Convexity and Entropy

Lemma: The function $f : \mathbb{R}_{\geq 0} \longrightarrow \mathbb{R}$ defined by

$$f_{\beta}(x) = \frac{1 - x^{1 - \beta}}{1 - 2^{1 - \beta}}$$

is convex for every $\beta \in [0, 1) \cup (1, \infty)$.

Proof: We have

$$f'_{\beta}(x) = \frac{-(1-\beta)x^{-\beta}}{1-2^{1-\beta}},$$

$$f''_{\beta}(x) = \frac{\beta(1-\beta)x^{-\beta-1}}{1-2^{1-\beta}}$$

Note that $1 - 2^{1-\beta} > 0$ if $\beta > 1$ and $1 - 2^{1-\beta} < 0$ if $\beta < 1$; in each case $f_{\beta}(x) < 0$, so the function f_{β} is concave for every $\beta \in (0, 1) \cup (1, \infty)$.

Theorem: Let $H_{\beta}: S_n \longrightarrow \mathbb{R}$ be defined as

$$H_{\beta}(\mathbf{p}) = \frac{1}{1 - 2^{1-\beta}} \left(1 - \sum_{i=1}^{n} p_i^{\beta} \right),$$

for $\mathbf{p} \in S_n$, where S_n is the probability simplex in \mathbb{R}^n . The following statements hold:

- 1. $H_{\beta}(\mathbf{p}) = \sum_{i=1}^{n} f_{\beta}(p_i)$, where f_{β} is the function introduced in the previous lemma;
- 2. for every $\mathbf{p} \in S_n$ we have $H_{\beta}(\mathbf{p}) \leq \frac{1-n^{1-\beta}}{1-2^{1-\beta}}$ and the maximum value of $H_{\beta}(\mathbf{p})$ is obtained when $p_1 = \cdots = p_n = \frac{1}{n}$;
- 3. we have $\lim_{\beta \to 1} H_{\beta}(\mathbf{p}) = H(\mathbf{p})$, where $H(\mathbf{p})$ is the Shannon entropy of \mathbf{p} .

Proof: For $\beta = 2$, we have

$$H_2(\mathbf{p}) = 2(1 - ||p||^2).$$

This quantity is known as the *Gini index*.

The concavity of f_{β} implies

$$f_{\beta}\left(\sum_{i=1}^{n} p_i x_i\right) \geqslant \sum_{i=1}^{n} p_i f_{\beta}(x_i)$$

for $\mathbf{p} \in S_n$. Taking $x_i = \frac{!}{p_i}$ yields

$$f_{\beta}(n) \geq \sum_{i=1}^{n} p_{i} \frac{1 - \frac{1}{p_{i}^{1-\beta}}}{1 - 2^{1-\beta}} = \frac{1}{1 - 2^{1-\beta}} \sum_{i=1}^{n} (p_{i} - p_{i}^{\beta})$$
$$= \frac{1}{1 - 2^{1-\beta}} \left(1 - \sum_{i=1}^{n} p_{i}^{\beta} \right) = H_{\beta}(\mathbf{p}).$$

Therefore $H_{\beta}(\mathbf{p}) \leq \frac{1-n^{1-\beta}}{1-2^{1-\beta}}$. The argument for the remaining parts are left as exercises.