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The epigraph and hypograph of functions

Definition

Let (S ,O) be a topological space and let f : S −→ R̂ be a function. Its
epigraph is the set

epi(f ) = {(x , y) ∈ S × R | f (x) 6 y}.

The hypograph of f is the set

hyp(f ) = {(x , y) ∈ S × R | y 6 f (x)}.
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The epigraph and hypograph of functions

The epigraph of a function f : R −→ R is the dotted area in R2 located
above the graph of the function f ; the hypograph of f is the dotted area
below the graph.
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The epigraph and hypograph of functions

Note that the intersection

epi(f ) ∩ hyp(f ) = {(x , y) ∈ S × R | y = f (x)}

is the graph of the function f .
If f (x) =∞, then (x ,∞) 6∈ epi(f ). Thus, for the function f∞ defined by
f∞(x) =∞ for x ∈ S we have epi(f∞) = ∅.
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The epigraph and hypograph of functions

Theorem

Let f : S −→ R be a function defined on the convex subset S of a real
linear space L. Then, f is convex on S if and only if its epigraph is a
convex subset of S × R; f is concave if and only if its hypograph is a
convex subset of S × R.
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The epigraph and hypograph of functions

Proof

Let f be a convex function on S . We have
f ((1− t)x + ty) 6 (1− t)f (x) + tf (y) for every x, y ∈ S and t ∈ [0, 1].
If (x1, y1), (x2, y2) ∈ epi(f ) we have f (x1) 6 y1 and f (x2) 6 y2. Therefore,

f ((1− t)x1 + tx2) 6 (1− t)f (x1) + tf (x2)

6 (1− t)y1 + ty2,

so ((1− t)x1 + tx2, (1− t)y1 + ty2) = (1− t)(x1, y1) + t(x2, y2) ∈ epi(f )
for t ∈ [0, 1]. This shows that epi(f ) is convex.
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The epigraph and hypograph of functions

Proof (cont’d)

Conversely, suppose that epi(f ) is convex, that is, if (x1, y1) ∈ epi(f ) and
(x2, y2) ∈ epi(f ), then

(1− t)(x1, y1) + t(x2, y2) = ((1− t)x1 + tx2, (1− t)y1 + ty2) ∈ epi(f )

for t ∈ [0, 1]. By the definition of the epigraph, this is equivalent to
f (x1) 6 y1, f (x2) 6 y2 implies f ((1− t)x1 + tx2) 6 (1− t)y1 + ty2.
Choosing y1 = f (x1) and y2 = f (x2) yields
f ((1− t)x1 + tx2) 6 (1− t)f (x1) + tf (x2), which means that f is convex.
The second part of the theorem follows by applying the first part to the
function −f .
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Constructing Convex Functions

If f1, . . . , fk are k convex functions on a linear space that any positive
combination a1f1 + · · ·+ ak fk is a convex function.

Theorem

If f , g are convex functions defined on a real linear space L, then the
function h defined by h(x) = max{f (x), g(x)} for x ∈ Dom(f ) ∩ Dom(g)
is a convex function.
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Constructing Convex Functions

Proof

Let t ∈ [0, 1] and let x1, x2 ∈ Dom(f ) ∩ Dom(g).
We have

h((1− t)x1 + tx2) = max{f ((1− t)x1 + tx2), g((1− t)x1 + tx2)}
6 max{(1− t)f (x1) + tf (x2), (1− t)g(x1) + tg(x2)}
6 (1− t) max{f (x1), g(x1)}+ t max{f (x2), g(x2)}
= (1− t)h(x1) + th(x2),

which implies that h is convex.
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Constructing Convex Functions

Theorem

Let C be a convex subset of Rn, b be a number in R, and let
F = {fi | fi : C −→ R, i ∈ I} be a family of convex functions such that
fi (x) 6 b for every i ∈ I and x ∈ C . Then, the function f : C −→ R
defined by

f (x) = sup{fi (x) | i ∈ I}

for x ∈ C is a convex function.
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Constructing Convex Functions

Proof

Since the family of function F is upper bounded, the definition of f is
correct. Let x, y ∈ C . We have (1− t)x + ty ∈ C because C is convex.
For every i ∈ I we have fi ((1− t)x + ty) 6 (1− t)fi (x) + tfi (y). The
definition of f implies fi (x) 6 f (x) and fi (y) 6 f (y), so
(1− t)fi (x) + tfi (y) 6 (1− t)f (x) + tf (y) for i ∈ I and t ∈ [0, 1].
The definition of f implies f ((1− t)x + ty) 6 (1− t)f (x) + tf (y) for
x, y ∈ C and t ∈ [0, 1], so f is convex on C .
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Constructing Convex Functions

Definition

Let f : S −→ R be a convex function and let gx : Rn −→ R be defined by
gx(y) = y′x− f (x).
The conjugate function of f is the function f ∗ : Rn −→ R given by
f ∗(y) = supx∈Rn gx(y) for y ∈ Rn.

Note that for each x ∈ Rn the function gx = y′x− f (x) is a convex
function of y. Therefore, f ∗ is a convex function.
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Constructing Convex Functions

Example

Let f : R −→ R be the function f (x) = ex . We have gx(y) = yx − ex .
Note that:

if y < 0, each such function is unbounded, so f ∗(y) =∞;

if y = 0, f ∗(0) = supx e−x = 0;

if y > 0, gx reaches its maximum when x = ln y , so
f ∗(y) = y ln y − y .

Thus, Dom(f ∗) = R>0 and f ∗(y) = y ln y − y (with the convention
0∞ = 0.
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Constructing Convex Functions

Example

Let a be a positive number and let f : R −→ R be the function
f (x) = a

2x2. We have gx(y) = yx − a
2x2 and

sup
x∈R

(
yx − a

2
x2
)

=
1

2a
y2

and therefore

f ∗(y) =
1

2a
y2.
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Constructing Convex Functions

Example

Let f : Rn −→ R be f (x) =‖ x ‖, where x is the Euclidean norm on Rn.
We have gx = y′x− ‖ x ‖.
If ‖ y ‖6 1, taking into account that y ′x 6‖ x ‖‖ y ‖, it follows that
y′x 6‖ y ‖, so y ′x− ‖ x ‖6 0. Therefore, x = 0n maximizes y′x− ‖ x ‖, so
f ∗(y) = 0.
If ‖ y ‖> 1, there is a z such that ‖ z ‖6 1 and y′z > 1. It suffices to
choose z such that

1

‖ y ‖
<‖ z ‖6 1.

Choosing x = tz and letting t →∞ we have
y′x− ‖ x ‖= t(y′z− ‖ z ‖)→∞. Thus, we have

f ∗(y) =

{
0 if ‖ y ‖6 1,

∞ otherwise.
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