CS724: Topics in Algorithms
Biplots

Prof. Dan A. Simovici
Biplots introduced by K. R. Gabriel offer a succinct and powerful way of representing graphically the elements of a data matrix using two sets of vectors that represent the objects and the variables (hence, the term biplot). We shall assume that there are more objects than variables, so for the data matrix \(A \in \mathbb{R}^{m \times n} \) we have \(m > n \).

Suppose that \(A \in \mathbb{R}^{m \times n} \) can be written as a product, \(A = LR \), where \(L \in \mathbb{R}^{m \times r} \), \(R \in \mathbb{R}^{r \times n} \) are the left and the right factors, respectively,

\[
L = \begin{pmatrix} l_1' \\ \vdots \\ l_m' \end{pmatrix} \quad \text{and} \quad R = (r_1 \ldots r_n)
\]

where \(\{l_1, \ldots, l_m\} \subset \mathbb{R}^r \) and \(\{r_1, \ldots, r_n\} \subset \mathbb{R}^r \).

Each element \(a_{ij} \) of \(A \) can be regarded as a scalar product of two vectors

\[
a_{ij} = l_i' r_j
\]

for \(1 \leq i \leq m \) and \(1 \leq j \leq n \).
Examples of LR factorization of matrices

- the *Cholesky factorization* of symmetric positive definite matrices as a product $A = R'R$, where R is a unique upper triangular matrix R with positive diagonal elements;
- the *thin QR factorization* for a full-rank matrix $A \in \mathbb{R}^{m \times n}$ as $A = QR$ where $Q \in \mathbb{R}^{m \times n}$ and $R \in \mathbb{R}^{n \times n}$, where the columns of the orthogonal matrix Q form an orthonormal basis for $\text{Span}(A)$, and $R = (r_{ij})$ is an upper triangular invertible matrix such that its diagonal elements are non-negative numbers;
- the *full QR factorization* for a full-rank matrix $A \in \mathbb{R}^{m \times n}$ with $m > n$ as
 \[
 A = Q \begin{pmatrix} R \\
 0_{m-n,n} \end{pmatrix},
 \]
 where $Q \in \mathbb{R}^{m \times m}$ is an orthogonal matrix and $R \in \mathbb{R}^{n \times n}$ is an upper triangular matrix having non-negative diagonal entries.
Cholesky Factorization in R

```r
> A
[,1]   [,2]   [,3]
[1,]  2   -1    0
[2,] -1   2   -1
[3,]  0  -1    2
> chol(A)
   [,1]         [,2]         [,3]
[1,] 1.414214 -0.7071068  0.0000000
[2,] 0.000000  1.2247449 -0.8164966
[3,] 0.000000  0.0000000  1.1547005
```
The factors can be determined as

\[
\begin{align*}
> d &\leftarrow \text{qr}(A) \\
> Q &\leftarrow \text{qr.Q}(d) \\
> R &\leftarrow \text{qr.R}(d) \\
> Q \\
&= \begin{bmatrix}
[1,] & -0.8944272 & -0.3585686 & 0.2672612 \\
[2,] & 0.4472136 & -0.7171372 & 0.5345225 \\
[3,] & 0.0000000 & 0.5976143 & 0.8017837 \\
\end{bmatrix} \\
> R \\
&= \begin{bmatrix}
[1,] & -2.236068 & 1.788854 & -0.4472136 \\
[2,] & 0.000000 & -1.673320 & 1.9123658 \\
[3,] & 0.000000 & 0.000000 & 1.0690450 \\
\end{bmatrix}
\end{align*}
\]
The result can be retrieved as

\[
Q \cdot R
\]

<table>
<thead>
<tr>
<th></th>
<th>[,1]</th>
<th>[,2]</th>
<th>[,3]</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1,]</td>
<td>2</td>
<td>-1</td>
<td>-4.440892e-16</td>
</tr>
<tr>
<td>[2,]</td>
<td>-1</td>
<td>2</td>
<td>-1.000000e+00</td>
</tr>
<tr>
<td>[3,]</td>
<td>0</td>
<td>-1</td>
<td>2.000000e+00</td>
</tr>
</tbody>
</table>
LR factorization is not unique. Starting from the factorization $A = LR$ new factorizations of A can be built as $A = (LK')(R'K^{-1})'$ for every invertible matrix $K \in \mathbb{R}^{r \times r}$.

To use the biplot for a representation of the relations between the rows w_1, \ldots, w_m of A one could choose R such that $RR' = I_r$, which yields $AA' = LL'$. This implies $w'_i w_j = l'_i l_j$ for $1 \leq i, j \leq m$. Taking $i = j$ we have $\| w'_i \| = \| l'_i \|$, which, in turn, implies $\angle(w'_i, w'_j) = \angle(l'_i, l'_j)$.

