Words and Languages
(part II)

Prof. Dan A. Simovici

UMB
1 Languages

2 Induction on Words
The main objects of study of the theory of formal languages are languages, which are defined as sets of certain sequences of symbols.

Definition

Let A be an alphabet. A **language over A** is a subset of A^*.

In other words, a language over A is any set of words over this alphabet. For instance, $\{a, ab, abba\}$ is a finite language over the alphabet $\{a, b\}$. Similarly, $L = \{a^n \mid n \in \mathbb{N}\}$ is an infinite language over the same alphabet.
By identifying words of length 1 with the symbols of A, the set A itself is a language over A.

Other special languages over A:
- the empty language \emptyset,
- the full language A^*, and
- the null language $\{\lambda\}$.

Since A^* is a countably infinite set, the set of languages over A, $\mathcal{P}(A^*)$ is not countable.
If L is a language over an alphabet A and $A \subseteq A'$, then L is also a language over the alphabet A'. Therefore, if \(\{L_0, \ldots, L_{n-1}\} \) is a finite collection of languages over the alphabets \(\{A_0, \ldots, A_{n-1}\} \), respectively, then for $0 \leq i \leq n - 1$, each L_i is a language over $A = \bigcup_{1 \leq i \leq n} A_i$.

We denote by A_L the alphabet that consists of those symbols that occur in at least one word in L. If L is a language over A, then $A_L \subseteq A$.
Definition

A language L is λ-free if $\lambda \not\in L$.
The set of all prefixes of the words of a language L is denoted by $\text{PREF}(L)$. Similarly, the sets of infixes and suffixes of the words of L are denoted by $\text{INFIX}(L)$ and $\text{SUFF}(L)$, respectively. Note that $L \subseteq L'$ implies $\Omega(L) \subseteq \Omega(L')$, where Ω is any of PREF, SUFF, or INFIX. Also, $\text{INFIX}(L)$, $\text{PREF}(L)$, $\text{SUFF}(L)$ contain the null word and include L.
The sets of proper prefixes, proper suffixes and proper infixes of a language L are denoted by $\text{PREF}_{\text{pr}}(L)$, $\text{INFIX}_{\text{pr}}(L)$, and $\text{SUFF}_{\text{pr}}(L)$, respectively. Since languages are sets of words, we can apply to them set-theoretical operations such as union, intersection, difference, etc. If $L \subseteq A^*$, the complement of L with respect to the alphabet A is $\overline{L}_A = A^* - L$. If A is understood from the context, we may denote the complement \overline{L}_A simply by \overline{L}.
Definition
The **product** of two languages L and K over an alphabet A is the language LK defined by

$$LK = \{xy \mid x \in L \text{ and } y \in K\}.$$
Definition

Let $L \subseteq A^*$ be a language over the alphabet A. The n^{th} power of L is the language L^n given by

$$L^0 = \{\lambda\}$$
$$L^{n+1} = L^n L$$

for every language L and natural number n.

Note that $L^1 = L$. In general, L^n is the set of all words that can be written as products of n words of L. For $n = 0$, we regard λ as the product of zero words of L.
Example

Let $L = \{ab, a\}$ be a language over the alphabet $A = \{a, b\}$. We have

\[
L^0 = \{\lambda\} \\
L^1 = \{ab, a\} \\
L^2 = \{abab, aba, aab, aa\} \\
\vdots
\]
Definition

Let L be a language. The language L^*, the star closure or Kleene closure of L, is the set

$$L^* = \bigcup \{ L^n \mid n \in \mathbb{N} \}.$$

The language L^+, the positive closure of L, is the set of words

$$L^+ = \bigcup \{ L^n \mid n \in \mathbb{P} \}.$$
- L^* is the set of all words that can be written as a product of zero or more words of L.
- L^+ is the set of all words that can be written as a product of one or more words of L.
- Since L^* includes the product of zero words of L, the null word λ is a member of L^* for any language L.
- $L \subseteq L^+ \subseteq L^*$ and $LL^* = L^*L = L^+$. Furthermore, if $u, v \in L^*$, then $uv \in L^*$. Also, note that $\lambda \in L^+$ if and only if $\lambda \in L$.
Example

