Homework 5

Posted: May 1, 2019
Due: May 15, 2019

1. Write an R function that starts with a contingency table for two partitions and generates a vector containing the true positive, the false positive, the true negative, and the false negative counts. Use this function to compute the F-index of the partitions.

2. Starting from the iris database (limited to its first four columns, because you need to drop the species attribute) apply the k-means algorithm for $k = 2, 3$ and $k = 4$. Which algorithm produces a clustering that has the highest F-value? Why?

3. Let $\pi = \{B_1, \ldots, B_m\}$ be a partition of a set S with $|S| = n$ and let $|B_i| = b_i$ for $1 \leq i \leq m$. Write and test an R function that computes the β-entropy:

$$H_\beta = \frac{1}{1 - 2^{1-\beta}} \left(1 - \sum_{i=1}^{k} \left(\frac{|B_i|}{|S|} \right)^\beta \right).$$

The argument of the function should be the vector $v = (b_1, \ldots, b_n)$. Test the function for several values of β (e.g., 1.01, 2, and 3).

4. Let $p = (p_1, \ldots, p_m)$ and $q = (q_1, \ldots, q_m)$ be two probability distributions with $p_i \neq 0$ and $q_i \neq 0$ for $1 \leq i \leq m$.

(a) Prove that for $x > 0$ we have $\ln x \geq 1 - \frac{1}{x}$.

(b) Define the Kullback-Leibler divergence of p and q as

$$KL(p, q) = \sum_{i=1}^{n} p_i \ln \frac{p_i}{q_i}.$$

Prove that $KL(p, q) \geq 0$. What is the relationship between p and q when $KL(p, q) = 0$?