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Abstract

We give single-operations characterizations for sub-

from partition lattices to other algebraic structures that
play a role in designing data mining algorithms.

modular and supermodular functions on lattices that have 1. Submodular Functions on Lattices

monotonicity properties. We associate to such functionsp semilatticeis a semigroup(s, ), whereo is a com-
metrics on lattices and we investigate corresponding met- yytative and idempotent operation. This is a pervasive

rics on the sets of partitions.
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|. Introduction

Submodular functions are useful in combinatorial op-
timization problems [3], [4], [6]. They are defined as
functions of the formf : P(S) — R, whereS is a finite
set andP(S) is the set of subsets ¢f, which satisfy the
submodular inequality, that ii(X NY) + f(X UY) <
f(X) + f(Y) for X,Y € P(S). This inequality is
equivalent to the “diminishing return property” of these
functions which means that for evety, Y € P(S) such
that X CY andz € S — Y, we have

fXU{a}) = f(X) = F(Y Ufz}) - £(Y).

algebraic structure, with numerous applications in mathe-
matics and computer science.

A lattice is an algebraic structur€¢L,V,A) such
that both(L, V) and (L, A) are semilattices and the two
operationsv and A satisfy the absorption laws

(xVy)ANy=yand(zAy)Vy =y,

for z,y € L.

Every semilattice(.S, ¢) generates a partial order on
S defined byx < y if and only if 2z o y = y. Thus,
a (L,V,A) generates two partial orders dn “<;” and
“<y" defined by

r<iyifzvy=y, ande <syifzAy=y

for x,y € L. Note that, by the absorption laws, we have

In this note we study submodular functions and their duals v <; v if and only if v <5 u for u,v € L. The partial
(known as supermodular functions) defined on lattices orders<; and< are said to belual of each other. Unless

and we link these functions with a generalization of

conditional entropy in lattices and with certain classes of <; on lattices and will denote it simply by<”.
metrics defined on these structures. The characterization

stated explicitly otherwise, we shall use the partial order

If (P,<) and(Q,<) are two partially ordered sets

of submodular or supermodular functions that have a (posets), thenf : P — @ is a monotonicfunction if

monotonicity-linked property (obtained in Section Il) is

u < v implies f(u) < f(v) for u,v € P. If u < v

formulated using only one of the lattice operations, which implies f(u) < f(v), then f is said to bestrictly mono-

opens the possibility of extending the notion of modularity
to semilattices.

Section Il is dedicated to submodular and supramod-

ular functions defined on partition lattices.
The extension of semimodularity to functions defined

tonic. The set of monotonic (strictly monotonic) functions
from P to @ is denoted byMON(P, @) (SMON(P, Q),
respectively).

If w < v implies f(u) > f(v) for w,v € S,
then f is an anti-monotonic functionthe function f is

on semilattices is of interest for the generalization of the strictly anti-monotonic ifu < v implies f(u) > f(v)

notion of entropy (and of metrics derived from this notion)

for all u,v € P. The set of anti-monotonic (strictly



anti-monotonic) functions is denoted -MON(P, Q)
(SA-MON(P, @), respectively).

Let (L,V,A) be a lattice. A functionf : L — R is
submodularif

flavy)+ f(xAy) < fl@)+ fy),

for everyz,y € L.
The functionf : L — R is supermodulaif

flxvy) + flxny) = f(z)+ fy),

for everyz,y € L.

The classes of submodular functions and supermodu-

lar functions on(L, v, A) are denoted bUBM(L, V, A)
and bySUPM(L, v, A), respectively. When the lattice is
clear from context we denote these classeSbM and
SUPM.

If a function f : L — R is both submodular
and supermodular, ther satisfies the equality/(z V
y) + flz Ay) f(x) + f(y) for 2,y € L. Such
functions are known asnodular functionsor as lattice
valuations The last term is used in [1], where lattices

Proof: Suppose thaff (¢) + f(u Av) < f(tAu) +
f(tAw) for t,u,v € L. Substitutingu V v for ¢ we obtain

fluvo)+ f(uAv)
< F(uv o) Au)+ (Vo) Ao)
fw) + f(v),

by the absorption property af, which shows thatf is
submodular.

