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SVM - The Separable Case

Recall that the optimization problem for SVMs was

minimize 1
2 ‖ w ‖

2

subject to yi (w
′x + b) > 1 for 1 6 i 6 m

Equivalently, the constraints are

1− yi (w
′x + b) 6 0

for 1 6 i 6 m.
The Lagrangean is

L(w, b, a)

=
1

2
‖ w ‖2 +

m∑
i=1

ai (1− yi (w
′xi + b))

=
1

2
‖ w ‖2 +

m∑
i=1

ai −
m∑
i=1

aiyiw
′xi − b

m∑
i=1

aiyi .
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SVM - The Separable Case

The Dual Problem

maximize L(w, b, a)

The KKT conditions are

(∇wL) = w−
m∑
i=1

aiyixi = 0,

(∇bL) = −
m∑
i=1

aiyi = 0,

ai (1− yi (w
′xi + b)) = 0,

which are equivalent to

w =
∑m

i=1 aiyixi ,∑m
i=1 aiyi = 0,
ai = 0 or yi (w

′xi + b) = 1,

respectively.
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SVM - The Separable Case

Implications

the weight vector w is a linear combination of the training vectors
x1, . . . , xm;

a vector xi appears in w if and only if ai 6= 0 (such vectors are called
support vectors);

if ai 6= 0, then yi (w
′xi + b) = ±1.

Note that support vectors define the maximum margin hyperplane, or the
SVM solution.
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SVM - The Separable Case

Transforming the Lagrangean

Since

L(w, b, a) =
1

2
‖ w ‖2 +

m∑
i=1

ai −
m∑
i=1

aiyiw
′xi − b

m∑
i=1

aiyi ,

w =
∑m

j=1 ajyjxj (note that we changed the summation index from i to j),
and

∑m
i=1 aiyi = 0, we have

L(w, b, a) =
1

2
‖ w ‖2 +

m∑
i=1

ai −
m∑
i=1

m∑
j=1

aiajyiyjx
′
jxi .
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SVM - The Separable Case

Further Transformation of the Lagrangean

Note that

‖ w ‖2 = w′w =

 m∑
j=1

ajyjx
′
j

( m∑
i=1

aiyixi

)
,

=
m∑
i=1

m∑
j=1

aiajyiyjx
′
jxi .

Therefore,

L(w, b, a) =
1

2
‖ w ‖2 +

m∑
i=1

ai −
m∑
i=1

m∑
j=1

aiajyiyjx
′
jxi

=
m∑
i=1

ai −
1

2

m∑
i=1

m∑
j=1

aiajyiyjx
′
jxi .
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SVM - The Separable Case

The Dual Optimization Problem for Separable Sets

maximize
∑m

i=1 ai −
1
2

∑m
i=1

∑m
j=1 aiajyiyjx

′
ixj

subject to ai > 0 for 1 6 i 6 m and
∑m

i=1 aiyi = 0.

Note that the objective function depends on a1, . . . , am.
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SVM - The Separable Case

constraints are affine, so they are qualified and the strong duality
holds; therefore, the primal and the dual problems are equivalent;

the solution a of the dual problem can be used directly to determine
the hypothesis returned by the SVM as

h(x) = sign(w′x + b) = sign

(
m∑
i=1

aiyi (x
′
ix) + b

)
;

since support vectors lie on the marginal hyperplanes, for every
support vector xi we have w′xi + b = yi , so

b = yi −
m∑
j=1

ajyj(x
′
jx).
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Leave-One Out (LOO) Analysis in the Separable Case

Let NSV the number of support vectors that define the hypothesis hS
returned for a sample S in the separable case, where
S = {(xj , yj) | 1 6 j 6 m}.
Suppose the sample S is S ∼ Dm, where D is the distribution of examples.
If the algorithm A is trained on all points of S with the exception of xi ,
that is, is trained on S − {xi} the hypothesis returned is hS−{xi} and the
error is

R̂ <LOO (A) =
1

m

m∑
i=1

(
hS−{xi}(xi ) 6= yi

)
.

