Homework 2
posted March 8, 2021
due March 24, 2021

Let \(B_n = \{0, 1\}^n \) and let \(K \subseteq B_n \). The sequence of Chow parameters of \(K \) is \(\text{chow}(K) = (c_1, \ldots, c_n, c_K) \in n^n \) defined as \(c_K = |K| \) and \(c_i = |\{x \in K \mid x_i = 1\}| \). For example, for \(n = 4 \) and \(K = \{(0, 1, 1, 1), (0, 0, 1, 1), (0, 0, 0, 1)\} \) we have \(\text{chow}(K) = (0, 1, 2, 3, 3) \).

Two subsets \(K, G \) of \(B_n \) are equipollent if they have the same Chow parameters.

The subsets \(K \) and \(B_n - K \) are linearly separable if there exists a pair \((w, t) \in \mathbb{R}^n \times \mathbb{R} \) such that
\[
K = \{x \in B_n \mid w'x \geq t\} \quad \text{and} \quad B_n - K = \{x \in B_n \mid w'x < t\}.
\]

We say that \(K \) is linearly separable if \(K \) and \(B_n - K \) are linearly separable.

1. Let \(K \subseteq B_n \). Prove that \(\text{chow}(K) = (\sum_{x \in K} x, |K|) \).

2. A diagonal of \(B_n \) is a pair \((u, v) \in B_2^n \) such that \(u = 1_n - v \), where \(1_n = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} \). Prove that if \(K \) is a linearly separable subset of \(B_n \) that contains a diagonal of \(B_n \), then it contains a point of every other diagonal of \(B_n \).

3. The optimization problem of the separable data case that seeks to determine a separating hyperplane in \(\mathbb{R}^n \) can be transformed into an equivalent optimization problem in \(\mathbb{R}^{n+1} \) that seeks to identify a separating subspace. Given a data set \(s = ((x_1, y_1), \ldots, (x_m, y_m)) \) prove that there exists \(\mathbf{r} \in \mathbb{R}^n \) such that \(s \) is separable by a hyperplane if and only if the set \(\tilde{s} = ((x_1 + \mathbf{r}, y_1), \ldots, (x_m + \mathbf{r}, y_m)) \) is separable be a subspace \(M \) of \(\mathbb{R}^n \).

4. Consider the data set \(D \) in \(\mathbb{R}^2 \) shown in Figure 1, where \(C \) is a circle centered in \((6, 4)\) having radius 3. Define a transformation \(\phi : \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) such that \(\phi(D) \) is linearly separable.

5. There are 16 functions of the form \(f : \{0, 1\}^2 \rightarrow \{0, 1\} \). For each such function consider the sequence \(S_f = ((x_1, y_1), \ldots, (x_4, y_4)) \), where
Figure 1: Non-linearly separable data; positive examples are filled circles.

\[x_i \in \{0, 1\}^2 \text{ and } \]
\[y_i = \begin{cases} -1 & \text{if } f(x_i) = 0, \\ 1 & \text{if } f(x_i) = 1 \end{cases} \]

for \(1 \leq i \leq 4 \). For how many of these functions is \(S_f \) linearly separable?