
February 10, 2019 19:31 ws-book9x6 book page 425

Appendix C

Basic Objects and Types in R

C.1 Objects in R

The basic constituent of the R language is an object. Each may have one

or several modes. R defines objects that have a single mode as atomic

objects. Objects are simple or recursive. Simple objects contain compo-

nents having the same mode, while recursive objects contain components

of several modes.

The main modes of an R object are:

Mode Example

null NULL

logical TRUE or T, FALSE or F

numeric 1, 2.719, pi

character ’Hello’, “Dolly”

complex 2 + 3i

The functions mode and typeof allow the display of the mode and the

type of an object, while the function attributes returns the attributes of

an object.

To test if an object belongs to a certain type one could use the following

functions:

is.character

is.complex

is.integer

is.logical

is.numeric

Example C.15. After creating the complex number z, we test its type as

follows:

425

February 10, 2019 19:31 ws-book9x6 book page 426

426 Clustering

> z <- 2+3i

> is.integer(z)

[1] FALSE

> is.complex(z)

[1] TRUE

The functions mode and typeof can be used in a similar manner:

mode(z)

[1] "complex"

> typeof(z)

[1] "complex"

C.2 Vectors and Factors in R

Vectors are atomic objects that accommodate sequences of elements that

have the same mode. A scalar in R is a vector of length 1.
A scalar is created using an assignment as we show next.

x <- 6.9

Its length obtained by length(x) is 1.
A vector of length n can be defined using the concatenation function c

(whose name is derived from the word “combine”). To create the vector
(10, 20, 25) we write

y <- c(10,20,25)

The length of y is 3.
Individual components of a vector v can be accessed using the notation

v[i]. For example,

> y[2]

returns 20.
A vector of length 0 can be created by

> v <- vector("numeric")

> length(v)

[1] 0

Vector components can be named. Consider the vector perfsq. To
assign names to its components we write:

perfsq <- c(1,4,9,16,25,36,49,64,81)

> names(perfsq) <- c("one","two","three","four","five","six","seven",

+ "eight","nine")

February 10, 2019 19:31 ws-book9x6 book page 427

Basic Objects and Types in R 427

When the value of perfsq is inspected we get both the components of the
vector and their names:

> perfsq

one two three four five six seven eight nine

1 4 9 16 25 36 49 64 81

A portion of a vector defined by subsets of its index values can be
extracted by

> perfsq[2:5]

returning

[1] 4 9 16 25

Random samples can be constructed using the function sample.

Example C.16. Let x be a vector of 10 integer created by

x <- 1:10

To sample five of its components we write

y <- sample(x,5)

which may return

> y

[1] 6 9 10 7 8

If the second argument is omitted, we obtain a random permutation of x
as in

> z <- sample(x)

> z

[1] 8 4 10 6 5 9 3 7 1 2

Samples with replacement can be obtained by using the parameter
replace = TRUE. For example, we have

w <- sample(x,replace=TRUE)

> w

[1] 8 10 10 10 3 9 1 8 5 7

Finally, to produce a quasi-random sequence of 20 binary digits we write

> sample(c(0,1),20,replace=TRUE)

[1] 0 1 0 1 0 1 0 0 0 1 0 1 1 0 0 0 1 1 1 0

Let us consider other useful examples of manipulating vectors.

The combination operation c is associative.

Example C.17. If we define the vector ps as

February 10, 2019 19:31 ws-book9x6 book page 428

428 Clustering

ps <- c(1,4,9,16,25,36,49,64,81)

and then write

ps <- c(ps,c(8,27,64,125))

the result is equivalent to writing

ps <- c(1,4,9,16,25,36,49,64,81,8,27,64,125)

A vector can be involved in a condition. This condition will be tested
for each of its component and a vector of Boolean values will be generated,
as it is shown below:

> v<- c(1,5,2,4,9,6)

> v <= 6

[1] TRUE TRUE TRUE TRUE FALSE TRUE

The condition can be used to extract the components of the vector that
satisfy a condition as in

> v[v<6]

[1] 1 5 2 4

Example C.18. Let us index the components of ps with numbers between
1 and 13:

> names(ps) <- 1:13

> ps

1 2 3 4 5 6 7 8 9 10 11 12 13

1 4 9 16 25 36 49 64 81 8 27 64 125

To extract the components of ps corresponding to the fourth to the
seventh component we can write

> idx <- 4:7

> ps[idx]

4 5 6 7

16 25 36 49

To eliminate all components of ps between the 4th and the 7th we can use
negative indexes:

> ps[-idx]

1 2 3 8 9 10 11 12 13

1 4 9 64 81 8 27 64 125

Similarly, to obtain components of ps outside the range from 2 to 7 of the
index we can use:

