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The epigraph and hypograph of functions

Definition
Let (S, O) be a topological space and let f : S — R be a function. Its
epigraph is the set

epi(f) ={(x,y) € S xR | f(x) <y}
The hypograph of f is the set

hyp(f) = {(x.y) € SXR | y <f(x)}.
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The epigraph and hypograph of functions

The epigraph of a function f : R — R is the dotted area in R? located
above the graph of the function f; the hypograph of f is the dotted area
below the graph.
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The epigraph and hypograph of functions

Note that the intersection

epi(f) Nhyp(f) = {(x,y) € S xR | y = f(x)}

is the graph of the function f.
If f(x) = o0, then (x,00) & epi(f). Thus, for the function f,, defined by
foo(x) = o0 for x € S we have epi(fy) = 0.
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The epigraph and hypograph of functions

Theorem

Let f : S — R be a function defined on the convex subset S of a real
linear space L. Then, f is convex on S if and only if its epigraph is a
convex subset of S X R; f is concave if and only if its hypograph is a
convex subset of S x R.
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The epigraph and hypograph of functions
Proof

Let f be a convex function on S. We have
f((1—t)x+ty) < (1 —t)f(x)+ tf(y) for every x,y € S and t € [0, 1].
If (x1,¥1), (X2, y2) € epi(f) we have f(x1) < y1 and f(x2) < yo. Therefore,

f((1—t)xq + tx2) (1 —t)f(x1) + tf(x2)

<
< (1= t)yr + tys,

o (1 —t)x1 + tx2, (1 — t)y1 + ty2) = (1 — t)(x1, 1) + t(x2, y2) € epi(f)
for t € [0,1]. This shows that epi(f) is convex.



)
Proof (cont'd)

Conversely, suppose that epi(f) is convex, that is, if (x1,y1) € epi(f) and
(x2,y2) € epi(f), then

(1= t)(x1,y1) + t(x2, y2) = ((1 — t)x1 + tx2, (1 — t)y1 + ty2) € epi(f)

for t € [0,1]. By the definition of the epigraph, this is equivalent to
f(x1) < y1, f(x2) < yo implies f((1 — t)x1 + tx2) < (1 — t)y1 + tys.
Choosing y1 = f(x1) and y» = f(x2) yields

f((1—t)xy + tx2) < (1 — t)f(x1) + tf(x2), which means that f is convex.
The second part of the theorem follows by applying the first part to the
function —f.



Constructing Convex Functions

If f1,...,fx are k convex functions on a linear space that any positive
combination a;f; 4+ - - - 4 axfk is a convex function.

Theorem

If f, g are convex functions defined on a real linear space L, then the
function h defined by h(x) = max{f(x),g(x)} for x € Dom(f) N Dom(g)
is a convex function.




Constructing Convex Functions

Let t € [0,1] and let x1,x2 € Dom(f) N Dom(g).
We have

h((1—t)x1 +tx2) = max{f((1—t)x1 + tx2),g((1 — t)x1 + tx2)}
max{(1 — t)f(x1) + tf(x2), (1 — t)g(x1) + tg(x2)}
(1 — )y max{f(x1), g(x1)} + t max{f(x2), g(x2)}
= (1 —t)h(x1)+ th(x),

which implies that h is convex.
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Constructing Convex Functions

Theorem

Let C be a convex subset of R", b be a number in R, and let
F={fi | fi: C— R,i €1} be a family of convex functions such that

fi(x) < b for every i € | and x € C. Then, the function f : C — R
defined by

f(x) =sup{fi(x) | i€ l}

for x € C is a convex function.
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Constructing Convex Functions

Since the family of function F is upper bounded, the definition of f is

correct. Let x,y € C. We have (1 — t)x + ty € C because C is convex.

For every i € [ we have f;i((1 — t)x + ty) < (1 — t)fi(x) + tfi(y). The
definition of f implies fj(x) < f(x) and fi(y) < f(y), so

(1 —t)fi(x) + tfi(y) < (1 — t)f(x) + tf(y) for i € | and t € [0, 1].
The definition of f implies f((1 — t)x + ty) < (1 — t)f(x) + tf(y) for
x,y € C and t € [0,1], so f is convex on C.
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Constructing Convex Functions

Definition
Let f : S — R be a convex function and let gx : R” —> R be defined by

8x(y) = y'x — f(x).
The conjugate function of f is the function f* : R" — R given by

f*(y) = sup,cgrn 8x(y) for y € R".

Note that for each x € R" the function gx = y'x — f(x) is a convex
function of y. Therefore, f* is a convex function.
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Constructing Convex Functions

Example

Let f : R — R be the function f(x) = e*. We have gi(y) = yx — €*.
Note that:

e if y <0, each such function is unbounded, so 7*(y) = oc;
e if y=0, 7*(0) =sup,e ¥ =0;
o if y > 0, g« reaches its maximum when x = Iny, so
f*(y)=ylny—y.
Thus, Dom(f*) = Rxg and f*(y) = y Iny — y (with the convention
Ooco = 0.
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Constructing Convex Functions

Example

Let a be a positive number and let f : R — R be the function

f(x) = 3x%. We have gx(y) = yx — 3x? and

a - 1 5
sup (yx——x ) = —
XER 2 23

and therefore
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Constructing Convex Functions

Example

Let f : R” — R be f(x) =|| x ||, where x is the Euclidean norm on R".
We have gx = y'x— || x ||.

If ||y ||< 1, taking into account that y'x <[] x ||| ¥
y'x <||y ||, so y'x— || x [|< 0. Therefore, x = 0, maximizes y'x— || x ||, so
f*(y)=0.

If || y||>1, there is a z such that || z ||[< 1 and y'z > 1. It suffices to
choose z such that

— <]z <L

Choosing x = tz and letting t — co we have
yx— || x||=t(y'z— || z|]) = oo. Thus, we have

. 0 if [|[y]|<1,
f(y):{ Iyl

oo otherwise.
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