Let $L = \{a, bab\}$ be a language over the alphabet $A = \{a, b\}$. L^* comprises the words $\lambda, a, bab, abab, baba, babbab, aa$, etc., and L^+ consists of the same words except for λ.
We have the following properties for any language L:

\[
\begin{align*}
L^*L^* & = L^*, \\
L^*L & = LL^*, \\
L^+L & = LL^+ \\
(L^*)^* & = L^*, \\
(L^+)^+ & = L^+.
\end{align*}
\]

Also, note that $L \subseteq H$ implies $L^* \subseteq H^*$.
Theorem

Let A be an alphabet. We have:

1. $L_0 \cup (L_1 \cup L_2) = (L_0 \cup L_1) \cup L_2,$
2. $L_0(L_1L_2) = (L_0L_1)L_2,$
3. $L_0 \cup L_1 = L_1 \cup L_0,$
4. $L_0(L_1 \cup L_2) = (L_0L_1) \cup (L_0L_2),$
5. $(L_0 \cup L_1)L_2 = (L_0L_2) \cup (L_1L_2),$
6. $L \cup L = L,$

for every $L, L_0, L_1, L_2 \in \mathcal{P}(A^*).$
Theorem

For every language L we have:

1. $\{\lambda\}L = L\{\lambda\} = L$,
2. $\emptyset L = L\emptyset = \emptyset$,
3. $L \cup \emptyset = \emptyset \cup L = L$,
4. $L^* = \{\lambda\} \cup L^* L$,
5. $L^* = (\{\lambda\} \cup L)^*$,
6. $\emptyset^* = \{\lambda\}$,
Theorem

Let A be an alphabet and let L be a language over A. We have

$$L^* = \{\lambda\} \cup L \cup L^2 \cup \cdots \cup L^k \cup L^{k+1} L^*,$$

for every $k \in \mathbb{N}$.
Proof

It is clear that

\[\{\lambda\} \cup L \cup L^2 \cup \ldots \cup L^k \cup L^{k+1} L^* \subseteq L^*, \]

for every \(k \in \mathbb{N} \).

Conversely, let \(x \in L^* \). We have either \(x = \lambda \) or \(x \in L^n \) for some \(n \geq 1 \). If \(n \leq k \), then \(x \in \{\lambda\} \cup L \cup L^2 \cup \ldots \cup L^k \cup L^{k+1} L^* \). If \(n > k \), then \(L^n = L^{k+1} L^{n-(k+1)} \subseteq L^{k+1} L^* \), so again \(x \in \{\lambda\} \cup L \cup L^2 \cup \ldots \cup L^k \cup L^{k+1} L^* \). Thus,

\[\{\lambda\} \cup L \cup L^2 \cup \ldots \cup L^k \cup L^{k+1} L^* \subseteq L^*. \]
Corollary

For every language \(L \) we have:

\[L^* = \{ \lambda \} \cup LL^*. \]

Proof.

The equality of the corollary follows from Theorem ?? by taking \(k = 0 \). \(\square \)
Definition

The reversal of a language \(L \subseteq A^* \) is the language \(L^R \) given by

\[
L^R = \{ x^R \mid x \in L \}.
\]

It is easy to see that \((L^R)^R = L \) for every language \(L \).
Definition

Let L, K be two languages over the alphabet A. The right quotient LK^{-1} and the left quotient $K^{-1}L$ are the languages:

$$LK^{-1} = \{ x \in A^* \mid xy \in L \text{ for some } y \in K \}$$
$$K^{-1}L = \{ x \in A^* \mid yx \in L \text{ for some } y \in K \}.$$
Example

Let $A = \{a, b, c\}$ be an alphabet and $L = \{\lambda, a, ab, abc\}$ be a language over A. Consider the languages $K_0 = \{c\}$, $K_1 = \{b, c\}$, and $K_2 = \{b, c\}^*$ over the same alphabet. Then, we have

$$LK_0^{-1} = \{ab\},$$
$$LK_1^{-1} = \{a, ab\},$$
$$LK_2^{-1} = \{\lambda, a, ab, abc\}.$$
The left quotient of two languages can be expressed through the right quotient of related languages by the equality

$$K^{-1}L = \left(L^R (K^R)^{-1} \right)^R $$

and

$$LK^{-1} = \left((K^R)^{-1} L^R \right)^R .$$
Consider the following equivalent statements.