> ps[-2:-7]

1 8 9 10 11 12 13

1 64 81 8 27 64 125

February 10, 2019 19:31 ws-book9x6 book page 429

Basic Objects and Types in R 429

A vector can be sorted using the function sort. When applied to ps we
obtain

> pt <- sort(ps)

> pt

1 2 10 3 4 5 11 6 7 8 12 9 13

1 4 8 9 16 25 27 36 49 64 64 81 125

This allows us to identify the indexes of ps that correspond to the compo-
nents that are less than 40 by writing

pt[pt < 40]

which yields:

pt[pt < 40]

1 2 10 3 4 5 11 6

1 4 8 9 16 25 27 36

Finally, to extract the indices of the original vector that correspond to
components less than 40 we write:

ll <- as.integer(names(pt[pt<40]))

which gives the desired answer:

> ll

[1] 1 2 10 3 4 5 11 6

The components of a vector can be provided through the console using

the function scan().

Example C.19. To create the vector (5, 6, 0, 2) we can write

> x <- scan()

1: 5

2: 6

3: 0

4: 2

5:

Read 4 items

> x

[1] 5 6 0 2

An alternative method is using the function data.entry. For example, if
we write

y <- vector("numeric",5)

> data.entry(y)

the vector y is created and, as an effect of the data.entry function, a

window opens which allows us to enter the components of y.

February 10, 2019 19:31 ws-book9x6 book page 430

430 Clustering

The function append allows the insertion of a vector in another vector

at a prescribed position.

Example C.20. After creating the vectors x and y, the vector y is inserted
in x after the 4th component using the following commands:

> x <- c(1,2,3,4,5,6,7)

> y <- c(10,11)

> append(x,y,4)

[1] 1 2 3 4 10 11 5 6 7

To add components at the beginning or the end of a vector we can use

the function c.

Example C.21. Let x be a vector having the components 9,4, and 20. To
add 15 and 16 at the beginning of x, and 50, 60, 70 at the end we can write:

x <- c(9,4,10)

> print(x)

[1] 9 4 10

> x <- c(15,16,x)

> print(x)

[1] 15 16 9 4 10

> x <- c(x,50,60,70)

> print(x)

[1] 15 16 9 4 10 50 60 70

The function str allows showing attributes of existing objects.

Example C.22. To obtain the attributes of x we can write:

> str(x)

num [1:8] 15 16 9 4 10 50 60 70

To verify that an object is a vector we can use the function is.vector()
as in

> is.vector(x)

(1) TRUE

It is possible to access only certain portions of a vector. The following

list summarizes several access methods:

v[k] the kth component of v

v[k:h] components of v between kth and hth

v[c(2,4,6)] the second, fourth and sixth components of v

v[-4] all components of v except the fourth

v[v > 2] all components of v that are greater than 2

February 10, 2019 19:31 ws-book9x6 book page 431

Basic Objects and Types in R 431

The function seq generates arithmetc progessions. Its most common
usage is

seq(from = a, to = b, by = r),

yielding an arithmetic progression with initial term a, increment r, and

having its last term not larger than b.

Example C.23. We generate two arithmetic progessions using the function

seq:

> seq(from=5, by=2,to=12)

[1] 5 7 9 11

> seq(from=5, by=2,to=13)

[1] 5 7 9 11 13

Also, seq can be used to extract selected components of a vector as in

> x <- c(1,2,3,4,5,6,7,8,9,10)

> x[seq(from=1,by=2,to=8)]

[1] 1 3 5 7

Using the function rep it is possible to construct a vector containing

several copies of another vector.

Example C.24. After constructing the vector v, the vector w is put to-
gether from three copies of v:

> v <- c(1,2,3)

> w <- rep(v,times=3)

> w

[1] 1 2 3 1 2 3 1 2 3

It is possible to eliminate duplicate components of a vector using the

function unique; the results can be sorted using the function sort.

Example C.25. Starting from the vector v we eliminate duplicate com-
ponents using the function unique; then, we sort the resulting vector w:

> v <- c(1,3,2,4,1,4,3,1)

> w <- unique(v)

> w

[1] 1 3 2 4

> z <- sort(w)

> z

[1] 1 2 3 4

February 10, 2019 19:31 ws-book9x6 book page 432

432 Clustering

Equivalently, the functions unique and sort can be cascades as in:

> t <- sort(unique(v))

> t

[1] 1 2 3 4

A number of set-theoretical operations can be performed on vectors. For

instance, starting from the vectors v and z and using the union function

one can construct a vector that contains one copy of every component of v

and z.

