CS724: Topics in Algorithms
Spectral Clustering

Prof. Dan A. Simovici
We present a treatment of clusterings starting from a finite similarity space $S = (V, s)$ defined on the set of objects V.

Definition

The *similarity graph* associated to S is the weighted graph $G_S = (V, E, s)$, where $E = \{(v, v') \in V \times V \mid s(v, v') > 0\}$ and the weight of an edge (v, v') is $s(v, v')$ for $v, v' \in V$.
A clustering of the objects in V is a partition $\kappa = \{C_1, \ldots, C_n\}$ of V. The blocks C_i of κ are the clusters.

In terms of similarity spaces, the goal of any clustering algorithm is to gather in a cluster all objects that are similar to each other and to place in distinct clusters pairs of objects that have low similarities.
There are several ways to construct a similarity space (or a similarity graph) for a set of points $V = \{x_1, \ldots, x_n\}$.

For example, an undirected graph $G_t = (V, E_t)$ can be defined by

$$E_t = \{\{x_i, x_j\} \mid d(x_i, x_j) \leq t\},$$

where t is a given threshold.
Another option is to use the k-nearest neighbor graph $G_{nn,k}$, where an edge (v, w) exists if w is among the k nearest neighbors of v. This leads, of course to a directed graph; however, an undirected graph can be readily obtained by ignoring the orientation of the edges. An alternative undirected graph $G'_{nn,k}$ can be obtained by considering an edge $\{v, w\}$ if w is among the k closest neighbors of v and v is among the k closest of w.
Finally, it is possible to use a weighted complete graph on the set V and define for each pair of objects a similarity measure $k(v, w)$. The function k is referred in the specialized \textbf{R} package kernlab as a \textit{kernel}.

A \textit{radial basis function} (rbf) is a real-valued function $f : \mathbb{R}^n \rightarrow \mathbb{R}$ whose value $f(x)$ depends only on the distance from the origin $\|x\|$, that is, $f(x) = f(\|x\|)$.

Examples of such kernels are $k(v, w) = e^{-\|v-w\|^2}$ named the \texttt{rbfdot} or $e^{-\|v-w\|}$ named the \texttt{laplacedot}, etc.
As usual, a clustering of the objects in $V = \{x_1, \ldots, x_n\}$, where $V \subseteq \mathbb{R}^m$ is a partition $\kappa = \{C_1, \ldots, C_k\}$ of V. The blocks C_i of κ are the clusters.

Let $\kappa = \{C_1, \ldots, C_k\}$ be a clustering of the objects of the set $V = \{v_1, \ldots, v_n\}$. For a block C_i we denote by \overline{C}_i the complement of C_i relative the set V. Clearly, $\overline{C}_i = \bigcup\{C_j \mid j \in \{1, \ldots, k\} - \{i\}\}$ for every i, $1 \leq i \leq k$.

Definition

The *cut* of κ is the number

$$
cut(\kappa) = \sum_{i=1}^{k} \cut(C_i, \overline{C}_i)
$$

$$
= \sum_{p=1}^{n} \sum_{q=1}^{n} \left\{ s(v_p, v_q) \mid v_p \text{ and } v_q \text{ belong to different clusters} \right\}
$$
Definition

Let $G = (V, E)$ be a graph and let S be a set of vertices. The edge boundary of S is the set of edges of G that join S to its complement. This set is denoted by $\partial(S)$. Clearly, $\partial(V - S) = \partial(S)$.
Theorem

Let $G = (V, E)$ be a graph with $V = \{v_1, \ldots, v_n\}$ and let S be a subset of V. Then

$$\alpha(G) \leq \frac{n|\partial(S)|}{|S|(n - |S|)},$$

where $\partial(S)$ is the edge boundary of the set S.
Proof

Recall that we have shown that

\[\alpha(G) = \min_x \{ x' L_G x \mid x \in S_n \} \]

\[= \min_x \sum \{(x_i - x_j)^2 \mid x \in S_n, i < j \text{ and } \{v_i, v_j\} \in E\}, \]

where \(S_n = \{ x \in \mathbb{R}^n \mid x' 1_n = 0 \text{ and } \| x \| = 1 \} \).
Proof cont’d

Let \(r \in \mathbb{R}^n \) be a vector defined by

\[
 r_i = \begin{cases}
 n - |S| & \text{if } v_i \in S, \\
 -|S| & \text{if } v_i \notin S,
\end{cases}
\]

for \(1 \leq i \leq n \).

