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Uniform Convergence

Definition

Let
‘H be a hypothesis class,
Z a domain,
¢ a loss function,

and D be a distribution.
A training set S is e-representative with respect to the above elements, if

for all h € H we have:

Ls(h) — Lp(h)| < e.

Equivalently,
Ls(h) — €< LD(h) < Ls(h) + €.
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Uniform Convergence

Recall that Lp(h) = E,p(4(h, 2)).
The next lemma stipulates that when the sample is 5-representative, the
ERM learning rule is guaranteed to return a good hypothesis.

Lemma
Assume that a training set S is 5-representative. Then, any output hs of
ERMy(S), namely, hs € argmmheHLg(h) satisfies

Lp(hs) < m[]r_} Lp(h) + e




Uniform Convergence

Proof

For every h € ‘H we have

Lp(hs)

<

N

N

N

€
Ls(hg) —+ 5

(apply the 5-representativeness of S to hs)
€
Ls(h) + =
s(h) + 5

(because hs is an ERM predictor, hence Ls(hs) < Ls(h))

€ €
Lp(h -4 =
D()+2+2

(because S is S-representative, so Ls(h) < Lp(h) +
Lp(h) + €.

)
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Uniform Convergence

Definition

A hypothesis class H has the uniform convergence property (relative to a
domain Z and a loss function /) if there exists a function

mY¢ : (0,1)?> — N (the same for all hypotheses in # and all probability
distributions D) such that for every €,§ € (0,1) if S is a sample of size m,
where m > mYC(e, ), then with probability at least 1 — &, S is
e-representative.

The term uniform refers to the fact that mY<(e, §) is the same for all
hypotheses in H and all probability distributions D.
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REMINDER: Agnostic PAC Learning

@ The realizability assumption (the existence of a hypothesis h* € ‘H
such that Py..p(h*(x) = f(x)) = 1) is not realistic in many cases.

@ Agnostic learning replaces the realizability assumption and the
targeted labeling function f, with a distribution D defined on pairs
(data, labels), that is, with a distribution D on X’ x ).

@ Since D is defined over X' x ), the the generalization error is

Lp(h) = D({(x,y) | h(x) # y}).
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Uniform Convergence

Theorem

If a class H has the uniform convergence property with a function mY¢,

then the class H is agnostically PAC learnable with the sample complexity
my(e, 8) < mU<(e/2,6).




Proof

Suppose that A has the uniform convergence property with a function
uc

m-*.

For every ¢,8 € (0,1) if S is a sample of size m, where m > mY<(¢/2,6),

then with probability at least 1 — §, S is €/2-representative, which means

that for all h € H we have:

LD(h) < Ls(h) + 6/2,

or
Lp(h) < min Lp(K) +¢/2
p(h) < min Lp(h) +e¢/
< min Lp(H) + ¢,

heH

hence H is agnostically PAC-learnable with my(e,d) = mY<(e/2,6).
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Finite Classes are Agostically PAC-learnable

Theorem

Uniform convergence holds for a finite hypothesis class.

Proof: Fix €,0 € (0,1).

o We need a sample S = (si,...,sm) of size m that guarantees that for
any D with probability at least 1 — § we have that for all h € H,
|Ls(h) — Lp(h)| < e.

o Equivalently,

D™({S | 3he G, |Ls(h) — Lp(h)| > €}) < 6.

@ Note that

{S | 3heG,|Ls(h) — Lp(h)| > €} = [ J{S | ILs(h) — Lp(h)| > €}
heH
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Finite Classes are Agostically PAC-learnable

This implies

D"({S | 3he G, |Ls(h)~Lp(h)| > c}) = > D"({S | |Ls(h)~Lp(h)| > ¢}

heH
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Finite Classes are Agostically PAC-learnable

Next phase:
o Let 6; be the random variable §; = ¢(h, z;). Since h is fixed and and
z1,...,Zm are iid random variables, it follows that 64,...,6,, are also
ild random variables.
e E(1)=---=E(Om) = p.

@ Range of ¢ is [0, 1] and therefore, the range of 6; is [0, 1].

o Each term D"({S | |Ls(h) — Lp(h)| > €}) is small enough for large
m.

@ We have:

1 m
Ls(h) = — > i and Lp(h) = p.
i=1
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Finite Classes are Agostically PAC-learnable

By Hoeffding's Inequality,
D"({S | [Ls(h) = Lp(h)| > €})
( -2
- P PZ@,—M) >e>
M=
< Z 2e—2m52
heH
< 2H[2e 2
If we choose m > %, then

D"({S | 3he M, |Ls(h) — Lo(h)| > }) <.
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A Corollary

Recall that the ERM algorithm returns a hypothesis h such that for which
Ls(h) is minimal.

Corollary

Let ‘H be a finite hypothesis class, let Z be a domain, and
0:H x Z —0,1] be a loss function. Then H enjoys the uniform
convergence property with sample complexity

log 217 2[H|

mi(.0) = { 2¢2 —‘

Furthermore, the class is agnostically PAC learnable using the ERM
algorithm with sample complexity;

c 2 log 2
my(e,8) < m¥<(e/2,6) < {T]
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