Example C.26. If v is the vector introduced in Example C.25 then
the“union” of v and z, defined here is:

> z <- c(1,4,6)

> union(v,z)

[1] 1 3 2 4 6

Similarly, the “intersection” is given by

> intersect(v,z)

[1] 1 4

and the “set difference” is

> setdiff(v,z)

[1] 3 2

> setdiff(z,v)

[1] 6

The equality of the set of components of two vectors can be tested using
the function setequal:

> y <- c(6,4,4,1)

> y

[1] 6 4 4 1

> setequal(z,y)

[1] TRUE

Note that the union (or the intersection) of a vector with itself results into a
vector that contains the distinct components of the vector, as shown below:

> union(v,v)

[1] 1 3 2 4

> intersect(v,v)

[1] 1 3 2 4

February 10, 2019 19:31 ws-book9x6 book page 433

Basic Objects and Types in R 433

The inclusion between the sets of components of vectors can be texted

using the function is.element.

Example C.27. After defining the vectors u, v, w as

> u <- c(1,2,2,3,4)

> v <- c(1,2,4)

> w <- c(1,2,5)

we can test inclusion between the sets of components of these vectors by
writing

> is.element(u,v)

[1] TRUE TRUE TRUE FALSE TRUE

> is.element(v,u)

[1] TRUE TRUE TRUE

> is.element(w,u)

[1] TRUE TRUE FALSE

The function match can also be used to determine if the components of

a vector y are contained in the set of components of a vector x. The result

is a vector with the same length as x. Components of y that occur in x are

printed in the same position as they occur in x; the remaining components

of x are designed by the special value NA, which stands for “not available”.

Example C.28. The usage of the function match is shown below:

> x <- c(1,2,3,2,1,5)

> y <- c(1,3)

> match(x,y)

[1] 1 NA 2 NA 1 NA

> match(y,x)

[1] 1 3

Complex vectors can also be used in R and several functions that

apply to complex numbers are given below.

Re the real part of a complex number

Im the imaginary part of a complex number

Conj the conjugate of a complex number

Mod the module of a complex number

Arg the module of a complex number

These functions can be applied not only to complex numbers but also

to vectors with complex components.

Example C.29. Below we compute the conjugates of the components of
the complex vector v as well as the modules of its components:

February 10, 2019 19:31 ws-book9x6 book page 434

434 Clustering

> v <- c(1+2i,1-3i,5+4i)

> Conj(v)

[1] 1-2i 1+3i 5-4i

> Mod(v)

[1] 2.236068 3.162278 6.403124

The c function allows the creation of a vector of strings of characters.

Example C.30. The vector nes that contains designation of New England
states can be created as

> nes <- c("MA","ME","NH","VT","CT")

> nes

[1] "MA" "ME" "NH" "VT" "CT"

R contains many common operations that involve strings. For exam-

ple, the functions tolower and toupper convert a string of characters to

lower case, and to upper case, respectively. These functions are applicable

to character strings, or to vectors of strings as shown next.

Example C.31. The components of the vector nes defined in Exam-
ple C.30 are converted to lower case in the following R fragment:

> nes1 <- tolower(nes)

> nes1

[1] "ma" "me" "nh" "vt" "ct"

The function nchar counts the number of characters in a string and

can be applied to a vector to produce the number of characters in each

component.

Example C.32. Using the same vector nes introduced above we have:

> nchar(nes)

[1] 2 2 2 2 2

The function grep extracts the the indices of the components of a vector

of strings of characters that contain a certain substring.

Example C.33. The function grep is seeks to determine the components
of a vector that contain the pattern "Vic":

> w <- c("Victoria","Albert","Victor","Alfred")

> grep("Vic",w)

[1] 1 3

February 10, 2019 19:31 ws-book9x6 book page 435

Basic Objects and Types in R 435

If we wish to print the actual components of w that contain the "Vic"
substring we write

> p <- grep("Vic",w)

> print(w[p])

[1] "Victoria" "Victor"

To print those components of w that do not contain the substring "Vic" we
write

> print(w[-p])

[1] "Albert" "Alfred"

The special vectors letters and LETTERS contain the small and capital
letters of the Latin alphabet, as shown next.

> letters

[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r" "s"

[20] "t" "u" "v" "w" "x" "y" "z"

> LETTERS

[1] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "K" "L" "M" "N" "O" "P" "Q" "R" "S"

[20] "T" "U" "V" "W" "X" "Y" "Z"

A factor is a vector used to specify a grouping of the components of

other vectors of the same length.

Conceptually, factors are vectors whose components take on a limited

number of different values; such variables are often refered to as categor-

ical variables. One of the most important uses of factors is in statistical

modeling; since categorical variables enter into statistical models differently

than continuous variables, storing data as factors insures that the modeling

functions will treat such data correctly.

