1. Let \mathcal{X}, the set of examples, be the set of natural numbers. The hypotheses space H consists of all intervals of the form $[a, b]$ with $a \leq b$. The concept that must be learned is an interval $[c, d]$, where all examples reside.

 (a) Let h_1, h_2 be two hypotheses. What does it mean in this context that h_1 is more specific than h_2?

 (b) Design an algorithm that learns the target concept.

2. Let \mathcal{X} be a set of examples. Suppose that the hypotheses space consists of all functions $h : \mathcal{X} \rightarrow \{t, \infty\}$. Prove that any unobserved example satisfies exactly half of hypotheses in the current version space, regardless of which training examples had been observed.

3. Consider a learning problem where each instance is described by a conjunction of n Boolean attributes A_1, \ldots, A_n. Here, a Boolean attribute is an attribute whose domain consists of two values, t and f. Thus, a typical instance would be

 $$(A_1 = t) \land (A_2 = f) \land \cdots \land (A_n = t).$$

 Consider a hypothesis space H in which each hypothesis is a disjunction of constraints over these attributes. For example, a typical hypothesis would be

 $$(A_1 = t) \lor (A_5 = f) \lor (A_7 = t).$$

 Design an algorithm that accepts a series of training examples and outputs a consistent hypothesis if one exists. Your algorithm should run in time that is polynomial in n (the number of attributes) and in m, the number of training examples.