If f(O)+ f(uVvo) < f(tVu)+ f(tVo) fort,u,v € L,
by substitutingu A v for ¢ we obtain

FluAv)+ Fluvv)
< fwAv) V) + F((uAv) Vo)
Flu) + F(v),

so f is again, submodular. [ |

Theorem 2.1 allows us to introduce two classes of
functions on a latticé L, \, A). Namely,SUBM(L, V, A) 5
consists of those function that satisfy Inquality (2.1) and
SUBM(L, Vv, A)y consists of those function that satisfy
Inquality (2.2).

that have strictly monotonic valuations are referred to THEOREM2.2. If f : L — R is a function such that
as metric lattices. We show here that metrics can be.f(t) + f(uAv) = f(t Au)+ f(t Av) for t,u,v € L, or

introduced on lattices using submodular or supermodular/ () + f(uVv) = f(tVu)+ f(tVv) for t,u,v € L, then

functions and that the presence on metrics that have/ IS @ supermodular function of.

certain monotonicity properties imply the existence of

submodular or supermodular functions.

ExAamPLE 2.1. Many submodular functions can be nat-
urally associated to finite graphs (see [5], [2]). lt=
(V,E) be a graph having” as its set of vertices anf

as its set of edges.

For a set of edge& of G let v(K) be the number
of vertices incident with an edge iA. It is easy to see
thatv : P(E) — R is both monotonic and submodular.

Let S be a set of vertices off and let¢(S) be the
number of edges whose endpoints areSinThen, ¢ is
monotonic and supermodular. Similarly, {.S) is the
number of edges that have at least one end point,in
then/ is a monotonic and submodular function. il

The next theorem allows the introduction of two
subtypes of submodular functions.

THEOREM2.1. Let (L, V, A) be a lattice.
If f: L — R is a function such that

F@O&)+ flunv) < fltAuw)+ f(tAv), (2.1)
for t,u,v € L, or
f@)+ fluvo) < ftvVu)+ f(tVv) (2.2)

for t,u,v € L, then f is a submodular function ot.

Proof: The proof of this theorem that refers to
supermodularity has an entirely similar argument. &
We denote the classes of functions

SUBM(L, V, A)n, SUBM(L, V, A)v,

by SUBM,, SUBM,, respectively, when the lattick is
clear from context.

THEOREM2.3. Let (L, V,A) be a lattice. Any function
f € SUBM, is anti-monotonic and any function in
SUBM,, is monotonic.

Proof: Let f : L — R be a function irSUBM, and
let ¢,u be two elements of. such thatt < u. Choosing
v = u in the definition ofSUBM, yields

F@) + f(u) < f(0) + FENu) =2f(1),

which implies f(u) < f(t). Thus, f is anti-monotonic.
Similarly, choosingv u in the definition of
SUBM,, we obtain

f@) + f(u) < 2f(w),

so f(t) < f(u), which shows thajf is monotonic.

THEOREM2.4. If f € SUBM and f is anti-monotonic,
then f € SUBM,; if f € SUBM and f is monotonic,
then f € SUBM,,.



Proof: Let f be a submodular and anti-monotonic
function. The submodularity implies

FEAU)AEAD))+ fF((EAU)V (EADV)) < fEAW)+ f(EAD)
for everyt,u,v € L. Since
tAu)N(tAD)<E

it follows that f(t) < f((t A u) A (t Av)). By the
subdistributive inequality that holds in any lattice (sé&g [
or [7]) we have

(tAu)V(tAV)<tA(uV),

hencef(t A (uVw)) < f((tAu)V (tAv)) becausef is
anti-monotonic. Again, by the anti-monotonicity ¢f

fluvo) < fEA (uVo)),
so f(uVv) < f((tAu) Vv (tAv)). Consequently, we have
f@)+ f(unv) F(ENu)A(EAD))

+f((EAu)V (tAD))
fEAu)+ f(tAv).