The factor function is used to create a factor. The only required ar-

gument to factor is a vector of values which will be returned as a vector

of factor values. Both numeric and character variables can be made into

factors, but a factor’s levels will always be character values.

The possible levels for a factor can be accessed through the levels

command.

Factors represent an efficient way of storing character values. While the

data itself is stored as a vector of integers and each character value is stored

only once.

Example C.34. We construct the factor fdata starting from the vector
data. The levels of fdata are displayed using the function factor

February 10, 2019 19:31 ws-book9x6 book page 436

436 Clustering

> data = c(1,2,3,4,4,3,2,1)

> fdata = factor(data)

> fdata

[1] 1 2 3 4 4 3 2 1

Levels: 1 2 3 4

Starting from the data vector another factor is created, where levels

represent the roman numerical equivalents:

> rdata = factor(data,labels = c("I","II","III","IV"))

> rdata

[1] I II III IV IV III II I

Levels: I II III IV

To impose a certain order on the levels of a factor we can write

> ordata = factor(data,labels = c("I","II","III","IV"),ordered=TRUE)

> ordata

[1] I II III IV IV III II I

Levels: I < II < III < IV

C.3 Matrices and Frames

The function matrix serves for transforming a vector into a matrix. Its

first argument is a vector, whose components are rearranged to form a

matrix. The resulting matrix can be defined using the either the parameter

ncol specifying the number of columns of the matrix or nrow specifying

the number of rows of the matrix.

Example C.35. Starting from the vector v defined as

v <- c(1,2,3,4,5,6,7,8,9,10,11,12)

we can produce a matrix with 4 columns or with 4 rows, respectively:

> m1 <- matrix(v,ncol=4)

> m1

[,1] [,2] [,3] [,4]

[1,] 1 4 7 10

[2,] 2 5 8 11

[3,] 3 6 9 12

> m2 <- matrix(v,nrow=4)

> m2

[,1] [,2] [,3]

[1,] 1 5 9

[2,] 2 6 10

February 10, 2019 19:31 ws-book9x6 book page 437

Basic Objects and Types in R 437

[3,] 3 7 11

[4,] 4 8 12

Note that for the matrices m1 or m2 the order of the elements obtained by
reading the columns successively is the order of the elements in v. This
corresponds to setting the parameter byrow to FALSE:

m3 <- matrix(v,ncol=4,byrow=FALSE)

> m3

[,1] [,2] [,3] [,4]

[1,] 1 4 7 10

[2,] 2 5 8 11

[3,] 3 6 9 12

An alternative ordering can be obtaining by setting byrow to TRUE:

> m4 <- matrix(v,ncol=4,byrow=TRUE)

> m4

[,1] [,2] [,3] [,4]

[1,] 1 2 3 4

[2,] 5 6 7 8

[3,] 9 10 11 12

To enter a matrix from the keyboard one could use the function scan.

Example C.36. Below, we enter a matrix having two rows. Note that the
matrix must contain an even number of entries placed on two rows; if this
is not the case an error message will be produced.

> matrix(scan(),nrow=2,byrow=TRUE)

1: 5

2: 2

3: 4

4: 9

5: 6

6: 1

7:

Read 6 items

[,1] [,2] [,3]

[1,] 5 2 4

[2,] 9 6 1

To generate a diagonal matrix we can use the function diag.

Example C.37. A diagonal matrix containing the sequence (1, 2, 3, 4) on
its diagonal can be created as follows:

February 10, 2019 19:31 ws-book9x6 book page 438

438 Clustering

> diag(1:4)

[,1] [,2] [,3] [,4]

[1,] 1 0 0 0

[2,] 0 2 0 0

[3,] 0 0 3 0

[4,] 0 0 0 4

The next example illustrates various methods for accessing matrix com-

ponents.

Example C.38. To extract the third column of the matrix a defined below
we write a[,3]; the third row of a is obtained with a[3,]. To extract all
rows except the first we write a[-1,], as shown below.

> a

[,1] [,2] [,3] [,4]

[1,] 1 2 3 4

[2,] 5 6 7 8

[3,] 9 10 11 12

> a[,3]

[1] 3 7 11

> a[3,]

[1] 9 10 11 12

> a[-1,]

[,1] [,2] [,3] [,4]

[1,] 5 6 7 8

[2,] 9 10 11 12

> a[,-2]

[,1] [,2] [,3]

[1,] 1 3 4

[2,] 5 7 8

[3,] 9 11 12

> a[2,3]

[1] 7

The functions cbind and rbind start with a number of vectors and

produce a matrix. In the first case, vectors are treated as columns; in the

second, they are treated as rows.