It is clear that \(r'1_n = 0 \), that is, \(r \) is orthogonal on \(1_n \). Therefore, we have:

\[
\alpha(G) \leq \frac{\sum_{(v_i, v_j) \in E} (r_i - r_j)^2}{\|r\|^2} = \frac{n^2|\partial(S)|}{|S|(n - |S|)^2 + (n - |S|)|S|^2} = \frac{n|\partial(S)|}{|S|(n - |S|)}.
\]
Definition

Let $G = (V, E)$ be a graph. The conductance of G is the number

$$cd(G) = \min \left\{ \frac{\partial(S)}{|S|} \mid S \subseteq V, |S| \leq \frac{|V|}{2} \right\}.$$
Example

To compute the conductance of a complete graph \mathcal{K}_n note that each vertex v is linked to $n - 1$ other vertices of the graph. Thus, for a set of vertices S we have $\partial(S) = S \times (V - S)$, so $|\partial(S)| = |S|(n - |S|)$. Thus,

$$cd(\mathcal{K}_n) = \min \left\{ n - |S| \mid S \subseteq V, |S| \leq \frac{n}{2} \right\} = \left\lceil \frac{n}{2} \right\rceil.$$
Example

Let $G = (V, E)$ be a graph such that $|V| = n$. If $|S| \leq \frac{n}{2}$, then $\text{cd}(G) \leq \frac{\partial(S)}{|S|}$, so $|\partial(S)| \geq \text{cd}(G)|S|$. If $\text{cd}(G)$ is large, then the vertices of S have many neighbors outside S.

Suppose that $\{G_n = (V_n, E_n) \mid n \in \mathbb{N}\}$ be a sequence of graphs with $|V_n| = n$ such that each graph G_n is k-regular and the there exists a lower bound b of the sequence $\{\text{cd}(G_n) \mid n \in \mathbb{N}\}$. We refer to such a sequence of graphs as an expander. Note that $|E_n| = \frac{kn}{2}$, which means that the graphs grow increasingly sparse.

The existence of a lower bound for conductances guarantees that there exist many neighbors for a set S of vertices.
Theorem

Let $G = (V, E)$ be a graph. We have

$$cd(G) \geq \frac{\alpha(G)}{2}.$$
Proof

In the definition of the conductance we require $|S| \leq \frac{|V|}{2}$ so

$$\frac{|V|}{|V| - |S|} = \frac{1}{1 - \frac{|S|}{|V|}} \leq 2.$$

Therefore, since $\alpha(G) \leq \frac{n|\partial(S)|}{|S|(n - |S|)}$, it follows that

$$\alpha(G) \leq \frac{n|\partial(S)|}{|S|(n - |S|)} = \frac{|\partial(S)|}{|S|} \cdot \frac{n}{n - |S|} \leq 2cdG.$$

This theorem shows that $\frac{\alpha(G)}{2}$ provides a lower bound for the conductance of a graph, whose computation is intractable.
There are several criteria for choosing clusterings defined on similarity spaces. The simplest such criterion is the minimal value of $\text{cut}(\kappa)$. This will ensure that the objects of each cluster C_i are as dissimilar as possible to the objects from the other clusters.