A similar choice can be made for the columns of A by imposing the requirement $L'L = I_r$, which implies $A'A = R'R$.
The case when the rank r of the matrix A is 2 is especially interesting because we can draw the vectors $l_1, \ldots, l_m, r_1, \ldots, r_n$ to obtain an exact two-dimensional representation of A, as we show in the next example.

Example

Let

$$A = \begin{pmatrix} 18 & 8 & 20 \\ -4 & 20 & 1 \\ 25 & 8 & 27 \\ 9 & 4 & 10 \end{pmatrix}$$

be a matrix of rank 2 in $\mathbb{R}^{4 \times 3}$ that can be written as $A = LR$, where

$$L = \begin{pmatrix} 2 & 4 \\ -2 & 3 \\ 3 & 5 \\ 1 & 2 \end{pmatrix} \quad \text{and} \quad R = \begin{pmatrix} 5 & -4 & 4 \\ 2 & 4 & 3 \end{pmatrix}.$$
The vectors that help us with the representation of A are

$$l_1 = \begin{pmatrix} 2 \\ 4 \end{pmatrix}, \quad l_2 = \begin{pmatrix} -2 \\ 3 \end{pmatrix}, \quad l_3 = \begin{pmatrix} 3 \\ 5 \end{pmatrix}, \quad l_4 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

and

$$r_1 = \begin{pmatrix} 5 \\ 2 \end{pmatrix}, \quad r_2 = \begin{pmatrix} -4 \\ 4 \end{pmatrix}, \quad r_3 = \begin{pmatrix} 4 \\ 3 \end{pmatrix}.$$
For example, the a_{32} element of A can be written as

$$a_{32} = l'_3 r_2 = (3 \ 5) \begin{pmatrix} -4 \\ 4 \end{pmatrix} = 8.$$
Each vector \mathbf{l}_i corresponds to a row of A and each vector \mathbf{r}_j to a column of A.

When we can factor a sample data matrix X as $X = LR$ a column \mathbf{r}_j of the right factor is referred to as the biplot axis and corresponds to a variable V_j.

Each vector \mathbf{l}_i' represents an observation in the sample matrix. It is interesting to note that the magnitude of projection of \mathbf{l}_i on the biplot axis \mathbf{r}_j is

$$\| \mathbf{l}_i \|_2 \cos \angle (\mathbf{l}_i, \mathbf{r}_j) = \frac{\mathbf{l}_i' \mathbf{r}_j}{\| \mathbf{r}_j \|_2} = \frac{a_{ij}}{\| \mathbf{r}_j \|_2}.$$

Therefore, if we choose $\frac{1}{\| r_j \|_2}$ as the unit of measure on the axis \mathbf{r}_j we can read the values of the entries a_{ij} directly on the axis \mathbf{r}_j. For instance, the unit along the biplot axis is $\frac{1}{\| r_3 \|_2} = 0.2$. It is also clear that if two axis of the biplot point roughly in the same direction, the corresponding variables will show a strong correlation.
In general, the rank of the data matrix A is larger than 2. In this case, approximative representations of A can be obtained by using the thin singular value decomposition of matrices. Let A be a matrix of rank r and let

$$A = UDV' = \sum_{i=1}^{r} \sigma_i u_i v_i',$$

be the thin SVD, where $U \in \mathbb{R}^{m \times r}$ and $V \in \mathbb{R}^{n \times r}$ are matrices of rank r (and, therefore, full-rank matrices) having orthonormal sets of columns. Here $U = (u_1 \cdots u_r)$ and $V = (v_1 \cdots v_r)$.
The matrix D containing singular values can be split between U and V by defining $L = U\sqrt{D}$ and $R = \sqrt{D}V'$. By Eckhart-Young Theorem the best approximation of A in the sense of the matrix norm $\| \cdot \|_2$ in the class of matrix of rank k is the matrix defined by

$$B(k) = \sum_{i=1}^{k} \sigma_i u_i v_i'.$$

The same matrix $B(k)$ is the best approximation of A in the sense of Frobenius norm. The extent of the deficiency of this approximation is measured by $\| A - B(k) \|_F^2 = \sigma_{k+1}^2 + \cdots + \sigma_r^2$. Since $\| A \|_F^2 = \sigma_1^2 + \cdots + \sigma_r^2$, an absolute measure of the quality of the approximation of A by $B(k)$ is

$$q_k = 1 - \frac{\| A - B(k) \|_F^2}{\| A \|_F^2} = \frac{\sigma_1^2 + \cdots + \sigma_k^2}{\sigma_1^2 + \cdots + \sigma_r^2}.$$
In the special case, $k = 2$, the quality of the approximation is

$$q_2 = \frac{\sigma_1^2 + \sigma_2^2}{\sigma_1^2 + \cdots + \sigma_r^2}$$

and it is desirable that this number is as close as one as possible. The rank-2 approximation of A is useful because we can apply biplots to the visualization of A.
Let \(A \in \mathbb{R}^{5 \times 3} \) be the matrix defined by

\[
A = \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 1 & 1 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}.
\]

