Support Vector Machines - II

Prof. Dan A. Simovici

UMB

Outline

Recall that the optimization problem for SVMs was

$$\begin{array}{l} \text{minimize } \frac{1}{2} \parallel \mathbf{w} \parallel^2 \\ \text{subject to } y_i(\mathbf{w}'\mathbf{x} + b) \ge 1 \text{ for } 1 \leqslant i \leqslant m \end{array}$$

Equivalently, the constraints are

$$1-y_i(\mathbf{w}'\mathbf{x}+b)\leqslant 0$$

for $1 \leq i \leq m$. The Lagrangean is

$$L(\mathbf{w}, b, \mathbf{a}) = \frac{1}{2} \| \mathbf{w} \|^2 + \sum_{i=1}^m a_i (1 - y_i (\mathbf{w}' \mathbf{x}_i + b)) \\ = \frac{1}{2} \| \mathbf{w} \|^2 + \sum_{i=1}^m a_i - \sum_{i=1}^m a_i y_i \mathbf{w}' \mathbf{x}_i - b \sum_{i=1}^m a_i y_i.$$

The Dual Problem

maximize $L(\mathbf{w}, b, \mathbf{a})$

The KKT conditions are

$$\begin{aligned} (\nabla_{\mathbf{w}}L) &= \mathbf{w} - \sum_{i=1}^{m} a_i y_i \mathbf{x}_i = \mathbf{0}, \\ (\nabla_{b}L) &= -\sum_{i=1}^{m} a_i y_i = 0, \\ a_i (1 - y_i (\mathbf{w}' \mathbf{x}_i + b)) = 0, \end{aligned}$$

which are equivalent to

$$\mathbf{w} = \sum_{i=1}^{m} a_i y_i \mathbf{x}_i,$$

$$\sum_{i=1}^{m} a_i y_i = 0,$$

$$a_i = 0 \quad \text{or} \quad y_i (\mathbf{w}' \mathbf{x}_i + b) = 1,$$

respectively.

Implications

- the weight vector w is a linear combination of the training vectors x₁,..., x_m;
- a vector x_i appears in w if and only if a_i ≠ 0 (such vectors are called support vectors);

• if
$$a_i \neq 0$$
, then $y_i(\mathbf{w}'\mathbf{x}_i + b) = \pm 1$.

Note that support vectors define the maximum margin hyperplane, or the SVM solution.

Transforming the Lagrangean

Since

$$L(\mathbf{w}, b, \mathbf{a}) = \frac{1}{2} \| \mathbf{w} \|^2 + \sum_{i=1}^m a_i - \sum_{i=1}^m a_i y_i \mathbf{w}' \mathbf{x}_i - b \sum_{i=1}^m a_i y_i,$$

 $\mathbf{w} = \sum_{j=1}^{m} a_j y_j \mathbf{x}_j$ (note that we changed the summation index from *i* to *j*), and $\sum_{i=1}^{m} a_i y_i = 0$, we have

$$L(\mathbf{w}, b, \mathbf{a}) = \frac{1}{2} \| \mathbf{w} \|^2 + \sum_{i=1}^m a_i - \sum_{i=1}^m \sum_{j=1}^m a_i a_j y_i y_j \mathbf{x}'_j \mathbf{x}_i$$

Further Transformation of the Lagrangean

Note that

$$\|\mathbf{w}\|^2 = \mathbf{w}'\mathbf{w} = \left(\sum_{j=1}^m a_j y_j \mathbf{x}'_j\right) \left(\sum_{i=1}^m a_i y_i \mathbf{x}_i\right),$$
$$= \sum_{i=1}^m \sum_{j=1}^m a_i a_j y_i y_j \mathbf{x}'_j \mathbf{x}_i.$$

Therefore,

$$L(\mathbf{w}, b, \mathbf{a}) = \frac{1}{2} \| \mathbf{w} \|^2 + \sum_{i=1}^m a_i - \sum_{i=1}^m \sum_{j=1}^m a_i a_j y_i y_j \mathbf{x}'_j \mathbf{x}_i$$
$$= \sum_{i=1}^m a_i - \frac{1}{2} \sum_{i=1}^m \sum_{j=1}^m a_i a_j y_i y_j \mathbf{x}'_j \mathbf{x}_i.$$

SVM - The Separable Case

The Dual Optimization Problem for Separable Sets

maximize
$$\sum_{i=1}^{m} a_i - \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} a_i a_j y_i y_j \mathbf{x}'_i \mathbf{x}_j$$

subject to $a_i \ge 0$ for $1 \le i \le m$ and $\sum_{i=1}^{m} a_i y_i = 0$.

Note that the objective function depends on a_1, \ldots, a_m .