<

<

S

Also, if \y is monotonic in its first argument, thefis
monotonic; ifA; is anti-monotonic in its second argument,
then f is supermodular.

Proof: The anti-monotonicity of:; in its first argu-
ment follows directly from the anti-monotonicity gf. To
prove the monotonicity of; in its second argument let
y,z € L be such thaty < z. The definition of SUBM
allows us to write

[+ fzAy)

<

fzA@)+ f(zAy)
f(zAx)+ f(y) (because < 2),

which translates inte:;(z,y) < kf(x, 2).

Similarly, the monotonicity of\; in its first argument
follows from the monotonicity off. To prove the anti-
monotonicity of \; in its second argument, let z € L
be such thay < z. Sincef € SUBM,, we have

fy) + f(zV2) flyve)+ flyVz)
fly V) + f(2) (because < 2),

<

which amounts to\s(z, z) < A¢(z,y).
For the converse implications suppose thatis anti-

The second statement of the theorem has a similar argumonotonic in its first argument, s@; < xo implies

ment. |

COROLLARY 2.2. For any lattice(L, Vv, A) we have

SUBM, = SUBM N MON,
SUBM,, = SUBM N A-MON,
SUPM, = SUPM N MON,

SUPM, = SUPM N A-MON.

For a functionf : L — R define the functions
Kf: L? — Rx>o and)\f (L2 — R>o by

kf(z,y) flzny) = fy),
Ar(z,y) flavy) —f(y)

for z,y € L. Note thatf is submodular (supermodular) if
andonly ifrs(z,y)+Ar(2,y) <O (kp(2,y)+Ap(z,9) =
0). The functionsk; and Ay are intended as abstract
counterparts of conditional entropy.

The next result shows that the monotonicity properties
of ky and Ay in their first argument imply monotonicity
properties forf, while monotonicity properties of and
Ar in their second argument imply modularity properties
for f.

THEOREM2.5. Let(L, V, A) be alattice. Iff € SUBM,,
thenky is anti-monotonic in its first argument and mono-
tonic in the second. If € SUBM,,, then\; is monotonic
in its first argument and anti-monotonic in the second.

Conversely, ifi.; is anti-monotonic in its first argu-
ment, thenf is anti-monotonic; ifx; is monotonic in its
second argument, thefiis submodular.

rf(@1,y) = ky(ze,y), thatis f(z1 Ay) = flzz Ay)
for every y € L. Choosingy xo it follows that
f(z1) = f(z2), that is, f is anti-monotonic.

Suppose now thak; is monotonic in its second
argument, that ig;; < yo implies f(z A y1) — f(y1) =
f(xz Ay2) — f(y2). Choosingys = x V y; Yields

fl@Ay) + flx V) < fly) + fl),

which shows the submodularity gf
Similar arguments can be made for the last part of
the theorem involving the functiofi,. u

THEOREM2.6. Let (L, V, A) be a lattice.

If f € SUBMy, thenks(u,v)+rf(v,w) = ky(u,w)
for u,v,w € L.

If f € SUBMy, then\s(u,v)+ (v, w) = Af(u,w)
for u,v,w € L.

Proof: It is easy to see that by expressingin terms
of f the inequality that we need to prove is equivalent to

flunv)+ flonw) = fluhw)+ f(v),

which holds by the definition o8UBM,. The proof of
the second part is similar. [ |
Note thatx¢(z,z) = 0 for f € SUBM, andz € L.
Similarly, A¢(z,z) = 0 for f € SUBM,, andx € L.
For f € SUBM,, define the mapping; : L? — R
as

dy(z,y) = ry(z,y)+rp(y, x) = 2f(xAy) = f(2) = f(y)



for z,y € L. Similarly, for g € SUBM,, let ¢ : L? —
R be given by

6g($,y) = )‘q(xay)—’_)‘q(ya

for z,y € L.

