(q_h \) after reading the symbols of \(x \), then \(f(x) \) is congruent to \(h \) modulo \(m \). Therefore, after reading the symbol \(b \), \(M \) enters the state \(q_\ell \), where \(2h + b \equiv \ell(\text{mod } m) \). This allows us to define the transition function by \(\delta(q_h, b) = q_\ell \).
The dfa $M_3 = (B, \{q_0, q_1, q_2\}, \delta, q_0, \{q_0\})$ that recognizes the set of multiples of 3 is defined by the table:

<table>
<thead>
<tr>
<th>Input</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>q_0</td>
</tr>
<tr>
<td>0</td>
<td>q_0</td>
</tr>
<tr>
<td>1</td>
<td>q_1</td>
</tr>
</tbody>
</table>

Therefore, the language $L = \{x \in B^* \mid f(x) \equiv 0(\text{mod } 3)\}$ is regular.
Example

Let $A = \{a, b, \ldots, z, 0, \ldots, 9\}$. The automaton

$$
\mathcal{M} = \{A, \{q_0, q_1, q_2\}, \delta, q_0, \{q_1\}\}
$$

accepts those words in A^* that begin with a letter and contain a sequence of letters and digits. In other words, $L(\mathcal{M}) = \{a, \ldots, z\}A^*$
The finiteness of the set of states Q of a dfa $M = (A, Q, \delta, q_0, F)$ is essential for the definition of regular languages. If this assumption is dropped we obtain a weaker type of device.

Definition

A deterministic automaton (da) is a quintuple

$$M = (A, Q, \delta, q_0, F),$$

where A is an alphabet, called the input alphabet; Q is a set that is disjoint from A, called the set of states, $\delta : Q \times A \rightarrow Q$ is the transition function of the da, q_0 is the initial state, and $F \subseteq Q$ is the set of final states.

The transition function δ can be extended to $Q \times A^*$ in exactly the same way as for the deterministic finite automata. Again, we denote this extension by δ^*.
The role of the finiteness of the set of states of a dfa is highlighted by the next theorem.

Theorem

For every language $L \subseteq A^*$, *there is a deterministic automaton* $\mathcal{M} = (A, Q, \delta, q_0, F)$ *such that* $L = L(\mathcal{M})$.

Proof.

Consider the da $\mathcal{M} = (A, Q, \delta, q_\lambda, \{q_u \mid u \in L\})$, where $Q = \{q_x \mid x \in A^*\}$ and $\delta(q_x, a) = q_{xa}$ for every $x \in A^*$ and $a \in A$. It is easy to verify that $\delta^*(q_x, y) = q_{xy}$ for every $x, y \in A^*$. Therefore, $L(\mathcal{M}) = \{y \in A^* \mid \delta^*(q_\lambda, y) = q_y \text{ and } y \in L\} = L$, which means that L is the language accepted by \mathcal{M}.

□
Definition

Let $\mathcal{M} = (A, Q, \delta, q_0, F)$ be an automaton. The set of accessible states is the set

$$\text{acc}(\mathcal{M}) = \{q \in Q \mid \delta^*(q_0, x) = q \text{ for some } x \in A^*\}.$$

The automaton \mathcal{M} is accessible if $\text{acc}(\mathcal{M}) = Q$.
Only the set of accessible states plays a role in defining the language accepted by the automaton.

- If δ' is the restriction of δ to $\text{acc}(M) \times A$, then the automata M and $M' = (A, \text{acc}(M), \delta', q_0, F \cap \text{acc}(M))$ accept the same language.
- If $x \in L(M)$, then $\delta^*(q_0, x) \in F$ and $\delta^*(q_0, y) \in \text{acc}(M)$ for every prefix y of x (including x). Therefore, $(\delta')^*(q_0, x) = \delta^*(q_0, x) \in F$, so $x \in L(M')$.
- It is immediate that $x \in L(M')$ implies $x \in L(M)$, so $L(M) = L(M')$.