Example C.39. Starting from the vectors x, y, and z defined as

February 10, 2019 19:31 ws-book9x6 book page 439

Basic Objects and Types in R 439

> x <- c(1,2,3,4)

> y <- c(5,6,7,8)

> z <- c(9,10,11,12)

we define a matrix having x, y, and z as columns using the function cbind
and a similar matrix having these vectors as rows using the function rbind:

> cbind(x,y,z)

x y z

[1,] 1 5 9

[2,] 2 6 10

[3,] 3 7 11

[4,] 4 8 12

> rbind(x,y,z)

[,1] [,2] [,3] [,4]

x 1 2 3 4

y 5 6 7 8

z 9 10 11 12

>

Array of higher dimensionalities can be built using the function array.

The first argument of this function is a vector that defines the content of

the array; the second argument is a list of dimensions.

Example C.40. To arrange numbers ranging from 1 to 24 in a 3-
dimensional array of dimensions 2, 3, and 4 we can write:

> array(1:24,c(2,3,4))

, , 1

[,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

, , 2

[,1] [,2] [,3]

[1,] 7 9 11

[2,] 8 10 12

, , 3

[,1] [,2] [,3]

[1,] 13 15 17

[2,] 14 16 18

February 10, 2019 19:31 ws-book9x6 book page 440

440 Clustering

, , 4

[,1] [,2] [,3]

[1,] 19 21 23

[2,] 20 22 24

To compute the determinant of a square matrix defined by

s <- matrix(c(1,0,-1,2,3,4,1,8,9),nrow=3)

we write

> det(s)

[1] -18

The distance between rows of a matrix can be computed by the function
dist which produces a triangular object as in

> m <- matrix(c(1,2,3,4,2,3,4,5,3,4,5,6),nrow=3)

> m

[,1] [,2] [,3] [,4]

[1,] 1 4 4 4

[2,] 2 2 5 5

[3,] 3 3 3 6

> dist(m)

1 2

2 2.645751

3 3.162278 2.645751

The value returned by dist is useful for various functions in the package
class that deals with classification. However, if a matrix form of these
distances is needed we can use the function as.matrix:

> as.matrix(dist(m))

1 2 3

1 0.000000 2.645751 3.162278

2 2.645751 0.000000 2.645751

3 3.162278 2.645751 0.000000

A data frame is a similar to a matrix, so it is a tabular object. However,

unlike matrices, its columns have names and may vary in type.

The definition of a data frame begins with the definitions of the vectors

that constitute its columns. Then, these columns are assembled into a data

frame using the function data.frame.

Example C.41. A data frame wh can be created as follows:

February 10, 2019 19:31 ws-book9x6 book page 441

Basic Objects and Types in R 441

> weight <- c(180,150,210,140,170)

> height <- c(1.78,1.64,1.90,1.50,1.89)

> wh <- data.frame(weight,height)

This results in the data frame wh shown below:

> wh

weight height

1 180 1.78

2 150 1.64

3 210 1.90

4 140 1.50

5 170 1.89

An alternative technique for creating a data frame is reading its content

from a csv file by using the function read.csv.

Example C.42. Suppose that we have a csv file named consEU.csv. By
default, R assumes that the file contains a header and, in our case, the
header consists of

code prot fat

Thus, upon writing

fatprot <- read.csv("C:/Users/Dan/Desktop/cs724-SPRING2014/handouts/consEU.csv")

and

> fatprot

System R will return:

code prot fat

1 AL 97 87

2 AT 107 155

3 BY 88 97

4 BE 97 164

5 BA 86 67

6 BG 79 101

7 HR 74 97

8 CY 99 133

9 CZ 95 121

10 DK 108 135

11 EE 88 96

12 FI 105 127

13 FR 117 164

14 GE 77 58

15 DE 99 142

16 GR 117 146

February 10, 2019 19:31 ws-book9x6 book page 442

442 Clustering

17 HU 90 145

18 IS 128 143

19 IE 115 135

20 IT 113 158

21 LV 87 116

22 LT 112 105

23 LU 124 164

24 MK 72 102

25 MT 116 110

26 MD 73 59

27 NL 103 135

28 NO 104 144

29 PL 100 113

30 PT 114 137

31 RO 110 107

32 RU 92 87

33 YU 75 116

34 SK 72 108

35 SI 102 131

36 ES 109 152

37 CH 91 152

fatprot is a new data frame.

