Convex Sets and Functions (part III)

Prof. Dan A. Simovici

UMB

1 The epigraph and hypograph of functions

Definition

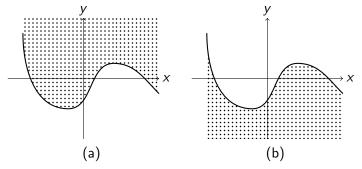
Let (S, \mathbb{O}) be a topological space and let $f : S \longrightarrow \hat{\mathbb{R}}$ be a function. Its epigraph is the set

$$\operatorname{epi}(f) = \{(x, y) \in S \times \mathbb{R} \mid f(x) \leq y\}.$$

The hypograph of f is the set

$$\mathsf{hyp}(f) = \{(x, y) \in S \times \mathbb{R} \mid y \leqslant f(\mathbf{x})\}.$$

The epigraph of a function $f : \mathbb{R} \longrightarrow \mathbb{R}$ is the dotted area in \mathbb{R}^2 located above the graph of the function f; the hypograph of f is the dotted area below the graph.



Note that the intersection

$$\operatorname{epi}(f) \cap \operatorname{hyp}(f) = \{(x, y) \in S \times \mathbb{R} \mid y = f(x)\}$$

is the graph of the function f. If $f(x) = \infty$, then $(x, \infty) \notin epi(f)$. Thus, for the function f_{∞} defined by $f_{\infty}(x) = \infty$ for $x \in S$ we have $epi(f_{\infty}) = \emptyset$.

Theorem

Let $f : S \longrightarrow \mathbb{R}$ be a function defined on the convex subset S of a real linear space L. Then, f is convex on S if and only if its epigraph is a convex subset of $S \times \mathbb{R}$; f is concave if and only if its hypograph is a convex subset of $S \times \mathbb{R}$.

Proof

Let f be a convex function on S. We have $f((1-t)\mathbf{x} + t\mathbf{y}) \leq (1-t)f(\mathbf{x}) + tf(\mathbf{y})$ for every $\mathbf{x}, \mathbf{y} \in S$ and $t \in [0, 1]$. If $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2) \in epi(f)$ we have $f(\mathbf{x}_1) \leq y_1$ and $f(\mathbf{x}_2) \leq y_2$. Therefore,

$$egin{array}{lll} f((1-t)\mathbf{x}_1+t\mathbf{x}_2)&\leqslant&(1-t)f(\mathbf{x}_1)+tf(\mathbf{x}_2)\ &\leqslant&(1-t)y_1+ty_2, \end{array}$$

so $((1-t)\mathbf{x}_1 + t\mathbf{x}_2, (1-t)y_1 + ty_2) = (1-t)(\mathbf{x}_1, y_1) + t(\mathbf{x}_2, y_2) \in epi(f)$ for $t \in [0, 1]$. This shows that epi(f) is convex.

Proof (cont'd)

Conversely, suppose that epi(f) is convex, that is, if $(\mathbf{x}_1, y_1) \in epi(f)$ and $(\mathbf{x}_2, y_2) \in epi(f)$, then

$$(1-t)(\mathbf{x}_1, y_1) + t(\mathbf{x}_2, y_2) = ((1-t)\mathbf{x}_1 + t\mathbf{x}_2, (1-t)y_1 + ty_2) \in epi(f)$$

for $t \in [0, 1]$. By the definition of the epigraph, this is equivalent to $f(\mathbf{x}_1) \leq y_1$, $f(\mathbf{x}_2) \leq y_2$ implies $f((1 - t)\mathbf{x}_1 + t\mathbf{x}_2) \leq (1 - t)y_1 + ty_2$. Choosing $y_1 = f(\mathbf{x}_1)$ and $y_2 = f(\mathbf{x}_2)$ yields $f((1 - t)\mathbf{x}_1 + t\mathbf{x}_2) \leq (1 - t)f(\mathbf{x}_1) + tf(\mathbf{x}_2)$, which means that f is convex. The second part of the theorem follows by applying the first part to the function -f. If f_1, \ldots, f_k are k convex functions on a linear space that any positive combination $a_1f_1 + \cdots + a_kf_k$ is a convex function.

Theorem

If f, g are convex functions defined on a real linear space L, then the function h defined by $h(x) = \max\{f(x), g(x)\}$ for $x \in \text{Dom}(f) \cap \text{Dom}(g)$ is a convex function.

Proof

Let $t \in [0,1]$ and let $x_1, x_2 \in \mathsf{Dom}(f) \cap \mathsf{Dom}(g)$. We have

$$\begin{array}{lll} h((1-t)x_1+tx_2) &=& \max\{f((1-t)x_1+tx_2),g((1-t)x_1+tx_2)\}\\ &\leqslant& \max\{(1-t)f(x_1)+tf(x_2),(1-t)g(x_1)+tg(x_2)\}\\ &\leqslant& (1-t)\max\{f(x_1),g(x_1)\}+t\max\{f(x_2),g(x_2)\}\\ &=& (1-t)h(x_1)+th(x_2), \end{array}$$

which implies that h is convex.