For bipartitions the algorithm is based on the observation that if x, y are two vertices of a weighted graph $G = (V, E, w)$ and $\pi = \{X, Y\}$ is a bipartition of V such that $x \in X$ and $y \in Y$, then the value of a minimum cut $\text{cut}(\pi)$ is the smaller of a minimum (x, y)-cut and a minimum cut of $G/\{x, y\}$, where $G/\{x, y\}$ is the graph obtained from G by merging x and y and removing the edge (x, y) if such an edge exists. Indeed, either there exists a minimum cut of G that separates x and y (and in this case a minimum (x, y)-cut is a minimum cut of G), or there is no such cut and, in this case, a minimum cut of $G/\{x, y\}$ is a minimum cut of π.

Prof. Dan A. Simovici
CS724: Topics in Algorithms Spectral Clust
Let $\kappa = \{C_1, \ldots, C_k\}$ be a partition of a set $V = \{v_1, \ldots, v_n\}$ of n objects into k clusters.

Starting from a similarity matrix $S \in \mathbb{R}^{n \times n}$ for the objects of V we can define a *similarity graph* of V as $G = (V, E, s)$, where $s(v_i, v_\ell) = s_{i\ell}$ for $1 \leq i, \ell \leq n$.

The *indicator vector* $c_j \in \mathbb{R}^n$ of the cluster C_j is

$$
(c_j)_i = \begin{cases}
\frac{1}{\sqrt{|C_j|}} & \text{if } v_i \in C_j \\
0 & \text{otherwise},
\end{cases}
$$

where $1 \leq i \leq n$ and $1 \leq j \leq i$.
Since κ is a partition of V, the matrix $C = (c_1 \cdots c_k)$ has an orthonormal set of columns, so $C'C = I_k$. Note that, in terms of the entries of C we have

$$c_j = \begin{pmatrix} c_{1j} \\ c_{2j} \\ \vdots \\ c_{ij} \\ \vdots \\ c_{nj} \end{pmatrix}$$

for $1 \leq j \leq k$.

We claim that

$$c_j' L_G c_j = \frac{1}{2} \frac{cut(C_j, \bar{C}_j)}{|C_j|}$$
By a previous result we have:

\[\mathbf{c}'_j L_G \mathbf{c}_j = \frac{1}{2} \sum_{i=1}^{k} \sum_{\ell=1}^{k} s_{i\ell} (c_{ij} - c_{\ell j})^2. \]

If \(v_i \in C_j \) and \(v_\ell \notin C_j \) we have \(c_{ij} = \frac{1}{\sqrt{|C_j|}} \) and \(c_{\ell j} = 0 \); in this case

\[s_{i\ell} (c_{ij} - c_{\ell j})^2 = \frac{s_{ij}}{|C_j|}. \]

Otherwise, that is, if both \(v_i \) and \(v_\ell \) belong to \(C_j \), or neither vertex belongs to \(C_j \) we have

\[s_{i\ell} (c_{ij} - c_{\ell j})^2 = 0. \]

This implies

\[\mathbf{c}'_j L_G \mathbf{c}_j = \sum_{v_i \in C_j} \sum_{v_\ell \notin C_j} \frac{s_{ij}}{|C_j|} = \frac{1}{2} \frac{cut(C_j, \bar{C}_j)}{|C_j|} \]

and

\[\mathbf{c}'_j L_G \mathbf{c}_j = (C' L_G C)_{jj}. \]
Since
\[C' L_G C = \begin{pmatrix} c'_1 \\ \vdots \\ c'_k \end{pmatrix} L_G (c_1 \cdots c_k), \]
we have
\[
\sum_{j=1}^{k} c'_j L_G c_j = \sum_{j=1}^{k} (C' L_G C)_{jj} \\
= \text{trace}(C' L_G C) = \frac{1}{2} \sum_{j=1}^{k} \frac{\text{cut}(C_j, \tilde{C}_j)}{|C_j|} = \frac{1}{2} \text{cutratio}(\kappa).
\]

To minimize \text{cutratio}(\kappa) is tantamount to seeking the matrix \(C \) such that \(\text{trace}(C' L_G C) \) is minimal subjected to the constraint \(C' C = I_k \).

