Homework 3

posted November 6, 2017

due November 20, 2017

Let $B_n = \{0, 1\}^n$ and let $K \subseteq B_n$. The sequence of Chow parameters of K is $\mathsf{chow}(K) = (c_1, \ldots, c_n, c_K) \in \mathbb{N}^n$ defined as $c_K = |K|$ and $c_i = |\{\mathbf{x} \in K \mid x_i = 1\}|$. For example, for n = 4 and $K = \{(0, 1, 1, 1), (0, 0, 1, 1), (0, 0, 0, 1)\}$ we have $\mathsf{chow}(K) = (0, 1, 2, 3, 3)$.

Two subsets K, G of B_n are *equipollent* if they have the same Chow parameters.

The subsets K and $B_n - K$ are *linearly separable* if there exists a pair $(\mathbf{w}, t) \in \mathbb{R}^n \times \mathbb{R}$ such that

$$K = {\mathbf{x} \in B_n \mid \mathbf{w}' \mathbf{x} \ge t}$$
 and $B_n - K = {\mathbf{x} \in B_n \mid \mathbf{w}' \mathbf{x} < t}.$

We say that K is *linearly separable* if K and $B_n - K$ are linearly separable.

- 1. Let $K \subseteq B_n$. Prove that $\mathsf{chow}(K) = (\sum_{\mathbf{x} \in K} \mathbf{x}, |K|)$.
- 2. A diagonal of B_n is a pair $(\mathbf{u}, \mathbf{v}) \in B_n^2$ such that $\mathbf{u} = \mathbf{1}_n \mathbf{v}$, where $\mathbf{1}_n = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$. Prove that if K is a linearly separable subset of B_n that contains a diagonal of B_n , then it contains a point of every other diagonal of

a diagonal of B_n , then it contains a point of every other diagonal of B_n .

- 3. The optimization problem of the separable data case that seeks to determine a separating hyperplane in \mathbb{R}^n can be transformed into an equivalent optimization problem in \mathbb{R}^{n+1} that seeks to identify a separating subspace. Given a data set $\mathbf{s} = ((\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m))$ prove that there exists $\mathbf{r} \in \mathbb{R}^n$ such that \mathbf{s} is separable by a hyperplane if and only if the set $\tilde{\mathbf{s}} = ((\mathbf{x}_1 + \mathbf{r}, y_1), \dots, (\mathbf{x}_m + \mathbf{r}, y_m))$ is separable be a subspace M of \mathbb{R}^n .
- 4. Consider the data set D in \mathbb{R}^2 shown in Figure 1, where C is a circle centerd in (6, 4) having radius 3. Define a transformation $\phi : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ such that $\phi(D)$ is linearly separable.
- 5. There are 16 functions of the form $f : \{0,1\}^2 \longrightarrow \{0,1\}$. For each such function consider the sequence $S_f = ((\mathbf{x}_1, y_1), \dots, (\mathbf{x}_4, y_4))$, where

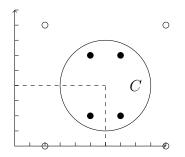


Figure 1: Non-linearly separable data; positive examples are filled circles.

$$\mathbf{x}_i \in \{0,1\}^2$$
 and

$$y_i = \begin{cases} -1 & \text{if } f(\mathbf{x}_i) = 0, \\ 1 & \text{if } f(\mathbf{x}_i) = 1 \end{cases}$$

for $1 \leq i \leq 4$.

- (a) For how many of these functions is S_f linerally separable?
- (b) Note that for $f : \{0, 1\}^2 \longrightarrow \{0, 1\}$ defined by $f(\mathbf{x}) = \min\{x_1, x_2\}$ is linearly separable. For $\eta = 0.1$ and $\eta = 0.8$ draw the sequence of weights of the perceptron during the learning process.
- 6. (optional) Provide a robust implementation in R of the perceptron algorithm that will cycle through a prescribed number of iterations (and, thus, will cope with the case when data is not linearly separable). Map the error count as a function of the number of epochs and run some experiments.