It follows immediately from Theorem 2.6 thaly is
a semimetric onl, when f belongs toSUBM, and that
04 has the same property jf€ SUBM,,. If the functions
involved are insMON (in the first case) or itsA-MON
(in the second), ther or J, are metrics.

Conversely, if df is a semimetric onL, where
de(z,y) =2f(xAy)— f(x)— f(y), thenf € SUBM. In-
deed, in this case, the triangular inequalitydgfamounts
to

z) =2g(zVy)— f(z)— f(y)

2f(x Ny) — fz) — fy)
+2f(ynz)— fly) — f(2)
> 2f(xAz)— flz) - [(2),

for z,y, z € L, which is clearly equivalent to the defining
equality of SUBM,. Similarly, if d, is a semimetric on
L, g belongs toSUBM,,.

I11. Submodular Functionson the Lattice of Partitions

A partition of a non-empty sef is a collection of non-
empty subsets of, m = {B; | i € I} such thati,j € T
andi # j implies B; N B; = () andJ,.; B; = S. The
subsetsB; are referred ablocksof 7. The set of partitions
of a setS is denoted byPART(.S).

If m,7 € PART(S) we write # < 7 if every
block of 7 is included in a block ofr. This relation

between partitions is a partial order. The largest element o my} is a partition of the sef denoted byri + -

the partially ordered sefPART(S), <) is the one-block
partition ws = {S}, while the smallest element is the
partitionas = {{z} | = € S}.

We assume from now on that all partitions are con- fs(m1+---+m)

sidered over finite sets.
The partial ordered sePART(S), <) is actually a
lattice. The meet of two partitions A 7 is the partition

of S whose blocks are the non-empty intersections of the

form BN C, whereB € m andC € o.

Consider the bipartite graph ., having
{Bi1,...,Bm,C1,...,Cy} as its vertices, where
™ = {Bl7 - 7Bm} ando = {Cl, ey Cn}

An edge exists betweefs; andC; if and only if B;NC; #
(. The blocks of the partitiorr A o consist of non-empty

gﬂ',d-
LetCy,...,Ci be the connected componentsgy .
For every connected componehtwe have

U{Bi | BiEC}:U{Cj | G €C}

sets of the formB; N C; and correspond to the edges of /s (m,0) = fs(mho)=fs(o) = Zl <m
iz

and that the blocks of the partitionV o have the form
Uc.

A partition 7= covers a partitior in (PART(S), <)
if 7 can be obtained fromy by fusing two blocks ofu.
Partition lattices are prototypical for the so called upper
semimodular lattices [1], characterized by the following
property: if 71 # m, and bothmr, 7o cover a partitions,
the m, V w9 covers bothr; andms.

If 7 € PART(S) and( # C C S, we denote byrc
the partitionte = {BNC | B € «}. This is thetrace
of ronC.

Note that ifr,0 € PART(S), # = {B1,...,B,},
ando = {C4,...,C,}, then we have
TANo=mc, + - +7c, =0, +--+op,. (3.3)

Let S be a finite set such thaf| >
number,5 > 1.

For a partitionr = {B1, ..., B,,,} € PART(S) define
the functionfs : PART(S) — R as

fs(m) = b (1—2 (%)ﬁ)

where 5 > 1. Then, fs(ws) = 0 and fs(as) =
b(1 — |S|5—1).

Let Sy,...,S; be ¢ non-empty and pairwise
joint sets and letS = Ui:l Si. Assume thatr, =
{Bk1;...,Brm,} is a partition onSj, for 1 < k < £.
Then, the collection of set§By,; | 1 <k < (,1<j <
—|—7Tg.

