1. Let \(f(x) \) be the greatest number \(n \) such that \(n^2 < x \). Write a program in \(S \) that computes \(f \).

2. Let \(P \) be the program

 \[
 Y \leftarrow X_1 \\
 [A] \quad \text{IF } X_2 = 0 \text{ GOTO } E \\
 Y \leftarrow Y + 1 \\
 Y \leftarrow Y + 1 \\
 X_2 \leftarrow X_2 - 1 \\
 \text{GOTO } A
 \]

 What is \(\Psi_P^{(1)}(r_1) \)? \(\Psi_P^{(2)}(r_1, r_2) \)? \(\Psi_P^{(3)}(r_1, r_2, r_3) \)?

3. A unary function \(f(x) \) is said to be partially \(n \)-computable if it is computed by some \(S \) program \(P \) such that \(P \) has no more than \(n \) instructions, every variable in \(P \) is among \(X, Y, Z_1, \ldots, Z_n \) and every label in \(P \) is among \(A_1, \ldots, A_n, E \). Prove that if a unary function \(f : \mathbb{N} \rightarrow \mathbb{N} \) is computed by a program with no more than \(n \) instruction, then \(f \) is partially \(n \)-computable.

4. Let \(P(x) \) be a computable predicate. Show that the function \(f \) defined as

 \[
 f(x_1, x_2) = \begin{cases}
 x_1 + X_2 & \text{if } P(x_1 + x_2) \\
 \uparrow & \text{otherwise}
 \end{cases}
 \]

 is partially computable.
5. Let $f(x)$ be a partially computable but not total function, let M be a finite set of numbers such that $f(m) \uparrow$ for all $m \in M$ and let g be an arbitrary partially computable function. Show that $h(x)$ defined as

$$h(x) = \begin{cases} g(x) & \text{if } x \in M, \\ f(x) & \text{otherwise} \end{cases}$$

is partially computable.