1. $x \in K^{-1}L$;
2. $yx \in L$ for some $y \in K$;
3. $x^Rz \in L^R$ for some $z \in K^R$;
4. $x^R \in L^R(K^R)^{-1}$;
5. $x \in (L^R(K^R)^{-1})^R$.
Example

Let L be a language over an alphabet A. It is easy to see that the set $\text{PREF}(L)$ of prefixes of a language L is $L(A^*)^{-1}$, while the set $\text{SUFF}(L)$ of suffixes of L is $(A^*)^{-1}L$.
Theorem

Let L_0, L_1, K be languages over the alphabet A. We have

\[
(L_0 \cup L_1)^{-1} = L_0^{-1} \cup L_1^{-1}
\]

\[
(L_0 \cup L_1)^{-1} K = L_0^{-1} K \cup L_1^{-1} K
\]

\[
(L_0 \cap L_1)^{-1} \subseteq L_0^{-1} \cap L_1^{-1}
\]

\[
(L_0 \cap L_1)^{-1} K \subseteq L_0^{-1} K \cap L_1^{-1} K
\]

\[
L_0^{-1} K \cap L_1^{-1} \subseteq (L_0 - L_1)^{-1}
\]

\[
K^{-1}(L_0 \cup L_1) = K^{-1}L_0 \cup K^{-1}L_1
\]

\[
K^{-1}(L_0 \cap L_1) \subseteq K^{-1}L_0 \cap K^{-1}L_1
\]

\[
K^{-1}L_0 - K^{-1}L_1 \subseteq K^{-1}(L_0 - L_1).
\]
Theorem

For the languages $L, L_0, L_1 \subseteq A^*$ and $a \in A$ we have:

$$\{a\}^{-1}(L_0L_1) = \begin{cases} (\{a\}^{-1}L_0)L_1 & \text{if } \lambda \not\in L_0 \\ (\{a\}^{-1}L_0)L_1 \cup \{a\}^{-1}L_1 & \text{if } \lambda \in L_0 \end{cases}$$

$$\{a\}^{-1}L_1^* = (\{a\}^{-1}L_1)L_1^*.$$

Note that the first equality can also be written as:

$$\{a\}^{-1}(L_0L_1) = (\{a\}^{-1}L_0)L_1 \cup (\{\lambda\} \cap L_0)\{a\}^{-1}L_1.$$

The proof is a direct application of the definition.
If K is a singleton, $K = \{u\}$, we denote the languages $\{u\}^{-1}L$ and $L\{u\}^{-1}$ by $u^{-1}L$ and Lu^{-1}, respectively. These languages are referred to as the left derivative of L with respect to u and the right derivative of L with respect to u, respectively.
We have:

\[
\begin{align*}
(L_0 \cup L_1)u^{-1} &= L_0u^{-1} \cup L_1u^{-1} \\
(L_0 \cap L_1)u^{-1} &= L_0u^{-1} \cap L_1u^{-1} \\
L_0u^{-1} - L_1u^{-1} &= (L_0 - L_1)u^{-1} \\
u^{-1}(L_0 \cup L_1) &= u^{-1}L_0 \cup u^{-1}L_1 \\
u^{-1}(L_0 \cap L_1) &= u^{-1}L_0 \cap u^{-1}L_1 \\
u^{-1}L_0 - uv^{-1}L_1 &= u^{-1}(L_0 - L_1) \\
u^{-1}(v^{-1}L) &= (vu)^{-1}L \\
(Lu^{-1})v^{-1} &= L(vu)^{-1},
\end{align*}
\]

for all words \(u, v\).
Theorem

(Induction Principle for Words) Let $L \subseteq A^*$ be a set of words such that $\lambda \in L$, and $x \in L$ implies $xa \in L$ for every $a \in A$. Then, $L = A^*$.
Example

Let A be an alphabet, $x \in A^*$, and $a \in A$. We prove, by applying the Induction Principle for Words, that for every $x \in A^*$, if $xa = ax$, then $x = a^m$ for some $m \in \mathbb{N}$. Let

$$L = \{ x \in A^* \mid xa = ax \text{ implies } x = a^m \text{ for some } m \in \mathbb{N} \}.$$

Since $\lambda a = a\lambda = a$ and $\lambda = a^0$, we have $\lambda \in L$. Suppose that $x \in L$ and consider the word $y = xa$. If $ya \neq ay$, then the implication in the definition of L holds and $y \in L$. Therefore, assume that $ya = ay$. This implies $xaa = axa$, so $xa = ax$, which implies $x = a^m$ because we assumed $x \in L$. Thus, $y = xa = a^{m+1}$, so $y \in L$. By the Induction Principle for Words we have $L = A^*$.