2 and letg be a

dis-

We have

4
Z <||5;| ) Tsi(me)t fs ({5, Seb).
=1 (3.4)

Therefore, taking into account Equalities (3.3) we can
write

= (1C;
s(mAo) Z<||S||> nc,) + fs(0).
Jj=1
By the definition ofx s, we have
NP
| J|) ij(Ter)'

(3.5)

LEMMA 3.1. Let ¢ : [0,1] — R be a convex function
such that¢(x) < « for z € [0,1], wy,...,w, be
n positive numbers such that.! , w; = 1, and let



ai,...,an €1[0,1]. We have

1-9¢ <Z wi%‘) -9 <Z w;(1 — ai))

> Z d(w;)(1 — d(a;) — o(1 — a;)).

=1

Proof: By Jensen’s inequality applied td we have
¢ <2": wiai> < iwi(b(ai)a
=1 1=1
¢ <2”: w;(1 — ai)) < Xn:wﬂb(l — a;).
=1 1=1
Taking into account tha}_!" ; w; = 1 we have
1-9¢ (i wiai> -9 (i w;(1 — ai))
=1 1=1
> 3wl - 6a) — 601 — )
=1

> Z P(wi)(1 — dla;) — ¢(1 — a;))

becauseav; > ¢(w;) for 1 < i < n. [

LEMMA 3.2. Letw € PART(S) and letC, D be two non-
empty disjoint subsets ¢f. We have

|C1? fo(ne)+|D1P fo(mp) < (IC|+|D))? feup(moup)-

Proof: Let 7 = {B;, ..., B, }. Define
w‘_|Bl-ﬂ(CUD)| v = |B; NC|
‘" |CcuD| " |B;n(CuD)|

forlgign,sol—ai:%.

By Lemma 3.1 applied to the function(z) = 27,
that is convex orf0, 1] when g > 1 we have:

n 6 n 6
B |BlﬂC| B |BlﬂD|
! (Z ICUD| 2. GuD)

i=1 =1
n ) B ) B
> Z<|Bm(CuD)|> 1_( |B; N C| )
P |C' U D| |B; N (C'UD)|
- B;nD| "’
|Bl N (C @] D)| '
which is equivalent to the inequality of the lemma. m

THEOREM3.1. The functionfs : PART(S) — R is
anti-monotonic and submodular.

Proof: To prove thatfs is anti-monotonic it suffices
to show that if 7 < 7 such thatr covers, then

f(m) = f(7).

Suppose thatr = {By,..., B,,}; without loss of
generality we may assume thatesults fromr by fusing
the blocksB,,,_1 and B,,,. SinceB,,,_, andB,,, are non-
empty sets we haveB,,_1| > 1 and |B,,| > 1 which
implies | B,,_1|° + |Bpn|? < |Bpm_1U B,,|?. Therefore,

|Bj|)5
b{1-— —
> (%
(S () ()
5| 5|

j=1
= fs(7),

which allows us to conclude thafs is indeed anti-
monotonic.

To prove thatfs is submodular we shall use the
second part of Theorem 2.5 and show that the function
Kfs(m, o) IS monotonic in its second argument.

Let 7,0, 7 € PART(S) such thatr < 7 andr covers
o. Again, we may assume without loss of generality that
o ={C1,...,C,} and T is obtained fromo by fusing
Cn—1 andC,,. By Equality (3.5) it suffices to show that

|Cn—1|'8an_1(7TCn_1) =+ |C77«|chn (me,)
< |Ch1 UG fo, yue, (Te, wues),

fs(m) =

WV

which holds by Lemma 3.2. [ |

IV. Further Work

The characterization of submodular (or supermodular)
monotonic and anti-monotonic functions provided by

Corollary 2.2 makes use only of one of the operations of
the lattice. This makes it possible to extend the notions of
submodularity and supermodularity to functions defined
on semilattices. This extension is relevant to defining

entropies for set covers and metrics on the space of
covers of a set. In turn, metrics on set covers can help
extending well-known data mining algorithms that make

use of the metric space of partitions in feature selection
and classification to multi-valued attributes.
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