To obtain a practical solution this optimization problem is relaxed by allowing \(C \) to range over \(\mathbb{R}^{n \times k} \). By Ky Fan’s Theorem the minimum is obtained by choosing \(C \) such that its columns consist of the eigenvectors \(c_1, \ldots, c_k \) of \(L_G \) that correspond to the \(k \) smallest eigenvalues of the Laplacian \(L_G \).
The original set of points \(V = \{v_1, \ldots, v_n\} \subseteq \mathbb{R}^m \) is transformed now into a set \(\{y_1, \ldots, y_n\} \) in a lower-dimensional space \(\mathbb{R}^k \), where \(y'_1, \ldots, y'_n \) are the rows of the matrix \(C \in \mathbb{R}^{k \times m} \) whose columns are the \(k \) eigenvectors \(c_1, \ldots, c_k \) of \(L_G \), as shown next.
Unnormalized Spectral Clustering

Data: Similarity matrix $S \in \mathbb{R}^{n \times n}$, number k of clusters

Result: A clustering $\kappa = \{C_1, \ldots, C_k\}$

- let A be its weighted adjacency matrix;
- compute the ordinary Laplacian L;
- compute the first k eigenvectors c_1, \ldots, c_k of L;
- let $C = (c_1, \ldots, c_k) \in \mathbb{R}^{n \times k}$;
- define $y_1, \ldots, y_n \in \mathbb{R}^k$ such that $C' = (y_1 \ldots y_n)$;
- cluster $\{y_1, \ldots, y_n\} \subseteq \mathbb{R}^k$ using the k-means algorithm into κ;
Another approach to spectral clustering uses the normalized cut of a partition. As before, let $\kappa = \{C_1, \ldots, C_k\}$ be a partition of a set $V = \{v_1, \ldots, v_n\}$ of n objects into k clusters for which we have a similarity matrix $S \in \mathbb{R}^{n \times n}$. Define the characteristic vector h_j of C_j as

$$
(h_j)_i = \begin{cases}
\frac{1}{\sqrt{\text{vol}(C_j)}} & \text{if } v_i \in C_j, \\
0 & \text{otherwise},
\end{cases}
$$

for $1 \leq j \leq k$ and let $H = (h_1 \cdots h_k)$ be the matrix of these vectors. We have

$$
\mathbf{h}_j^D G \mathbf{h}_j = \sum_{i=1}^{n} \sum_{\ell=1}^{n} (h_j)_i d_{i\ell} (h_j)_\ell.
$$
The non-zero terms in this sum are such that \(i = \ell \) and \(v_i \in C_j \). Thus,
\[h_j' D_G h_j = \frac{1}{\text{vol}(C_j)} \sum_{v \in C_j} d(v) = 1. \]
On the other hand, \(h_j' D_G h_m = 0 \) if \(j \neq m \), so \(H' D_G H = I_k \). A similar computation yields

\[
h_j' A_G h_j = \sum_{i=1}^{n} \sum_{\ell=1}^{n} (h_j)_i s_{i\ell}(h_j)_\ell = \frac{1}{\text{vol}(C_j)} \sum_{v_i, v_\ell \in C_j} s(v_i, v_\ell).
\]

These computations allow us to write

\[
h_j' L_G h_j = h_j'(D_G - A_G) h_j = I_k - h_j' A_G h_j = 1 - \frac{1}{\text{vol}(C_j)} \sum_{v_i, v_\ell \in C_j} s(v_i, v_\ell)
\]

\[
= \frac{\text{vol}(C_j) - \sum_{v_i, v_\ell \in C_j} s(v_i, v_\ell)}{\text{vol}(C_j)} = \frac{\text{cut}(C_j, \bar{C}_j)}{\text{vol}(C_j)}.
\]