It is easy to see that the rank of this matrix is 3.
A singular value decomposition can be obtained using \(\text{svd}(A) \) which yields

\[
\begin{align*}
d &\quad 2.358294 \quad 1.199353 \quad 1.000000 \\
u &= \\
[,] &\quad [,1] &\quad [,2] &\quad [,3] \\
[1,] &\quad -0.2786727 &\quad 0.2175811 &\quad 7.071068\times10^{-1} \\
[2,] &\quad -0.2786727 &\quad 0.2175811 &\quad -7.071068\times10^{-1} \\
[3,] &\quad -0.7138349 &\quad -0.3397643 &\quad -9.677906\times10^{-17} \\
[4,] &\quad -0.5573454 &\quad 0.4351621 &\quad 3.420751\times10^{-16} \\
[5,] &\quad -0.1564894 &\quad -0.7749265 &\quad -4.388542\times10^{-16} \\
v &= \\
[,] &\quad [,1] &\quad [,2] &\quad [,3] \\
[1,] &\quad -0.6571923 &\quad 0.2609565 &\quad 7.071068\times10^{-1} \\
[2,] &\quad -0.6571923 &\quad 0.2609565 &\quad -7.071068\times10^{-1} \\
[3,] &\quad -0.3690482 &\quad -0.9294103 &\quad -4.996004\times10^{-16} \\
\end{align*}
\]
The rank-2 approximation of this matrix is:

\[B(2) = \sigma_1 u_1 v_1^H + \sigma_2 u_2 v_2^H, \]

and is computed in \(\mathbb{R} \) using

```r
> B2 <- 2.3583 * u[,1] %*% t(v[,1]) + 1.1994 * u[,2] %*% t(v[,2])
```

\[
B2 =
\begin{pmatrix}
0.5000 & 0.5000 & -0.0000 \\
0.5000 & 0.5000 & -0.0000 \\
1.0000 & 1.0000 & 1.0000 \\
1.0000 & 1.0000 & -0.0000 \\
-0.0000 & -0.0000 & 1.0000 \\
\end{pmatrix}
\]

If we split the singular values as

\[
B(2) = (\sqrt{\sigma_1} u_1)(\sqrt{\sigma_1} v_1)^H + (\sqrt{\sigma_2} u_2)(\sqrt{\sigma_2} v_2)^H,
\]

then \(B(2) \) can be written as

\[
B(2) = \begin{pmatrix}
0.4280 & -0.2383 \\
0.4280 & -0.2383 \\
1.0962 & 0.3721 \\
0.8559 & -0.4766 \\
\end{pmatrix} \begin{pmatrix}
1.0092 & 1.0092 & 0.5667 \\
-0.2858 & -0.2858 & 1.0179 \\
\end{pmatrix}.
\]
The biplot of rank 2 approximation of the matrix A:

![Biplot Diagram]

- l_1, l_2, l_3, l_4, l_5
- r_1, r_2, r_3

Prof. Dan A. Simovici
The quality of the approximation of A is

$$q_2 = \frac{2.3583^2 + 1.1994^2}{2.3583^2 + 1.1994^2 + 1} = 0.875$$

The “allocation” of singular values among the columns of the matrices U and V may lead to biplots that have distinct properties. For example, we could write

$$B(2) = (\sigma_1 u_1)v_1^H + (\sigma_2 u_2)v_2^H,$$

or

$$B(2) = u_1(\sigma_1 v_1)^H + u_2(\sigma_2 v_2)^H.$$
The first allocation leads to the factorization $B(2) = LR$, where

$$L = \begin{pmatrix} 0.6572 & -0.2610 \\ 0.6572 & -0.2610 \\ 1.6834 & 0.4075 \\ 1.3144 & -0.5219 \\ 0.3690 & 0.9294 \end{pmatrix}$$

and

$$R = \begin{pmatrix} 0.65720 & 0.65720 & 0.3690 & -0.2610 & -0.2610 \end{pmatrix}$$

while the second yields the factors

$$L = \begin{pmatrix} 0.2787 & -0.21760 & 0.2787 & -0.21760 & 0.7138 \end{pmatrix}$$

and

$$R = \begin{pmatrix} 0.33980 & 0.5573 & -0.43520 & 0.15650 \end{pmatrix}$$
The first variant leads to a representation, where the distances between the vectors l_i approximate the Euclidean distances between rows, while for the second variant, the cosine of angles between the vectors r_j approximate the correlations between variables.