M' is denoted by $\text{ACC}(M)$ and we refer to it as the accessible component of M.
Example

Consider an automaton $\mathcal{M} = (\{a\}, Q, \delta, q_0, F)$ having a one-symbol input alphabet. We have $\text{acc}(\mathcal{M}) = \{\delta(q_0, a^n) \mid n \in \mathbb{N}\}$. Therefore, the subgraph of the accessible states in the graph of \mathcal{M} consists of a path attached to a circuit, as shown:
Theorem

Let \(\mathcal{M} = (A, Q, \delta, q_0, F) \) be an accessible automaton. For every state \(q \in Q \) there is a word \(x \in A^* \) such that \(|x| < |Q| \) and \(\delta^*(q_0, x) = q \).

Proof.

Since \(\mathcal{M} \) is an accessible automaton, for every state \(q \in Q \) there is a word \(y \) such that \(\delta^*(q_0, y) = q \). Let \(x \) be a word of minimal length that allows \(\mathcal{M} \) to reach the state \(q \). We claim that \(|x| < |Q| \). Let \(x = a_{i_0} \cdots a_{i_p} \), and let \(q_1, \ldots, q_{p+1} \) be the sequence of states reached while processing \(x \), i.e.,

\[
q_1 = \delta(q_0, a_{i_0}) = \delta(q_1, a_{i_1}) = \cdots = \delta(q_p, a_{i_p}) = q_{p+1}
\]

that is, the sequence of states assumed by \(\mathcal{M} \) when the symbols of \(x \) are applied starting from the state \(q_0 \).
If $p + 1 \geq |Q|$, then the sequence $(q_0, q_1, \ldots, q_{p+1})$ must contain two equal states because its length exceeds the number of elements of Q. If, say, $q_c = q_d$, we can write $x = uvw$, where $\delta^*(q_0, u) = q_c$, $\delta^*(q_c, v) = q_d$, $\delta^*(q_d, w) = q_{p+1}$ and $|v| > 0$. Since $q_d = q_c$, we have $\delta^*(q_0, uw) = q_{p+1} = q$, and this contradicts the minimality of x. Therefore, $|x| < |Q|$.
Computing The Accessible States

Input: A dfa $\mathcal{M} = (A, Q, \delta, q_0, F)$.

Output: The set $\text{acc}(\mathcal{M})$.

Method: Define the sequence $Q_0, Q_1, \ldots, Q_n, \ldots$ by

$Q_0 = \{q_0\}$ and $Q_{i+1} = Q_i \cup \{s = \delta(q, a) \mid q \in Q_i \text{ and } a \in A\}$.

$\text{acc}(\mathcal{M}) = Q_k$, where k is the least number such that $Q_k = Q_{k+1}$.
Proof of Correctness

Since Q_0, \ldots, Q_i, \ldots is an increasing sequence and all sets Q_i are subsets of the finite set Q, there is a number k such that $Q_0 \subset Q_1 \subset \cdots \subset Q_k = Q_{k+1} = \cdots$.

We claim that

$$Q_i = \{ q \in Q \mid \delta^* (q_0, x) = q, \text{ for some } x \in A^*, |x| \leq i \},$$

for every $i \in \mathbb{N}$. The argument is by induction on i and is omitted. Thus, every state in Q_k belongs to $\text{acc} (M)$.

Conversely, if $q \in \text{acc} (M)$, then there is a word x such that $|x| < |Q|$ and $\delta^* (q_0, x) = q$. Therefore, $q \in Q_{|x|} \subseteq Q_k$. We conclude that $\text{acc} (M) = Q_k$.
Let $\mathcal{M} = (\{a, b\}, \{q_i \mid 0 \leq i \leq 7\}, \delta, q_0, \{q_5, q_6\})$ be the dfa whose graph is shown:
Thus, \(\text{ACC}(M) \) is the dfa \(M' = (\{a, b\}, \{q_0, q_1, q_2, q_4, q_5\}, \delta', q_0, \{q_5\}) \) whose graph is given next.
Deterministic Finite Automata

![Deterministic Finite Automata Diagram]

- **States:** $q_0, q_1, q_2, q_3, q_4, q_5$
- **Alphabet:** a, b
- **Transition Rules:**
 - $q_0 \xrightarrow{a} q_1$
 - $q_1 \xrightarrow{b} q_2$
 - $q_2 \xrightarrow{a} q_3$
 - $q_2 \xrightarrow{b} q_4$
 - $q_3 \xrightarrow{a} q_4$
 - $q_4 \xrightarrow{b} q_5$
 - $q_5 \xrightarrow{a} q_3$

Final States: q_3, q_4, q_5