Convexity and Entropy

Lemma: The function f : r.g — r defined by
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is convex for every 8 € [0,1) U (1, 00).
Proof: We have
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Note that 1 — 2% > 0if 5 > 1 and 1 — 2% < 0 if # < 1; in each case
fs(x) <0, so the function fz is concave for every g € (0,1) U (1, c0).
Theorem: Let Hg : S, — r be defined as
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for p € 5, where S, is the probability simplex in r”. The following state-
ments hold:

1.

Hg(p) = >, fa(p:i), where fg is the function introduced in the previ-
ous lemma;
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. for every p € S,, we have H g( ) < = _5 and the maximum value of

-
Hgs(p) is obtained when p; = Dn

SIH

. we have limg_,; Hg(p) = H(p), where H(p) is the Shannon entropy of

P



Proof: For g = 2, we have

Hy(p) = 2(1— | p |I*).

This quantity is known as the Gini index.
The concavity of fg implies
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for p € S,,. Taking z; = }% yields
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Therefore Hg(p) < igi:ﬁ The argument for the remaining parts are left as
exercises.



