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Abstract

We give single-operations characterizations for sub-
modular and supermodular functions on lattices that have
monotonicity properties. We associate to such functions
metrics on lattices and we investigate corresponding met-
rics on the sets of partitions.

Keywords-lattice; semilattice; submodularity; entropy;

I. Introduction

Submodular functions are useful in combinatorial op-
timization problems [3], [4], [6]. They are defined as
functions of the formf : P(S) −→ R, whereS is a finite
set andP(S) is the set of subsets ofS, which satisfy the
submodular inequality, that is,f(X ∩ Y ) + f(X ∪ Y ) 6
f(X) + f(Y ) for X,Y ∈ P(S). This inequality is
equivalent to the “diminishing return property” of these
functions which means that for everyX,Y ∈ P(S) such
thatX ⊆ Y andx ∈ S − Y , we have

f(X ∪ {x})− f(X) > f(Y ∪ {x})− f(Y ).

In this note we study submodular functions and their duals
(known as supermodular functions) defined on lattices
and we link these functions with a generalization of
conditional entropy in lattices and with certain classes of
metrics defined on these structures. The characterization
of submodular or supermodular functions that have a
monotonicity-linked property (obtained in Section II) is
formulated using only one of the lattice operations, which
opens the possibility of extending the notion of modularity
to semilattices.

Section III is dedicated to submodular and supramod-
ular functions defined on partition lattices.

The extension of semimodularity to functions defined
on semilattices is of interest for the generalization of the
notion of entropy (and of metrics derived from this notion)

from partition lattices to other algebraic structures that
play a role in designing data mining algorithms.

II. Submodular Functions on Lattices

A semilatticeis a semigroup(S, ⋄), where⋄ is a com-
mutative and idempotent operation. This is a pervasive
algebraic structure, with numerous applications in mathe-
matics and computer science.

A lattice is an algebraic structure(L,∨,∧) such
that both(L,∨) and (L,∧) are semilattices and the two
operations∨ and∧ satisfy the absorption laws

(x ∨ y) ∧ y = y and (x ∧ y) ∨ y = y,

for x, y ∈ L.
Every semilattice(S, ⋄) generates a partial order on

S defined byx 6 y if and only if x ⋄ y = y. Thus,
a (L,∨,∧) generates two partial orders onL, “61” and
“62” defined by

x 61 y if x ∨ y = y, andx 62 y if x ∧ y = y

for x, y ∈ L. Note that, by the absorption laws, we have
u 61 v if and only if v 62 u for u, v ∈ L. The partial
orders61 and62 are said to bedualof each other. Unless
stated explicitly otherwise, we shall use the partial order
61 on lattices and will denote it simply by “6”.

If (P,6) and (Q,6) are two partially ordered sets
(posets), thenf : P −→ Q is a monotonicfunction if
u 6 v implies f(u) 6 f(v) for u, v ∈ P . If u < v

implies f(u) < f(v), thenf is said to bestrictly mono-
tonic. The set of monotonic (strictly monotonic) functions
from P to Q is denoted byMON(P,Q) (sMON(P,Q),
respectively).

If u 6 v implies f(u) > f(v) for u, v ∈ S,
then f is an anti-monotonic function; the functionf is
strictly anti-monotonic ifu < v implies f(u) > f(v)
for all u, v ∈ P . The set of anti-monotonic (strictly



anti-monotonic) functions is denoted byA-MON(P,Q)
(sA-MON(P,Q), respectively).

Let (L,∨,∧) be a lattice. A functionf : L −→ R is
submodularif

f(x ∨ y) + f(x ∧ y) 6 f(x) + f(y),

for everyx, y ∈ L.
The functionf : L −→ R is supermodularif

f(x ∨ y) + f(x ∧ y) > f(x) + f(y),

for everyx, y ∈ L.
The classes of submodular functions and supermodu-

lar functions on(L,∨,∧) are denoted bySUBM(L,∨,∧)
and bySUPM(L,∨,∧), respectively. When the lattice is
clear from context we denote these classes bySUBM and
SUPM.