- constraints are affine, so they are qualified and the strong duality holds; therefore, the primal and the dual problems are equivalent;
- the solution **a** of the dual problem can be used directly to determine the hypothesis returned by the SVM as

$$h(\mathbf{x}) = \operatorname{sign}(\mathbf{w}'\mathbf{x} + b) = \operatorname{sign}\left(\sum_{i=1}^{m} a_i y_i(\mathbf{x}'_i \mathbf{x}) + b\right);$$

since support vectors lie on the marginal hyperplanes, for every support vector x_i we have w'x_i + b = y_i, so

$$b = y_i - \sum_{j=1}^m a_j y_j(\mathbf{x}'_j \mathbf{x}).$$

Let N_{SV} the number of support vectors that define the hypothesis h_S returned for a sample S in the separable case, where $S = \{(\mathbf{x}_j, y_j) \mid 1 \leq j \leq m\}.$ Suppose the sample S is $S \sim \mathcal{D}^m$, where \mathcal{D} is the distribution of examples. If the algorithm \mathcal{A} is trained on all points of S with the exception of \mathbf{x}_i ,

that is, is trained on $S - \{\mathbf{x}_i\}$ the hypothesis returned is $h_{S-\{\mathbf{x}_i\}}$ and the error is

$$\hat{R} <_{LOO} (\mathcal{A}) = \frac{1}{m} \sum_{i=1}^{m} \left(h_{\mathcal{S} - \{\mathbf{x}_i\}}(\mathbf{x}_i) \neq y_i \right).$$

The leave-one error is the average of the errors obtained by leaving one example out.

Lemma

The average leave-one-out error for sample of size $m \ge 2$ is an unbiased estimate of the average generalization error for sample of size m - 1, that is,

$$E_{S\sim\mathcal{D}^m}\left(\mathsf{ERM}_{\mathsf{LOO}}(\mathcal{A})\right) = E_{S'\sim\mathcal{D}^{m-1}}\left(\mathsf{R}(\mathsf{h}_{S'})\right).$$

Proof

$$\begin{split} & E_{S \sim \mathcal{D}^m} \left(\mathsf{ERM}_{LOO}(\mathcal{A}) \right) \\ &= \frac{1}{m} \sum_{i=1}^m E_{S \sim \mathcal{D}^m} \left(h_{S - \{\mathbf{x}_i\}}(\mathbf{x}_i) \neq y_i \right) \\ &= E_{S \sim \mathcal{D}^m} \left(h_{S - \{\mathbf{x}_1\}}(\mathbf{x}_1) \neq y_1 \right) \\ & \text{ (since all points of } S \text{ are drawn at random and are equally distributed)} \\ &= E_{S' \sim \mathcal{D}^{m-1}, x_1 \sim \mathcal{D}} \left(h_{S'}(\mathbf{x}_1) \neq y_1 \right) \end{split}$$

$$= E_{S' \sim \mathcal{D}^{m-1}} \left(E_{x_1 \sim \mathcal{D}} \left(h_{S'}(\mathbf{x}_1) \neq y_1 \right) \right)$$

 $= E_{S'\sim \mathcal{D}^{m-1}}(R(h_{S'})).$

Theorem

If h_S is the hypothesis returned by the SVM algorithm \mathcal{A} for a sample S, then

$$E(ERM(h_S)) \leqslant E_{S \sim \mathcal{D}^{m+1}}\left(\frac{N_{SV}(S)}{m+1}\right).$$

Proof: Let S be a linearly separable sample of size m + 1. If **x** is not a support vector of h_S , removing it does not change the solution. Thus, $h_{S-\{x\}} = h_S$ and $h_{S-\{x\}}$ correctly classifies **x**. Thus, if $h_{S-\{x\}}$ misclassifies **x**, then **x** must be a support vector which implies

$$\mathsf{ERM}_{LOO}(\mathcal{A}) \leqslant \frac{\mathsf{N}_{\mathsf{SV}}(\mathsf{S})}{m+1}.$$

Taking the expectation of both sides yields the result.

Slack Variables

If data is not separable the conditions $y_i(\mathbf{w}'\mathbf{x}_i + b) \ge 1$ cannot all hold (for $1 \le i \le m$). Instead, we impose a relaxed version, namely

$$y_i(\mathbf{w}'\mathbf{x}_i+b) \ge 1-\xi_i,$$

where ξ_i are new variables known as slack variables.

A slack variable ξ_i measures the distance by which \mathbf{x}_i violates the desired inequality $y_i(\mathbf{w}'\mathbf{x}_i + b) \ge 1$.

A vector \mathbf{x}_i is an outlier if \mathbf{x}_i is not positioned correctly on the side of the appropriate hyperplane.