The country codes can be obtained using the “$” operator:

fatprot$code

which returns

> fatprot$code

[1] AL AT BY BE BA BG HR CY CZ DK EE FI FR GE DE GR HU IS IE IT LV LT LU MK MT

[26] MD NL NO PL PT RO RU YU SK SI ES CH

37 Levels: AL AT BA BE BG BY CH CY CZ DE DK EE ES FI FR GE GR HR HU IE ... YU

The categorical attribute code has 37 values in its domain; these values are

the levels of the attribute code.
If the operator “$” is used in conjunction with a numerical attribute as

in

fatprot$fat

R returns the list of values that occur in the data frame under fat:

> fatprot$fat

[1] 87 155 97 164 67 101 97 133 121 135 96 127 164 58 142 146 145 143 135

[20] 158 116 105 164 102 110 59 135 144 113 137 107 87 116 108 131 152 152

Projections of a dataframe can be obtained by enclosing a list of at-

tributes between square brackets. For example, we can write:

February 10, 2019 19:31 ws-book9x6 book page 443

Basic Objects and Types in R 443

fatprot[c("fat","prot")]

This will return

fat prot

1 87 97

2 155 107

3 97 88

4 164 97

5 67 86

6 101 79

7 97 74

8 133 99

9 121 95

10 135 108

11 96 88

12 127 105

13 164 117

14 58 77

15 142 99

16 146 117

17 145 90

18 143 128

19 135 115

20 158 113

21 116 87

22 105 112

23 164 124

24 102 72

25 110 116

26 59 73

27 135 103

28 144 104

29 113 100

30 137 114

31 107 110

32 87 92

33 116 75

34 108 72

35 131 102

36 152 109

37 152 91

Equivalently, we could enter

fatprot[2:3]

February 10, 2019 19:31 ws-book9x6 book page 444

444 Clustering

To extract the projection of a selected set of rows of the data frame we
need to specify two arrays between the square brackets that designate the
projection. To return the code prot of the first four rows we can write:

> fatprot[c(1,2,3,4),c(1,2)]

code prot

1 AL 97

2 AT 107

3 BY 88

4 BE 97

To inspect the structure of a data frame R one could use the function

str.

Example C.43. The function call str(fatprot) returns

> str(fatprot)

’data.frame’: 37 obs. of 3 variables:

$ code: Factor w/ 37 levels "AL","AT","BA",..: 1 2 6 4 3 5 18 8 9 11 ...

$ prot: int 97 107 88 97 86 79 74 99 95 108 ...

$ fat : int 87 155 97 164 67 101 97 133 121 135 ...

C.4 Linear Algebra in R

The sum of matrices having the same format is computed using the usual

operator “+”.

Example C.44. Let a and b be the 2× 3-matrices constructed as

> a <- rbind(c(1,-1,0),c(2,3,1))

> a

[,1] [,2] [,3]

[1,] 1 -1 0

[2,] 2 3 1

> b <- rbind(c(2,2,3),c(-1,2,1))

> b

[,1] [,2] [,3]

[1,] 2 2 3

[2,] -1 2 1

Their sum is obtained as

> a+b

[,1] [,2] [,3]

[1,] 3 1 3

[2,] 1 5 2

February 10, 2019 19:31 ws-book9x6 book page 445

Basic Objects and Types in R 445

Matrix multiplication is done using the operator %*%. Multiplication of

a matrix A by a constant c is done by simply writing c*A.

Example C.45. Starting from the vectors x, y, u, v defined by

> x <- c(1,2,3,4)

> y <- c(4,5,6,7)

> u <- c(1,-1,0,1)

> v <- c(-1,2,1,-1)

form the 2× 4-matrix a and the 4× 2-matrix b as

> a <- rbind(x,y)

> b <-cbind(u,v)

Then the c, the product of a and b is obtained as

> c <- a %*% b

> c

u v

x 3 2

y 6 5

The product of 4 and a is obtained as

> 4*a

[,1] [,2] [,3] [,4]

x 4 8 12 16

y 16 20 24 28

The transpose of a metrix a is computed using the function t.

Example C.46. For the matrix a defined as

> a

[,1] [,2] [,3]

[1,] 1 -1 0

[2,] 2 3 1

the transpose is computed as

> t(a)

[,1] [,2]

[1,] 1 2

[2,] -1 3

[3,] 0 1

The function diag displays a certain polymorphism. When called as

diag(k), where k is a positive integer, it returns a k × k unit matrix.

Example C.47. To obtain a 3× 3 unit matrix we write:

February 10, 2019 19:31 ws-book9x6 book page 446

446 Clustering

> diag(3)

[,1] [,2] [,3]

[1,] 1 0 0

[2,] 0 1 0

[3,] 0 0 1

On the other hand, when a is a n × n-square matrix, diag(a) returs an

n-dimensional vector that contains the diagonal elements of a.