The leave-one error is the average of the errors obtained by leaving one
example out.
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Leave-One Out (LOO) Analysis in the Separable Case

Lemma

The average leave-one-out error for sample of size m > 2 is an unbiased
estimate of the average generalization error for sample of size m − 1, that
is,

ES∼Dm (ERMLOO(A)) = ES ′∼Dm−1 (R(hS ′) .
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Leave-One Out (LOO) Analysis in the Separable Case

Proof

ES∼Dm (ERMLOO(A))

=
1

m

m∑
i=1

ES∼Dm

(
hS−{xi}(xi ) 6= yi

)
= ES∼Dm

(
hS−{x1}(x1) 6= y1

)
(since all points of S are drawn at random and are equally distributed)

= ES ′∼Dm−1,x1∼D (hS ′(x1) 6= y1)

= ES ′∼Dm−1 (Ex1∼D (hS ′(x1) 6= y1))

= ES ′∼Dm−1 (R(hS ′)) .
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Leave-One Out (LOO) Analysis in the Separable Case

Theorem

If hS is the hypothesis returned by the SVM algorithm A for a sample S ,
then

E (ERM(hS)) 6 ES∼Dm+1

(
NSV (S)

m + 1

)
.

Proof: Let S be a linearly separable sample of size m + 1. If x is not a
support vector of hS , removing it does not change the solution. Thus,
hS−{x} = hS and hS−{x} correctly classifies x. Thus, if hS−{x} misclassifies
x, then x must be a support vector which implies

ERMLOO(A) 6
NSV (S)

m + 1
.

Taking the expectation of both sides yields the result.
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SVM - The Non-Separable Case

Slack Variables

If data is not separable the conditions yi (w
′xi + b) > 1 cannot all hold (for

1 6 i 6 m). Instead, we impose a relaxed version, namely

yi (w
′xi + b) > 1− ξi ,

where ξi are new variables known as slack variables.
A slack variable ξi measures the distance by which xi violates the desired
inequality yi (w

′xi + b) > 1.
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SVM - The Non-Separable Case

y

x

w′x + b = 1

w′x + b = 0

w′x + b = −1

ξi

ξi

A vector xi is an outlier if xi is not positioned correctly on the side of the
appropriate hyperplane.
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SVM - The Non-Separable Case

a vector xi with 0 < yi (w
′xi + b) < 1 is still an outlier even if it is

correctly classified by the hyperplane w′x + b = 0 (see the red point);

if we omit the outliers the data is correctly separated by the
hyperplane w′x + b = 0 with a soft margin ρ = 1

‖w‖ ;

we wish to limit the amount of slack due to outliers (
∑m

i=1 ξi ), but we
also seek a hyperplane with a large margin (even though this may
lead to more outliers).
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SVM - The Non-Separable Case

Optimization for Non-Separable Data

minimize 1
2 ‖ w ‖

2 +C
∑m

i=1 ξ
p
i

subject to yi (w
′xi + b) > 1− ξi and ξi > 0 for 1 6 i 6 m.

The parameter C is determined in the process of cross-validation.
This is a convex optimization problem with affine constraints.
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SVM - The Non-Separable Case

Support Vectors

As in the separable case:

constraints are affine and thus, qualified;

the objective function and the affine constraints are convex and
differentiable;

thus, the KKT conditions apply.
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SVM - The Non-Separable Case

Variables

ai > 0 for 1 6 i 6 m are variables associated with m constraints;

bi > 0 for 1 6 i 6 m are variables associated with the non-negativity
constraints of the slack variables.
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SVM - The Non-Separable Case

The Lagrangean is defined as:

L(w, b, ξ1, . . . , ξm, a,b) = 1
2 ‖ w ‖

2 +C
∑m

i=1 ξi
−
∑m

i=1 ai [yi (w
′xi + b)− 1 + ξi ]−

∑n
i=1 biξi .

The KKT conditions are:

∇wL = w−
∑m

i=1 aiyixi = 0 ⇒ w =
∑m

i=1 aiyixi
∇bL = −

∑m
i=1 aiyi = 0 ⇒

∑m
i=1 aiyi = 0

∇ξiL = C − ai − bi = 0 ⇒ ai + bi = C

and

ai [yi (w
′xi + b)− 1 + ξi ] = 0 for 1 6 i 6 m⇒ ai = 0 or

yi (w
′xi + b) = 1− ξi ,

biξi = 0⇒ bi = 0 or ξi = 0.
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SVM - The Non-Separable Case

Consequences of the KKT Conditions

w is a linear combination of the training vectors x1, . . . , xm, where xi
appears in the combination only if ai 6= 0;

if ai 6= 0, then yi (w
′xi + b) = 1− ξi ;

if ξi = 0, then yi (w
′xi + b) = 1 and xi lies on marginal hyperplane as

in the separable case; otherwise, xi is an outlier;

if xi is an outlier, bi = 0 and ai = C or xi is located on the marginal
hyperplane.