If a function f : L −→ R is both submodular
and supermodular, thenf satisfies the equalityf(x ∨
y) + f(x ∧ y) = f(x) + f(y) for x, y ∈ L. Such
functions are known asmodular functionsor as lattice
valuations. The last term is used in [1], where lattices
that have strictly monotonic valuations are referred to
as metric lattices. We show here that metrics can be
introduced on lattices using submodular or supermodular
functions and that the presence on metrics that have
certain monotonicity properties imply the existence of
submodular or supermodular functions.

EXAMPLE 2.1. Many submodular functions can be nat-
urally associated to finite graphs (see [5], [2]). LetG =
(V,E) be a graph havingV as its set of vertices andE
as its set of edges.

For a set of edgesK of G let v(K) be the number
of vertices incident with an edge inK. It is easy to see
that v : P(E) −→ R is both monotonic and submodular.

Let S be a set of vertices ofG and let t(S) be the
number of edges whose endpoints are inS. Then, t is
monotonic and supermodular. Similarly, ifℓ(S) is the
number of edges that have at least one end point inS,
thenℓ is a monotonic and submodular function.

The next theorem allows the introduction of two
subtypes of submodular functions.

THEOREM 2.1. Let (L,∨,∧) be a lattice.
If f : L −→ R is a function such that

f(t) + f(u ∧ v) 6 f(t ∧ u) + f(t ∧ v), (2.1)

for t, u, v ∈ L, or

f(t) + f(u ∨ v) 6 f(t ∨ u) + f(t ∨ v) (2.2)

for t, u, v ∈ L, thenf is a submodular function onL.

Proof: Suppose thatf(t) + f(u ∧ v) 6 f(t ∧ u) +
f(t∧ v) for t, u, v ∈ L. Substitutingu∨ v for t we obtain

f(u ∨ v) + f(u ∧ v)

6 f((u ∨ v) ∧ u) + f((u ∨ v) ∧ v)

= f(u) + f(v),

by the absorption property ofL, which shows thatf is
submodular.

If f(t)+f(u∨v) 6 f(t∨u)+f(t∨v) for t, u, v ∈ L,
by substitutingu ∧ v for t we obtain

f(u ∧ v) + f(u ∨ v)

6 f((u ∧ v) ∨ u) + f((u ∧ v) ∨ v)

= f(u) + f(v),

so f is again, submodular.
Theorem 2.1 allows us to introduce two classes of

functions on a lattice(L,∨,∧). Namely,SUBM(L,∨,∧)∧
consists of those function that satisfy Inquality (2.1) and
SUBM(L,∨,∧)∨ consists of those function that satisfy
Inquality (2.2).

THEOREM 2.2. If f : L −→ R is a function such that
f(t) + f(u ∧ v) > f(t ∧ u) + f(t ∧ v) for t, u, v ∈ L, or
f(t)+ f(u∨v) > f(t∨u)+ f(t∨v) for t, u, v ∈ L, then
f is a supermodular function onL.

Proof: The proof of this theorem that refers to
supermodularity has an entirely similar argument.

We denote the classes of functions

SUBM(L,∨,∧)∧,SUBM(L,∨,∧)∨,

by SUBM∧, SUBM∨, respectively, when the latticeL is
clear from context.

THEOREM 2.3. Let (L,∨,∧) be a lattice. Any function
f ∈ SUBM∧ is anti-monotonic and any function in
SUBM∨ is monotonic.

Proof: Let f : L −→ R be a function inSUBM∧ and
let t, u be two elements ofL such thatt 6 u. Choosing
v = u in the definition ofSUBM∧ yields

f(t) + f(u) 6 f(t) + f(t ∧ u) = 2f(t),

which impliesf(u) 6 f(t). Thus,f is anti-monotonic.
Similarly, choosing v = u in the definition of

SUBM∨ we obtain

f(t) + f(u) 6 2f(u),

so f(t) 6 f(u), which shows thatf is monotonic.