Example C.48. The diagonal elements of a matrix a are obtained by
applying the function diag:

> a <- matrix(1:9,c(3,3))

> a

[,1] [,2] [,3]

[1,] 1 4 7

[2,] 2 5 8

[3,] 3 6 9

> diag(a)

[1] 1 5 9

The same function applied to an n-dimensional vector produces a n × n-

diagonal matrix having the components of v as its diagonal elements.

Example C.49. Let v be the vector defined as

v <- c(1,2,3)

Then, we have

> v <- c(1,2,3)

> diag(v)

[,1] [,2] [,3]

[1,] 1 0 0

[2,] 0 2 0

[3,] 0 0 3

The function solve is also polymorphic. When called with a single

parameter which is non-singular matrix, it returns its inverse if this inverse

exists.

Example C.50. Let a be the matrix formed from three rows

> l1 <- c(1,-1,0)

> l2 <- c(3,1,2)

> l3 <- c(1,3,1)

> a <- rbind(l1,l2,l3)

February 10, 2019 19:31 ws-book9x6 book page 447

Basic Objects and Types in R 447

Its inverse is

> solve(a)

l1 l2 l3

[1,] 1.25 -0.25 0.5

[2,] 0.25 -0.25 0.5

[3,] -2.00 1.00 -1.0

When called with two arguments a and b, where a is a n× n-matrix and b

is an n-dimensional vector, the function return the solution x of the linear

system ax = b.

Example C.51. Using the matrix a defined in Example C.50 the function
solve returns the solution of the system mentioned above:

> b <- c(1,2,3)

> solve(a,b)

[1] 2.25 1.25 -3.00

This can be easily verified as

> a %*% c(2.25,1.25,-3)

[,1]

l1 1

l2 2

l3 3

The reader should pay attention to the fact that in linear algebra vectors are

usually denoted as columns, where in R they are denoted as rows. Thus,

with the usual notations of relational algebra, the linear system discussed

above is

a

x1

x2

x3

 =

1

2

3

 .

The eigenvalues of a matrix a can be computed using the function eigen.

Example C.52. For the matrix a defined in Example C.50 we obtain the
eigenvalue 2 with multiplicity 2 and the simple eigenvalue −1, as shown
below

> eigen(a)

eigen() decomposition

\$values

[1] 2+0i 2-0i -1+0i

\$vectors

February 10, 2019 19:31 ws-book9x6 book page 448

448 Clustering

[,1] [,2] [,3]

[1,] 0.4082483-0i 0.4082483+0i -0.2407717+0i

[2,] -0.4082483-0i -0.4082483+0i -0.4815434+0i

[3,] -0.8164966+0i -0.8164966+0i 0.8427010+0i

Note that the object returned by eigen has two components,

eigen(a)$values and eigen(a)$vectors.

Singular vector decompositions of matrices can be computed using the
function svd. Its standard usage for an n× p-matrix x is

svd(x, nu, nv)

where nu is the number of left singular vectors to be computed (which must

be between 0 and n) and nv is the number of right singular vectors to be

computed (between 0 and p). The arguments nu and nv are optional and

have the default values n and p, respectively.

> svd(x)

$d

[1] 9.5255181 0.5143006

$u

[,1] [,2]

[1,] -0.6196295 -0.7848945

[2,] -0.7848945 0.6196295

$v

[,1] [,2]

[1,] -0.2298477 0.8834610

[2,] -0.5247448 0.2407825

[3,] -0.8196419 -0.4018960

The functions rowMeans, rowSums, colMeans, colSums compute the

means and sums for rows and columns of a matrix, respectively.

Example C.53. We illustrate the application of the previously listed func-

tions for a 3× 4-matrix a:

> a <- matrix(1:12,nrow=3)

> a

[,1] [,2] [,3] [,4]

[1,] 1 4 7 10

[2,] 2 5 8 11

[3,] 3 6 9 12

> rowMeans(a)

February 10, 2019 19:31 ws-book9x6 book page 449

Basic Objects and Types in R 449

[1] 5.5 6.5 7.5

> rowSums(a)

[1] 22 26 30

> colMeans(a)

[1] 2 5 8 11

> colSums(a)

[1] 6 15 24 33

The inner product of two vectors x and y in Rn can be computed as

sum(x*y):

Example C.54.

> x <- c(1,2,-1,0)

> y <- c(2,-1,2,2)

> sum(x*y)

[1] -2

If x and y are R vectors, representing the vectors x,yy ∈ Rn, respec-

tively, the outer product x′y can be computed as outer(x.y).

