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Uniform Convergence

Definition

Let
H be a hypothesis class,
Z a domain,
` a loss function,
and D be a distribution.

A training set S is ε-representative with respect to the above elements, if
for all h ∈ H we have:

|LS(h)− LD(h)| 6 ε.

Equivalently,
LS(h)− ε 6 LD(h) 6 LS(h) + ε.
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Uniform Convergence

Recall that LD(h) = Ez∼D(`(h, z)).
The next lemma stipulates that when the sample is ε

2 -representative, the
ERM learning rule is guaranteed to return a good hypothesis.

Lemma

Assume that a training set S is ε
2 -representative. Then, any output hS of

ERMH(S), namely, hS ∈ argminh∈HLS(h) satisfies

LD(hS) 6 min
h∈H

LD(h) + ε.
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Uniform Convergence

Proof

For every h ∈ H we have

LD(hS) 6 LS(hS) +
ε

2
(apply the ε

2 -representativeness of S to hS)

6 LS(h) +
ε

2
(because hS is an ERM predictor, hence LS(hS) 6 LS(h))

6 LD(h) +
ε

2
+
ε

2
(because S is ε

2 -representative, so LS(h) 6 LD(h) + ε
2)

6 LD(h) + ε.
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Uniform Convergence

Definition

A hypothesis class H has the uniform convergence property (relative to a
domain Z and a loss function `) if there exists a function
mUC : (0, 1)2 −→ N (the same for all hypotheses in H and all probability
distributions D) such that for every ε, δ ∈ (0, 1) if S is a sample of size m,
where m > mUC(ε, δ), then with probability at least 1− δ, S is
ε-representative.

The term uniform refers to the fact that mUC(ε, δ) is the same for all
hypotheses in H and all probability distributions D.
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Uniform Convergence

REMINDER: Agnostic PAC Learning

The realizability assumption (the existence of a hypothesis h∗ ∈ H
such that Px∼D(h∗(x) = f (x)) = 1 ) is not realistic in many cases.

Agnostic learning replaces the realizability assumption and the
targeted labeling function f , with a distribution D defined on pairs
(data, labels), that is, with a distribution D on X × Y.

Since D is defined over X × Y, the the generalization error is

LD(h) = D({(x , y) | h(x) 6= y}).
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Uniform Convergence

Theorem

If a class H has the uniform convergence property with a function mUC,
then the class H is agnostically PAC learnable with the sample complexity
mH(ε, δ) 6 mUC(ε/2, δ).
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Uniform Convergence

Proof

Suppose that H has the uniform convergence property with a function
mUC.
For every ε, δ ∈ (0, 1) if S is a sample of size m, where m > mUC(ε/2, δ),
then with probability at least 1− δ, S is ε/2-representative, which means
that for all h ∈ H we have:

LD(h) 6 LS(h) + ε/2,

or

LD(h) 6 min
h′∈H

LD(h′) + ε/2

6 min
h′∈H

LD(h′) + ε,

hence H is agnostically PAC-learnable with mH(ε, δ) = mUC(ε/2, δ).

9 / 14



Finite Classes are Agostically PAC-learnable

Theorem

Uniform convergence holds for a finite hypothesis class.

Proof: Fix ε, δ ∈ (0, 1).

We need a sample S = (s1, . . . , sm) of size m that guarantees that for
any D with probability at least 1− δ we have that for all h ∈ H,
|LS(h)− LD(h)| < ε.

Equivalently,

Dm({S | ∃h ∈ G, |LS(h)− LD(h)| > ε}) < δ.

Note that

{S | ∃h ∈ G, |LS(h)− LD(h)| > ε} =
⋃
h∈H
{S | |LS(h)− LD(h)| > ε}
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Finite Classes are Agostically PAC-learnable

This implies

Dm({S | ∃h ∈ G, |LS(h)−LD(h)| > ε}) =
∑
h∈H
Dm({S | |LS(h)−LD(h)| > ε}).
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Finite Classes are Agostically PAC-learnable

Next phase:

Let θi be the random variable θi = `(h, zi ). Since h is fixed and and
z1, . . . ,Zm are iid random variables, it follows that θ1, . . . , θm are also
iid random variables.

E (θ1) = · · · = E (θm) = µ.

Range of ` is [0, 1] and therefore, the range of θi is [0, 1].

Each term Dm({S | |LS(h)− LD(h)| > ε}) is small enough for large
m.

We have:

LS(h) =
1

m

m∑
i=1

θi and LD(h) = µ.
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Finite Classes are Agostically PAC-learnable

By Hoeffding’s Inequality,

Dm({S | |LS(h)− LD(h)| > ε})

= P

(∣∣∣ 1

m

m∑
i=1

θi − µ
∣∣∣ > ε

)
6

∑
h∈H

2e−2mε
2

6 2|H|2e−2mε2 .

If we choose m > log(2|H|/δ)
2ε2

, then

Dm({S | ∃h ∈ H, |LS(h)− LD(h)| > ε}) 6 δ.
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Finite Classes are Agostically PAC-learnable

A Corollary

Recall that the ERM algorithm returns a hypothesis h such that for which
LS(h) is minimal.

Corollary

Let H be a finite hypothesis class, let Z be a domain, and
` : H× Z −→ [0, 1] be a loss function. Then H enjoys the uniform
convergence property with sample complexity

mUC
H (ε, δ) =

⌈ log 2|H|
δ

2ε2

⌉
.

Furthermore, the class is agnostically PAC learnable using the ERM
algorithm with sample complexity;

mH(ε, δ) 6 mUC
H (ε/2, δ) 6

⌈2 log 2|H|
δ

ε2

⌉
.
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