- a vector x_i with 0 < y_i(w'x_i + b) < 1 is still an outlier even if it is correctly classified by the hyperplane w'x + b = 0 (see the red point);
- if we omit the outliers the data is correctly separated by the hyperplane w'x + b = 0 with a soft margin ρ = 1/||w||;
- we wish to limit the amount of slack due to outliers $(\sum_{i=1}^{m} \xi_i)$, but we also seek a hyperplane with a large margin (even though this may lead to more outliers).

Optimization for Non-Separable Data

minimize
$$\frac{1}{2} \parallel \mathbf{w} \parallel^2 + C \sum_{i=1}^m \xi_i^p$$

subject to $y_i(\mathbf{w}'\mathbf{x}_i + b) \ge 1 - \xi_i$ and $\xi_i \ge 0$ for $1 \le i \le m$.

The parameter C is determined in the process of cross-validation. This is a convex optimization problem with affine constraints.

Support Vectors

As in the separable case:

- constraints are affine and thus, qualified;
- the objective function and the affine constraints are convex and differentiable;
- thus, the KKT conditions apply.

Variables

- $a_i \ge 0$ for $1 \le i \le m$ are variables associated with *m* constraints;
- *b_i* ≥ 0 for 1 ≤ *i* ≤ *m* are variables associated with the non-negativity constraints of the slack variables.

The Lagrangean is defined as:

$$L(\mathbf{w}, b, \xi_1, \dots, \xi_m, \mathbf{a}, \mathbf{b}) = \frac{1}{2} \| \mathbf{w} \|^2 + C \sum_{i=1}^m \xi_i \\ -\sum_{i=1}^m a_i [y_i(\mathbf{w}' \mathbf{x}_i + b) - 1 + \xi_i] - \sum_{i=1}^n b_i \xi_i.$$

The KKT conditions are:

$$\nabla_{\mathbf{w}} L = \mathbf{w} - \sum_{i=1}^{m} a_i y_i \mathbf{x}_i = 0 \Rightarrow \mathbf{w} = \sum_{i=1}^{m} a_i y_i \mathbf{x}_i$$

$$\nabla_b L = -\sum_{i=1}^{m} a_i y_i = 0 \Rightarrow \sum_{i=1}^{m} a_i y_i = 0$$

$$\nabla_{\xi_i} L = C - a_i - b_i = 0 \Rightarrow a_i + b_i = C$$

 and

$$a_i[y_i(\mathbf{w}'\mathbf{x}_i + b) - 1 + \xi_i] = 0$$
 for $1 \le i \le m \Rightarrow a_i = 0$ or $y_i(\mathbf{w}'\mathbf{x}_i + b) = 1 - \xi_i$,
 $b_i\xi_i = 0 \Rightarrow b_i = 0$ or $\xi_i = 0$.

Consequences of the KKT Conditions

• w is a linear combination of the training vectors $\mathbf{x}_1, \ldots, \mathbf{x}_m$, where \mathbf{x}_i appears in the combination only if $a_i \neq 0$;

• if
$$a_i \neq 0$$
, then $y_i(\mathbf{w}'\mathbf{x}_i + b) = 1 - \xi_i$;

- if ξ_i = 0, then y_i(w'x_i + b) = 1 and x_i lies on marginal hyperplane as in the separable case; otherwise, x_i is an outlier;
- if \mathbf{x}_i is an outlier, $b_i = 0$ and $a_i = C$ or \mathbf{x}_i is located on the marginal hyperplane.
- w is unique; the support vectors are not.

The Dual Optimization Problem

The Lagrangean can be rewritten by substituting **w**:

$$L = \frac{1}{2} \left\| \sum_{i=1}^{m} a_i y_i \mathbf{x}_i \right\|^2 - \sum_{i=1}^{m} \sum_{j=1}^{m} a_i a_j y_i y_j \mathbf{x}'_i \mathbf{x}_j - \sum_{i=1}^{m} a_i y_i b + \sum_{i=1}^{m} a_i = \sum_{i=1}^{m} a_i - \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} a_i a_j y_i y_j \mathbf{x}'_i \mathbf{x}_j,$$

- the Lagrangean has exactly the same form as in the separable case;
- we need a_i ≥ 0 and, in addition b_i ≥ 0, which is equivalent to a_i ≤ C (because a_i + b_i = C);

The dual optimization problem for the non-separable case becomes:

maximize for **a**
$$\sum_{i=1}^{m} a_i - \frac{1}{2} a_i a_j y_i y_j \mathbf{x}'_i \mathbf{x}_j$$

subject to $0 \leq a_i \leq C$ and $\sum_{i=1}^{m} a_i y_i = 0$
for $1 \leq i \leq m$.

Consequences

- the objective function is concave and differentiable;
- the solution can be used to determine the hypothesis

$$h(\mathbf{x}) = \operatorname{sign}(\mathbf{w}'\mathbf{x} + b);$$

- for any support vector b_i we have $b = y_i \sum_{j=1}^m a_j y_j \mathbf{x}'_i \mathbf{x}_j$.
- the hypothesis returned depends only on the inner products between the vectors and not directly on the vectors themselves.