THEOREM 2.4. If f ∈ SUBM and f is anti-monotonic,
then f ∈ SUBM∧; if f ∈ SUBM and f is monotonic,
thenf ∈ SUBM∨.



Proof: Let f be a submodular and anti-monotonic
function. The submodularity implies

f((t∧u)∧(t∧v))+f((t∧u)∨(t∧v)) 6 f(t∧u)+f(t∧v)

for everyt, u, v ∈ L. Since

(t ∧ u) ∧ (t ∧ v) 6 t

it follows that f(t) 6 f((t ∧ u) ∧ (t ∧ v)). By the
subdistributive inequality that holds in any lattice (see [1]
or [7]) we have

(t ∧ u) ∨ (t ∧ v) 6 t ∧ (u ∨ v),

hencef(t ∧ (u ∨ v)) 6 f((t ∧ u) ∨ (t ∧ v)) becausef is
anti-monotonic. Again, by the anti-monotonicity off ,

f(u ∨ v) 6 f(t ∧ (u ∨ v)),

sof(u∨v) 6 f((t∧u)∨ (t∧v)). Consequently, we have

f(t) + f(u ∧ v) 6 f((t ∧ u) ∧ (t ∧ v))

+f((t ∧ u) ∨ (t ∧ v))

6 f(t ∧ u) + f(t ∧ v).

The second statement of the theorem has a similar argu-
ment.

COROLLARY 2.2. For any lattice(L,∨,∧) we have

SUBM∨ = SUBM ∩ MON,

SUBM∧ = SUBM ∩ A-MON,

SUPM∨ = SUPM ∩ MON,

SUPM∧ = SUPM ∩ A-MON.

For a functionf : L −→ R define the functions
κf : L2 −→ R>0 andλf : L2 −→ R>0 by

κf(x, y) = f(x ∧ y)− f(y),

λf (x, y) = f(x ∨ y)− f(y)

for x, y ∈ L. Note thatf is submodular (supermodular) if
and only ifκf (x, y)+λf (x, y) 6 0 (κf(x, y)+λf (x, y) >
0). The functionsκf and λf are intended as abstract
counterparts of conditional entropy.

The next result shows that the monotonicity properties
of κf andλf in their first argument imply monotonicity
properties forf , while monotonicity properties ofκf and
λf in their second argument imply modularity properties
for f .

THEOREM 2.5. Let(L,∨,∧) be a lattice. Iff ∈ SUBM∧,
thenκf is anti-monotonic in its first argument and mono-
tonic in the second. Iff ∈ SUBM∨, thenλf is monotonic
in its first argument and anti-monotonic in the second.

Conversely, ifκf is anti-monotonic in its first argu-
ment, thenf is anti-monotonic; ifκf is monotonic in its
second argument, thenf is submodular.

Also, ifλf is monotonic in its first argument, thenf is
monotonic; ifλf is anti-monotonic in its second argument,
thenf is supermodular.

Proof: The anti-monotonicity ofκf in its first argu-
ment follows directly from the anti-monotonicity off . To
prove the monotonicity ofκf in its second argument let
y, z ∈ L be such thaty 6 z. The definition ofSUBM∧

allows us to write

f(z) + f(x ∧ y) 6 f(z ∧ x) + f(z ∧ y)

= f(z ∧ x) + f(y) (becausey 6 z),

which translates intoκf (x, y) 6 κf (x, z).
Similarly, the monotonicity ofλf in its first argument

follows from the monotonicity off . To prove the anti-
monotonicity ofλf in its second argument, lety, z ∈ L

be such thaty 6 z. Sincef ∈ SUBM∨ we have

f(y) + f(x ∨ z) 6 f(y ∨ x) + f(y ∨ z)

= f(y ∨ x) + f(z) (becausey 6 z),

which amounts toλf (x, z) 6 λf (x, y).
For the converse implications suppose thatκf is anti-

monotonic in its first argument, sox1 6 x2 implies
κf (x1, y) > κf (x2, y), that is f(x1 ∧ y) > f(x2 ∧ y)
for every y ∈ L. Choosingy = x2 it follows that
f(x1) > f(x2), that is,f is anti-monotonic.

