# Learning via Uniform Convergence

Prof. Dan A. Simovici

UMB

・ロト ・回ト ・ヨト ・ヨト

э



## 2 Finite Classes are Agostically PAC-learnable

### Definition

## Let $\mathcal{H}$ be a hypothesis class, Z a domain, $\ell$ a loss function, and $\mathcal{D}$ be a distribution. A training set S is $\epsilon$ -representative with respect to the above elements, if for all $h \in \mathcal{H}$ we have:

$$|L_{\mathcal{S}}(h) - L_{\mathcal{D}}(h)| \leq \epsilon.$$

Equivalently,

$$L_{\mathcal{S}}(h) - \epsilon \leqslant L_{\mathcal{D}}(h) \leqslant L_{\mathcal{S}}(h) + \epsilon.$$

- 4 同 6 - 4 三 6 - 4 三 6

Recall that  $L_{\mathcal{D}}(h) = E_{z \sim \mathcal{D}}(\ell(h, z)).$ 

The next lemma stipulates that when the sample is  $\frac{\epsilon}{2}$ -representative, the ERM learning rule is guaranteed to return a good hypothesis.

#### Lemma

Assume that a training set S is  $\frac{\epsilon}{2}$ -representative. Then, any output  $h_S$  of  $ERM_{\mathcal{H}}(S)$ , namely,  $h_S \in argmin_{h \in \mathcal{H}}L_S(h)$  satisfies

 $L_{\mathcal{D}}(h_{\mathcal{S}}) \leqslant \min_{h \in \mathcal{H}} L_{\mathcal{D}}(h) + \epsilon.$ 

(4回) (日) (日)

## Proof

For every  $h \in \mathcal{H}$  we have

$$\begin{array}{lll} L_{\mathcal{D}}(h_{S}) & \leqslant & L_{S}(h_{S}) + \frac{\epsilon}{2} \\ & (\text{apply the } \frac{\epsilon}{2}\text{-representativeness of } S \text{ to } h_{S}) \\ & \leqslant & L_{S}(h) + \frac{\epsilon}{2} \\ & (\text{because } h_{S} \text{ is an ERM predictor, hence } L_{S}(h_{S}) \leqslant L_{S}(h)) \\ & \leqslant & L_{\mathcal{D}}(h) + \frac{\epsilon}{2} + \frac{\epsilon}{2} \\ & (\text{because } S \text{ is } \frac{\epsilon}{2}\text{-representative, so } L_{S}(h) \leqslant L_{\mathcal{D}}(h) + \frac{\epsilon}{2}) \\ & \leqslant & L_{\mathcal{D}}(h) + \epsilon. \end{array}$$

### Definition

A hypothesis class  $\mathcal{H}$  has the uniform convergence property (relative to a domain Z and a loss function  $\ell$ ) if there exists a function  $m^{\text{UC}} : (0,1)^2 \longrightarrow \mathbb{N}$  (the same for all hypotheses in  $\mathcal{H}$  and all probability distributions  $\mathcal{D}$ ) such that for every  $\epsilon, \delta \in (0,1)$  if S is a sample of size m, where  $m \ge m^{\text{UC}}(\epsilon, \delta)$ , then with probability at least  $1 - \delta$ , S is  $\epsilon$ -representative.

The term *uniform* refers to the fact that  $m^{UC}(\epsilon, \delta)$  is the same for all hypotheses in  $\mathcal{H}$  and all probability distributions  $\mathcal{D}$ .

## REMINDER: Agnostic PAC Learning

- The realizability assumption (the existence of a hypothesis h<sup>\*</sup> ∈ H such that P<sub>x∼D</sub>(h<sup>\*</sup>(x) = f(x)) = 1) is not realistic in many cases.
- Agnostic learning replaces the realizability assumption and the targeted labeling function f, with a distribution D defined on pairs (data, labels), that is, with a distribution D on X × Y.
- Since  $\mathcal{D}$  is defined over  $\mathcal{X} \times \mathcal{Y}$ , the the generalization error is

$$L_{\mathcal{D}}(h) = \mathcal{D}(\{(x, y) \mid h(x) \neq y\}).$$

#### Theorem

If a class  $\mathcal{H}$  has the uniform convergence property with a function  $m^{UC}$ , then the class  $\mathcal{H}$  is agnostically PAC learnable with the sample complexity  $m_{\mathcal{H}}(\epsilon, \delta) \leq m^{UC}(\epsilon/2, \delta)$ .

## Proof

Suppose that  $\mathcal{H}$  has the uniform convergence property with a function  $m^{\mathrm{UC}}$ .