Therefore,

\[
\text{trace}(H' L_G H) = \sum_{j=1}^{k} h_j' L_G h_j = \sum_{j=1}^{k} \frac{\text{cut}(C_j, \bar{C}_j)}{\text{vol}(C_j)} = \text{ncut}(\kappa).
\]
To minimize the normalized cut we need to minimize $\text{trace}(H'L_GH)$ subjected to the constraint $H'DH = I_k$. Let $M = D^{\frac{1}{2}}H$. Then, in terms of the matrix M, the optimization problem amounts to minimizing $\text{trace}(M'D^{-\frac{1}{2}}L_GD^{-\frac{1}{2}}M) = \text{trace}(M'L_{G,\text{sym}}M)$ subjected to the restriction $M'M = I_k$. By allowing M to range over $\mathbb{R}^{n \times k}$, the optimum can be achieved by $M = (m_1, \ldots, m_k)$, where m_1, \ldots, m_k are the first k eigenvectors of the symmetric Laplacian $L_{G,\text{sym}}$.
$D^{-\frac{1}{2}}m_1, \ldots, D^{-\frac{1}{2}}m_k$ are the first k eigenvectors of the random walk Laplacian and these are exactly the columns of the matrix H. So, the optimal value of H is obtained by choosing its columns to be equal to the eigenvectors that correspond to the first k eigenvalues of $L_{G,\text{rw}}$.
Next we discuss the implementation of spectral clustering in \(\mathbb{R} \).
We consider a set of 41 points in \(\mathbb{R}^2 \) placed into two squares and encoded as pairs of numbers in the matrix \(X \).

\[
X <- \text{matrix}(c(1,1,1,2,1,3,1,4,1,5,1,6,1,7, \\
11,1,11,2,11,3,11,4,11,5,11,6,11,7, \\
2,1,3,1,4,1,5,1,6,1,7,1,8,1,9,1,10,1, \\
2,7,3,7,4,7,5,7,6,7,7,7,8,7,9,7,10,7, \\
4,3.5,4,4,4,4.5, \\
5,3.5,5,4,5,4.5, \\
6,3.5,6,4,6,4.5), \\
nrow = 41, byrow=TRUE)
\]
The set of points in \mathbb{R}^2 looks like:
The function `neighbor_graph(X, k)` is used for building a k-nearest neighbor graph $G_{nn,k}$, where an edge (v, w) exists if w is among the k nearest neighbors of v. The adjacency matrix K of this graph is symmetrized (using the operation $K <- K + t(K)$ to yield the symmetric adjacency matrix of an undirected graph.

```r
neighbor_graph <- function(X, k) {
  D <- as.matrix(dist(X))
  K <- matrix(0, nrow = nrow(X), ncol = nrow(X))
  for(i in 1:nrow(X)) {
    neighbor_index <- order(D[i,])[2:k]
    K[i,][neighbor_index] <- 1
  }
  # K is a matrix having 1s in position (i,j) if j is among
  # the first k neighbors of i
  K <- K + t(K)
  K[K == 2] = 1
  return(K)
}
```
The function `spectral_clustering` makes use of the function `laplacian` and the function `neighbor_graph` defined above. The R script of this function is given next.

```r
spectral_clustering <- function(X,k,num_eig) {
  G = neighbor_graph(X,k)
  L = laplacian(G,FALSE)
  eig = eigen(L,symmetric=TRUE)
  n = nrow(L)
  return(eig$vectors[,,(n - num_eig):(n-1)])
  # this returns the eigenvectors of the num_eig smallest eigenvalues
}
```
Finally, the set of eigenvectors returned by `spectral_clustering` is clustered using the k-means function as in:

```r
X_sc <- spectral_clustering(X,k,num_eig)
X_final <- kmeans(X_sc,num_clust)
```
A direct application of the function `specc` of the package `kernlab`

```r
sc <- specc(X, centers=2, kernel=’’rbfdot’’)
```

followed by a call to the `pdf` function

```r
> pdf(’’squares.pdf’’)
> plot(X,pch=sc+22)
> dev.off()
```

will produce the plot shown next.