Theorem

Let C be a convex subset of \mathbb{R}^n , b be a number in \mathbb{R} , and let $\mathcal{F} = \{f_i \mid f_i : C \longrightarrow \mathbb{R}, i \in I\}$ be a family of convex functions such that $f_i(\mathbf{x}) \leq b$ for every $i \in I$ and $\mathbf{x} \in C$. Then, the function $f : C \longrightarrow \mathbb{R}$ defined by

$$f(\mathbf{x}) = \sup\{f_i(\mathbf{x}) \mid i \in I\}$$

for $\mathbf{x} \in C$ is a convex function.

Proof

Since the family of function \mathcal{F} is upper bounded, the definition of f is correct. Let $\mathbf{x}, \mathbf{y} \in C$. We have $(1 - t)\mathbf{x} + t\mathbf{y} \in C$ because C is convex. For every $i \in I$ we have $f_i((1 - t)\mathbf{x} + t\mathbf{y}) \leq (1 - t)f_i(\mathbf{x}) + tf_i(\mathbf{y})$. The definition of f implies $f_i(\mathbf{x}) \leq f(\mathbf{x})$ and $f_i(\mathbf{y}) \leq f(\mathbf{y})$, so $(1 - t)f_i(\mathbf{x}) + tf_i(\mathbf{y}) \leq (1 - t)f(\mathbf{x}) + tf(\mathbf{y})$ for $i \in I$ and $t \in [0, 1]$. The definition of f implies $f((1 - t)\mathbf{x} + t\mathbf{y}) \leq (1 - t)f(\mathbf{x}) + tf(\mathbf{y})$ for $\mathbf{x}, \mathbf{y} \in C$ and $t \in [0, 1]$, so f is convex on C.

Definition

Let $f: S \longrightarrow \mathbb{R}$ be a convex function and let $g_{\mathbf{x}} : \mathbb{R}^n \longrightarrow \mathbb{R}$ be defined by $g_{\mathbf{x}}(\mathbf{y}) = \mathbf{y}'\mathbf{x} - f(\mathbf{x})$. The conjugate function of f is the function $f^* : \mathbb{R}^n \longrightarrow \mathbb{R}$ given by $f^*(\mathbf{y}) = \sup_{\mathbf{x} \in \mathbb{R}^n} g_{\mathbf{x}}(\mathbf{y})$ for $\mathbf{y} \in \mathbb{R}^n$.

Note that for each $\mathbf{x} \in \mathbb{R}^n$ the function $g_{\mathbf{x}} = \mathbf{y}'\mathbf{x} - f(\mathbf{x})$ is a convex function of \mathbf{y} . Therefore, f^* is a convex function.

Example

Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be the function $f(x) = e^x$. We have $g_x(y) = yx - e^x$. Note that:

• if y < 0, each such function is unbounded, so $f^*(y) = \infty$;

• if
$$y = 0$$
, $f^*(0) = \sup_x e^{-x} = 0$;

• if y > 0, g_x reaches its maximum when $x = \ln y$, so $f^*(y) = y \ln y - y$.

Thus, $Dom(f^*) = \mathbb{R}_{\geq 0}$ and $f^*(y) = y \ln y - y$ (with the convention $0\infty = 0$.

Example

Let *a* be a positive number and let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be the function $f(x) = \frac{a}{2}x^2$. We have $g_x(y) = yx - \frac{a}{2}x^2$ and

$$\sup_{x\in\mathbb{R}}\left(yx-\frac{a}{2}x^2\right)=\frac{1}{2a}y^2$$

and therefore

$$f^*(y)=\frac{1}{2a}y^2.$$

Example

Let $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ be $f(\mathbf{x}) = ||\mathbf{x}||$, where \mathbf{x} is the Euclidean norm on \mathbb{R}^n . We have $g_{\mathbf{x}} = \mathbf{y}'\mathbf{x} - ||\mathbf{x}||$. If $||\mathbf{y}|| \leq 1$, taking into account that $y'\mathbf{x} \leq ||\mathbf{x}|| ||\mathbf{y}||$, it follows that $\mathbf{y}'\mathbf{x} \leq ||\mathbf{y}||$, so $y'\mathbf{x} - ||\mathbf{x}|| \leq 0$. Therefore, $\mathbf{x} = \mathbf{0}_n$ maximizes $\mathbf{y}'\mathbf{x} - ||\mathbf{x}||$, so $f^*(\mathbf{y}) = 0$. If $||\mathbf{y}|| > 1$, there is a \mathbf{z} such that $||\mathbf{z}|| \leq 1$ and $\mathbf{y}'\mathbf{z} > 1$. It suffices to choose \mathbf{z} such that

$$\frac{1}{\mid \mathbf{y} \parallel} < \parallel \mathbf{z} \parallel \leqslant 1.$$

Choosing $\mathbf{x} = t\mathbf{z}$ and letting $t \to \infty$ we have $\mathbf{y'x} - \parallel \mathbf{x} \parallel = t(\mathbf{y'z} - \parallel \mathbf{z} \parallel) \to \infty$. Thus, we have

$$f^*(\mathbf{y}) = egin{cases} 0 & ext{if} & \| \mathbf{y} \| \leqslant 1, \ \infty & ext{otherwise.} \end{cases}$$