For every  $\epsilon, \delta \in (0, 1)$  if S is a sample of size m, where  $m \ge m^{UC}(\epsilon/2, \delta)$ , then with probability at least  $1 - \delta$ , S is  $\epsilon/2$ -representative, which means that for all  $h \in \mathcal{H}$  we have:

 $L_{\mathcal{D}}(h) \leq L_{\mathcal{S}}(h) + \epsilon/2,$ 

or

$$\begin{array}{rcl} \mathcal{L}_{\mathcal{D}}(h) & \leqslant & \min_{h' \in \mathcal{H}} \mathcal{L}_{\mathcal{D}}(h') + \epsilon/2 \\ & \leqslant & \min_{h' \in \mathcal{H}} \mathcal{L}_{\mathcal{D}}(h') + \epsilon, \end{array}$$

hence  $\mathcal{H}$  is agnostically PAC-learnable with  $m_{\mathcal{H}}(\epsilon, \delta) = m^{\text{UC}}(\epsilon/2, \delta)$ .

### Theorem

Uniform convergence holds for a finite hypothesis class.

## **Proof:** Fix $\epsilon, \delta \in (0, 1)$ .

- We need a sample  $S = (s_1, \ldots, s_m)$  of size m that guarantees that for any  $\mathcal{D}$  with probability at least  $1 \delta$  we have that for all  $h \in \mathcal{H}$ ,  $|L_S(h) L_{\mathcal{D}}(h)| < \epsilon$ .
- Equivalently,

$$\mathcal{D}^m(\{S \mid \exists h \in \mathcal{G}, |L_S(h) - L_D(h)| > \epsilon\}) < \delta.$$

Note that

$$\{S \mid \exists h \in \mathcal{G}, |L_{\mathcal{S}}(h) - L_{\mathcal{D}}(h)| > \epsilon\} = \bigcup_{h \in \mathcal{H}} \{S \mid |L_{\mathcal{S}}(h) - L_{\mathcal{D}}(h)| > \epsilon\}$$

### This implies

$$\mathcal{D}^{m}(\{S \mid \exists h \in \mathcal{G}, |L_{\mathcal{S}}(h) - L_{\mathcal{D}}(h)| > \epsilon\}) = \sum_{h \in \mathcal{H}} \mathcal{D}^{m}(\{S \mid |L_{\mathcal{S}}(h) - L_{\mathcal{D}}(h)| > \epsilon\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 $11 \, / \, 14$ 

Next phase:

• Let  $\theta_i$  be the random variable  $\theta_i = \ell(h, z_i)$ . Since *h* is fixed and and  $z_1, \ldots, Z_m$  are iid random variables, it follows that  $\theta_1, \ldots, \theta_m$  are also iid random variables.

• 
$$E(\theta_1) = \cdots = E(\theta_m) = \mu$$
.

- Range of  $\ell$  is [0,1] and therefore, the range of  $\theta_i$  is [0,1].
- Each term D<sup>m</sup>({S | |L<sub>S</sub>(h) − L<sub>D</sub>(h)| > ε}) is small enough for large m.

We have:

$$L_{\mathcal{S}}(h) = \frac{1}{m} \sum_{i=1}^{m} \theta_i \text{ and } L_{\mathcal{D}}(h) = \mu.$$

By Hoeffding's Inequality,

$$\mathcal{D}^{m}(\{S \mid |L_{S}(h) - L_{\mathcal{D}}(h)| > \epsilon\})$$

$$= P\left(\left|\frac{1}{m}\sum_{i=1}^{m}\theta_{i} - \mu\right| > \epsilon\right)$$

$$\leqslant \sum_{h \in \mathcal{H}} 2e^{-2m\epsilon^{2}}$$

$$\leqslant 2|\mathcal{H}|2e^{-2m\epsilon^{2}}.$$

If we choose  $m \geqslant rac{\log(2|\mathcal{H}|/\delta)}{2\epsilon^2}$ , then

 $\mathcal{D}^m(\{S \mid \exists h \in \mathcal{H}, |L_S(h) - L_D(h)| > \epsilon\}) \leq \delta.$ 

(ロ)、(型)、(目)、(目)、(目)、(ロ)、(1),(1)

# A Corollary

Recall that the ERM algorithm returns a hypothesis h such that for which  $L_S(h)$  is minimal.

## Corollary

Let  $\mathcal{H}$  be a finite hypothesis class, let Z be a domain, and  $\ell: \mathcal{H} \times Z \longrightarrow [0,1]$  be a loss function. Then  $\mathcal{H}$  enjoys the uniform convergence property with sample complexity

$$m_{\mathcal{H}}^{UC}(\epsilon, \delta) = \Big[rac{\log rac{2|\mathcal{H}|}{\delta}}{2\epsilon^2}\Big].$$

Furthermore, the class is agnostically PAC learnable using the ERM algorithm with sample complexity;

$$m_{\mathcal{H}}(\epsilon,\delta)\leqslant m_{\mathcal{H}}^{UC}(\epsilon/2,\delta)\leqslant \Big\lceil rac{2\lograc{2|\mathcal{H}|}{\delta}}{\epsilon^2}\Big
ceil.$$