1. Construct deterministic finite automata that accept the following languages over the alphabet $A = \{a, b, c\}$:

 (a) The set of all words that begin with ab and end with ba.

 (b) The set $\{bab\}$.

 (c) The set $A^* - \{bab\}$.

 (d) The set of all words $x \in A^*$ that contain at least three as.

2. Draw a transition diagram for a nondeterministic finite automaton \mathcal{M} that accepts all strings over the alphabet $A = \{0, 1\}$ that begin in 10 and end in 11. Construct the dfa that accepts the same language as \mathcal{M}.

3. Let A be an alphabet and let $a \in A$ be a symbol. If k is a natural number, construct a nondeterministic finite automaton that accepts the language $L_{k,a} = \{uav \mid u, v \in A^* \text{ and } |v| = k\}$.

4. Construct nondeterministic finite automata that accept the following languages over $A = \{a, b\}$:

 (a) The set of words that begin with an a or begin and end with a b.

 (b) The set $\{a\}^* \cup \{b\}^*$.

 (c) The set of words that contain bab as an infix.
5. Let $\mathcal{M} = (A, Q, \delta, q_0, F)$ be a ndfa. Define $\phi(q, w, q')$ as the number of paths in the graph of \mathcal{M} from the state q to the state q' with label w. Prove that for the automaton $\mathcal{M} = (\{a, b\}, \{q_0, q_1\}, \delta, q_0, \{q_0\})$ whose graph is given in Figure 1 we have $\phi(q_0, a^n, q_0) = f_{n+1}$, where f_n is the n^{th} Fibonacci number and $n \geq 0$.

Figure 1: Graph of the Automaton \mathcal{M}