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Problem Setting

the input space is X ⊆ Rn;
the output space is Y = {−1, 1};
concept sought: a function f : X −→ Y;
sample: a sequence S = ((xxx1, y1), . . . , (xxxm, ym)) ∈ (X × Y)m

extracted from a distribution D.
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Problem Statement

the hypothesis space H is H ⊆ YX ;
task: find h ∈ H such that the generalization error

R(h) = Px∼D(h(xxx) 6= f (xxx))

is small.

The smaller the VCD(H) the more efficient the process is. One possibility
is the class of linear functions from X to Y:

H = {x ; sign (www ′xxx + b) | www ∈ Rn, b ∈ R}.
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A Fundamental Assumption: Linear Separability of S
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If S is linearly separable there are, in general, infinitely many hyperplanes
that can do the separation.
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Solution returned by SVMs

SVMs seek the hyperplane with the maximum separation margin.
y

x
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The distance of a point xxx0 to a hyperplane www ′xxx + b = 0

Equation of the line passing through xxx0 and perpendicular on the
hyperplane is

xxx − xxx0 = twww ;

Since zzz is a point on this line that belongs to the hyperplane, to find the
value of t that corresponds to zzz we must have www ′(xxx0 + twww) + b = 0, that
is,

t = −w
ww ′xxx0 + b

‖ www ‖2
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The distance of a point xxx0 to a hyperplane www ′xxx + b = 0
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Thus, zzz = xxx0 − www ′xxx0+b
‖www‖2 www , hence the distance from

xxx0 to the hyperplane is

‖ xxx0 − zzz ‖= |w
ww ′xxx0 + b|
‖ www ‖

.
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Primal Optimization Problem

We seek a hyperplane in Rn having the equation

www ′xxx + b = 0,

where www ∈ Rn is a vector normal to the hyperplane and b ∈ R is a scalar.
A hyperplane www ′xxx + b = 0 that does not pass through a point of S is in
canonical form relative to a sample S if

min
(xxx ,y)∈S

|www ′xxx + b| = 1.

Note that we may always assume that the separating hyperplane are in
canonical form relative by S by rescaling the coefficients of the equation
that define the hyperplane (the components of www and b).
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If the hyperplane www ′xxx + b = 0 is in canonical form relative to the sample
S , then the distance to the hyperplane to the closest points in S (the
margin of the hyperplane) is the same, namely,

ρ = min
(xxx ,y)∈S

|www ′xxx + b|
‖ www ‖

1

‖ www ‖
.
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Canonical Separating Hyperplane

For a canonical separating hyperplane we have

|www ′xxx + b| > 1

for any point (xxx , y) of the sample and

|www ′xxx + b| = 1

for every support point. The point (xxx i , yi ) is classified correctly if yi has
the same sign as www ′xxx i + b, that is, yi (www

′xxx i + b) > 1.
Maximizing the margin is equivalent to minimizing ‖ www ‖ or, equivalently,
to minimizing 1

2 ‖ www ‖
2. Thus, in the separable case the SVM problem is

equivalent to the following convex optimization problem:
minimize 1

2 ‖ www ‖
2;

subjected to yi (www
′xxx i + b) > 1 for 1 6 i 6 m.
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Why 1
2 ‖ www ‖

2?

Note that this objective function,

1

2
‖ www ‖2=

1

2
(w2

1 + · · ·+ w2
n )

is differentiable!
We have ∇

(
1
2 ‖ www ‖

2
)

= www and that

H 1
2
‖www‖2 = III n,

which shows that 1
2 ‖ www ‖

2 is a convex function of www .
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Support Vectors

The Lagrangean of the optimization problem
minimize 1

2 ‖ www ‖
2;

subjected to yi (www
′xxx i + b) > 1 for 1 6 i 6 m.

is

L(www , b,aaa) =
1

2
‖ www ‖2 −

m∑
i=1

ai
(
yi (www

′xxx i + b)− 1
)
.
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The Karush-Kuhn-Tucker Optimality Conditions

∇wwwL = www −
m∑
i=1

aiyixxx i = 0,

∇bL = −
m∑
i=1

aiyi = 0,

ai (yi (www
′xxx i + b)− 1) = 0 for all i

imply

www =
m∑
i=1

aiyixxx i = 0,

m∑
i=1

aiyi = 0,

ai = 0 or yi (www
′xxx i + b) = 1 for 1 6 i 6 m.
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Consequences of the KKT Conditions

the weight vector is a linear combination of the training vectors
xxx1, . . . ,xxxm, where xxx i appears in this combination only if ai 6= 0
(support vectors);
since ai = 0 or yi (www

′xxx i + b) = 1 for all i , if ai 6= 0, then
yi (www

′xxx i + b) = 1 for the support vectors; thus, all these vectors lie on
the marginal hyperplanes www ′xxx + b = 1 or www ′xxx + b = −1;
if non-support vector are removed the solution remains the same;
while the solution of the problem www remains the same different
choices may be possible for the support vectors.
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