Homework 4

Posted: April 10, 2019
Due: April 24, 2019

1. A series of five experiments involves recording three variables and produces the following data matrix:

<table>
<thead>
<tr>
<th>(V_1)</th>
<th>(V_2)</th>
<th>(V_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(u_1)</td>
<td>1</td>
<td>160</td>
</tr>
<tr>
<td>(u_2)</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>(u_3)</td>
<td>1</td>
<td>120</td>
</tr>
<tr>
<td>(u_4)</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>(u_5)</td>
<td>1</td>
<td>200</td>
</tr>
</tbody>
</table>

Scale the matrix using the \texttt{R} function \texttt{scale}.
Using singular value decompositions compute approximations of rank 1 and 2 of the centered matrix that corresponds to the data matrix given above.

2. Starting from the approximation of rank 2 of the data matrix defined above construct manually a biplot to represent data. What information can be extracted from this biplot?

3. Consider the set of points that consists of two “entangled spirals” shown in Figure 1. Extract the coordinates of the points from Figure 1 and compute the \texttt{dist} object using the Euclidean metric. Apply spectral clustering to determine if the two sets of points of the two curves can be separated.

4. Let \(D \in \mathbb{R}^{m \times n} \) be a centered data matrix and let \(D = U \texttt{diag}(\sigma_1 \cdots \sigma_r) V' \) be the thin SVD of \(D \), where \(U \in \mathbb{R}^{m \times r} \), \(V \in \mathbb{R}^{n \times r} \), \(U \) and \(V \) have orthonormal columns. If

\[
S = U \texttt{diag}(\sigma_1 \cdots \sigma_r) = (s_1 \cdots s_r) = (\sigma_1 u_1 \cdots \sigma_r u_r) \in \mathbb{R}^{m \times r}
\]
Figure 1: Two entangled curves

is the matrix of scores and $V \in \mathbb{R}^{n \times r}$ is the matrix of loadings, prove that

(a) the variance of a score vector s_i is $\text{var}(s_i) = \frac{1}{m-1} \sigma_i^2$;
(b) $D = s_1 v'_1 + \cdots + s_r v'_r$;
(c) if $D_k = s_1 v'_1 + \cdots + s_k v'_k$, where $k \leq r$, then

$$\frac{\text{TVAR}(D_k)}{\text{TVAR}(D)} = \frac{\sum_{i=1}^{k} \sigma_i^2}{\sum_{i=1}^{r} \sigma_i^2}.$$

In other words $\frac{\sum_{i=1}^{k} \sigma_i^2}{\sum_{i=1}^{r} \sigma_i^2}$ indicates the portion of the total variance of D explained by the first k scores.