Definition

The geometric margin relative to a linear classifier $h(\mathbf{x}) = \mathbf{w}'\mathbf{x} + b$ is its distance to the hyperplane $\mathbf{w}'\mathbf{x} + b = 0$:

$$\rho(\mathbf{x}) = rac{y(\mathbf{w}'\mathbf{x}+b)}{\parallel \mathbf{w} \parallel}$$

The margin for a linear classifier *h* for a sample $S = (\mathbf{x}_1, \dots, \mathbf{x}_m)$ is

$$\rho = \min_{1 \leqslant i \leqslant m} \frac{y_i(\mathbf{w}'\mathbf{x} + b)}{\|\mathbf{w}\|}$$

Margins

The VCD of the family of hyperplanes in \mathbb{R}^n is n+1. By the application of the VCD bound we have that for any $\delta > 0$, with probability at least $1 - \epsilon$ we have

$$R(h) \leq \mathsf{ERM}(h) + \sqrt{rac{2d\lograc{\epsilon m}{d}}{m}} + \sqrt{rac{\lograc{1}{\delta}}{2m}}$$

Therefore, we obtain

$$R(h) \leqslant \mathsf{ERM}(h) + \sqrt{rac{2(N+1)\lograc{\epsilon m}{N+1}}{m}} + \sqrt{rac{\lograc{1}{\delta}}{2m}}.$$

When N is large compared to m the bound is not helpful.

Theorem

Let S be a sample included in a sphere of radius r, $S \subseteq \{\mathbf{x} \mid || \mathbf{x} || \leq r\}$. The VC dimension of the set of canonical hyperplanes of the form

$$h(\mathbf{x}) = sign(\mathbf{w}'\mathbf{x}), \min_{\mathbf{x}\in S} |\mathbf{w}'\mathbf{x}| = 1 \text{ and } ||\mathbf{w}|| \leq \Lambda,$$

verifies $d \leq r^2 \Lambda^2$.

Proof

Suppose that $\{\mathbf{x}_1, \ldots, \mathbf{x}_d\}$ is a set that can be fully shattered. Then, for all $\mathbf{y} = (y_1, \ldots, y_d) \in \{-1, 1\}^d$ there exists \mathbf{w} such that $1 \leq y_i(\mathbf{w}'\mathbf{x})$ for $1 \leq i \leq d$.

Summing up these inequalities yields:

$$d \leq \mathbf{w}' \sum_{i=1}^{d} y_i \mathbf{x}_i \leq ||\mathbf{w}|| \cdot \left\| \sum_{i=1}^{d} y_i \mathbf{x}_i \right\| \leq \Lambda \left\| \sum_{i=1}^{d} y_i \mathbf{x}_i \right\|.$$

Margins

Proof (cont'd)

Since y_1, \ldots, y_d are independent, if $i \neq j$, $E(y_i y_j) = E(y_i)E(y_j) = 0$; also, $E(y_i y_i) = 1$. Since $d \leq \Lambda \left\| \sum_{i=1}^d y_i \mathbf{x}_i \right\|$ holds for all $\mathbf{y} \in \{-1, 1\}^d$, it holds over expectations and we have

$$d \leqslant \Lambda E_{\mathbf{y}} \left(\left\| \sum_{i=1}^{d} y_{i} \mathbf{x}_{i} \right\| \right) \leqslant \Lambda \left(E_{\mathbf{y}} \left(\left\| \sum_{i=1}^{d} y_{i} \mathbf{x}_{i} \right\|^{2} \right) \right)^{1/2}$$
$$= \Lambda \left(\sum_{i=1}^{m} \sum_{j=1}^{m} E_{y}(y_{i}y_{j})(\mathbf{x}_{i}'\mathbf{x}_{j}) \right)^{1/2}$$
$$= \Lambda \left(\sum_{i=1}^{d} \mathbf{x}_{i}'\mathbf{x}_{i} \right)^{1/2} \leqslant \Lambda (dr^{2})^{1/2} = \Lambda r \sqrt{d}.$$

Thus,

$$d \leqslant \Lambda^2 r^2$$

• recall that when the data is linearly separable the margin ρ is given by:

$$\rho = \min_{(\mathbf{x}, y) \in S} \frac{|\mathbf{w}' \mathbf{x} + b|}{\parallel \mathbf{w} \parallel} = \frac{1}{\parallel \mathbf{w} \parallel}$$

• if we restrict the sample S such that the resulting **w** is such that $\parallel \mathbf{w} \parallel = \frac{1}{\rho} = \Lambda$, it follows that

$$d \leqslant \frac{r^2}{\rho^2}.$$