w is unique; the support vectors are not.
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SVM - The Non-Separable Case

The Dual Optimization Problem

The Lagrangean can be rewritten by substituting w:

L = 1
2

∣∣∣∣∣∣∑m
i=1 aiyixi

∣∣∣∣∣∣2 −∑m
i=1

∑m
j=1 aiajyiyjx

′
ixj

−
∑m

i=1 aiyib +
∑m

i=1 ai
=

∑m
i=1 ai −

1
2

∑m
i=1

∑m
j=1 aiajyiyjx

′
ixj ,
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SVM - The Non-Separable Case

the Lagrangean has exactly the same form as in the separable case;

we need ai > 0 and, in addition bi > 0, which is equivalent to ai 6 C
(because ai + bi = C );

The dual optimization problem for the non-separable case becomes:

maximize for a
∑m

i=1 ai −
1
2aiajyiyjx

′
ixj

subject to 0 6 ai 6 C and
∑m

i=1 aiyi = 0
for 1 6 i 6 m.
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SVM - The Non-Separable Case

Consequences

the objective function is concave and differentiable;

the solution can be used to determine the hypothesis

h(x) = sign(w′x + b);

for any support vector bi we have b = yi −
∑m

j=1 ajyjx
′
ixj .

the hypothesis returned depends only on the inner products between
the vectors and not directly on the vectors themselves.
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Margins

Definition

The geometric margin relative to a linear classifier h(x) = w′x + b is its
distance to the hyperplane w′x + b = 0:

ρ(x) =
y(w′x + b)

‖ w ‖
.

The margin for a linear classifier h for a sample S = (x1, . . . , xm) is

ρ = min
16i6m

yi (w
′x + b)

‖ w ‖
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Margins

The VCD of the family of hyperplanes in Rn is n + 1. By the application of
the VCD bound we have that for any δ > 0, with probability at least 1− ε
we have

R(h) 6 ERM(h) +

√
2d log εm

d

m
+

√
log 1

δ

2m
.

Therefore, we obtain

R(h) 6 ERM(h) +

√
2(N + 1) log εm

N+1

m
+

√
log 1

δ

2m
.

When N is large compared to m the bound is not helpful.
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Margins

Theorem

Let S be a sample included in a sphere of radius r , S ⊆ {x | ‖ x ‖6 r}.
The VC dimension of the set of canonical hyperplanes of the form

h(x) = sign(w′x),min
x∈S
|w′x| = 1 and ‖ w ‖6 Λ,

verifies d 6 r2Λ2.
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Margins

Proof

Suppose that {x1, . . . , xd} is a set that can be fully shattered. Then, for
all y = (y1, . . . , yd) ∈ {−1, 1}d there exists w such that 1 6 yi (w

′x) for
1 6 i 6 d .
Summing up these inequalities yields:

d 6 w′
d∑

i=1

yixi 6‖ w ‖ ·
∣∣∣∣∣∣ d∑

i=1

yixi

∣∣∣∣∣∣ 6 Λ
∣∣∣∣∣∣ d∑

i=1

yixi

∣∣∣∣∣∣.
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Margins

Proof (cont’d)

Since y1, . . . , yd are independent, if i 6= j , E (yiyj) = E (yi )E (yj) = 0; also,
E (yiyi ) = 1.

Since d 6 Λ
∣∣∣∣∣∣∑d

i=1 yixi

∣∣∣∣∣∣ holds for all y ∈ {−1, 1}d , it holds over

expectations and we have

d 6 ΛEy

(∣∣∣∣∣∣ d∑
i=1

yixi

∣∣∣∣∣∣) 6 Λ

(
Ey

(∣∣∣∣∣∣ d∑
i=1

yixi

∣∣∣∣∣∣2))1/2

= Λ

 m∑
i=1

m∑
j=1

Ey (yiyj)(x′ixj)

1/2

= Λ

(
d∑

i=1

x′ixi

)1/2

6 Λ(dr2)1/2 = Λr
√
d .
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Margins

Thus,
d 6 Λ2r2

recall that when the data is linearly separable the margin ρ is given by:

ρ = min
(x,y)∈S

|w′x + b|
‖ w ‖

=
1

‖ w ‖
;

if we restrict the sample S such that the resulting w is such that
‖ w ‖= 1

ρ = Λ, it follows that

d 6
r2

ρ2
.
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