Example C.55. Consider the vectors

x =


1

2

−1

0

 ∈ R4

and

y =

3

4

5

 ∈ R3

Their counterparts in R are:

> x <- c(1,2,-1,0)

> x

[1] 1 2 -1 0

> y <- c(3,4,5)

> y

[1] 3 4 5

The outer products xy′ and yy′ are computed respectively as:

February 10, 2019 19:31 ws-book9x6 book page 450

450 Clustering

> outer(x,y)

[,1] [,2] [,3]

[1,] 3 4 5

[2,] 6 8 10

[3,] -3 -4 -5

[4,] 0 0 0

> outer(y,x)

[,1] [,2] [,3] [,4]

[1,] 3 6 -3 0

[2,] 4 8 -4 0

[3,] 5 10 -5 0

If the package matlab is installed, new functions become available for

matrices.

> eye(4)

[,1] [,2] [,3] [,4]

[1,] 1 0 0 0

[2,] 0 1 0 0

[3,] 0 0 1 0

[4,] 0 0 0 1

> one(4)

Error in one(4) : could not find function "one"

> ones(4)

[,1] [,2] [,3] [,4]

[1,] 1 1 1 1

[2,] 1 1 1 1

[3,] 1 1 1 1

[4,] 1 1 1 1

When matlab is installed we can multiply matrices using the usual op-

erator *.

C.5 Lists

Lists are structures similar to vectors. The main difference is that there is

no homogeneity requirements for lists. In other words, list elements may

be numbers, strings, or logical values.
Unlike vectors (which can be created using the c() functions, lists are

created using the function list. Elements can be named, which allows
a dual access for list components: either by name or by their numbered
position. For instance, a list created as

> student <- list(name = "John Doe", grad = TRUE, gpa = 3.7)

February 10, 2019 19:31 ws-book9x6 book page 451

Basic Objects and Types in R 451

allows us to access its first component either by

> student$name

[1] "John Doe"

or by

> student[1]

$name

[1] "John Doe"

C.6 Arrays

Arrays are structures that accomodate multidimensional collections of data.

Array components are accessed using the square bracket notation.

To create an array that has three dimension containing 4×2×5 elements

(40 elements in total), we write

> a <- array(1:40,c(4,2,5))

The content of this array is shown below. Note that for each of the five
values of the last index we have a 4× 2 array, as shown below.

> a

, , 1

[,1] [,2]

[1,] 1 5

[2,] 2 6

[3,] 3 7

[4,] 4 8

, , 2

[,1] [,2]

[1,] 9 13

[2,] 10 14

[3,] 11 15

[4,] 12 16

, , 3

[,1] [,2]

[1,] 17 21

[2,] 18 22

February 10, 2019 19:31 ws-book9x6 book page 452

452 Clustering

[3,] 19 23

[4,] 20 24

, , 4

[,1] [,2]

[1,] 25 29

[2,] 26 30

[3,] 27 31

[4,] 28 32

, , 5

[,1] [,2]

[1,] 33 37

[2,] 34 38

[3,] 35 39

[4,] 36 40

To extract the subarray that corresponds to the value 1 of the first index
and the value 2 of the last we write

> a[1, ,2]

which results in

[1] 9 13

C.7 Numeric Computations in R

R provides the usual arithmetic operators, +,−, ∗, and ,̂ standing for

addition, subtraction, multiplication and power. In addition x%%y stands

for “x modulo y”.
Trigonometric computations can be performed using

sin cos tan asin acos atan

The hyperbolic functions

sinh cosh tanh asinh acosh atanh

are also present. Exponentials and logarithms are computed with

exp log log10 logb,

where log computes natural logarithms, log10 computes base 10 loga-

rithms, and log2 computes base 2 logarithms. The general form log(x,

February 10, 2019 19:31 ws-book9x6 book page 453

Basic Objects and Types in R 453

base) computes logarithms with base base. In addition, log1p(x) com-

putes log(1+x) accurately for |x| << 1.

The functions gamma and lgamma compute the Euler function Γ(a) =∫∞
0
ta−1e−t dt and ln |Γ(a)|, respectively, when a 6∈ {n ∈ Z | n 6 0}.
The functions beta and lbeta compute the beta function B(a, b) =

Γ(a)Γ(b)
Γ(a+b) and the natural logarithm of the beta function, respectively.

The number of combinations of k among of n objects is computed

by choose(n,k) and its logarithm is calculated with lchoose(n,k).

Finally, factorial(n) computes n! and its logarithm is produced by

lfactorial(x).

Example C.56. An approximation of
√

1 + x can be computed using the

binomial series
∑∞
k=0

(1
2
k

)
xk. For x = 0.25 we obtain, using the first 6 terms

of this series, the value

> k <- 0:5

> sum(choose(1/2,k)* 0.25^k)

[1] 1.118038