Suppose now thatκf is monotonic in its second
argument, that isy1 6 y2 implies f(x ∧ y1) − f(y1) >

f(x ∧ y2)− f(y2). Choosingy2 = x ∨ y1 yields

f(x ∧ y1) + f(x ∨ y1) 6 f(y1) + f(x),

which shows the submodularity off .
Similar arguments can be made for the last part of

the theorem involving the functionδf .

THEOREM 2.6. Let (L,∨,∧) be a lattice.
If f ∈ SUBM∧, thenκf(u, v)+κf (v, w) > κf (u,w)

for u, v, w ∈ L.
If f ∈ SUBM∨, thenλf (u, v)+λf (v, w) > λf (u,w)

for u, v, w ∈ L.

Proof: It is easy to see that by expressingκf in terms
of f the inequality that we need to prove is equivalent to

f(u ∧ v) + f(v ∧ w) > f(u ∧w) + f(v),

which holds by the definition ofSUBM∧. The proof of
the second part is similar.

Note thatκf (x, x) = 0 for f ∈ SUBM∧ andx ∈ L.
Similarly, λf (x, x) = 0 for f ∈ SUBM∨ andx ∈ L.

For f ∈ SUBM∧ define the mappingdf : L2 −→ R

as

df (x, y) = κf (x, y)+κf (y, x) = 2f(x∧y)−f(x)−f(y)



for x, y ∈ L. Similarly, for g ∈ SUBM∨, let δf : L2 −→
R be given by

δg(x, y) = λg(x, y)+λg(y, x) = 2g(x∨y)−f(x)−f(y)

for x, y ∈ L.
It follows immediately from Theorem 2.6 thatdf is

a semimetric onL, whenf belongs toSUBM∧ and that
δg has the same property ifg ∈ SUBM∨. If the functions
involved are insMON (in the first case) or insA-MON
(in the second), thendf or δg are metrics.

Conversely, if df is a semimetric onL, where
df (x, y) = 2f(x∧y)−f(x)−f(y), thenf ∈ SUBM∧. In-
deed, in this case, the triangular inequality ofdf amounts
to

2f(x ∧ y)− f(x)− f(y)

+2f(y ∧ z)− f(y)− f(z)

> 2f(x ∧ z)− f(x)− f(z),

for x, y, z ∈ L, which is clearly equivalent to the defining
equality of SUBM∧. Similarly, if dg is a semimetric on
L, g belongs toSUBM∨.

III. Submodular Functions on the Lattice of Partitions

A partition of a non-empty setS is a collection of non-
empty subsets ofS, π = {Bi | i ∈ I} such thati, j ∈ I

and i 6= j implies Bi ∩ Bj = ∅ and
⋃

i∈I Bi = S. The
subsetsBi are referred asblocksof π. The set of partitions
of a setS is denoted byPART(S).

If π, τ ∈ PART(S) we write π 6 τ if every
block of π is included in a block ofτ . This relation
between partitions is a partial order. The largest element of
the partially ordered set(PART(S),6) is the one-block
partition ωS = {S}, while the smallest element is the
partitionαS = {{x} | x ∈ S}.

We assume from now on that all partitions are con-
sidered over finite sets.

The partial ordered set(PART(S),6) is actually a
lattice. The meet of two partitionsπ ∧ τ is the partition
of S whose blocks are the non-empty intersections of the
form B ∩ C, whereB ∈ π andC ∈ σ.

Consider the bipartite graph Gπ,σ having
{B1, . . . , Bm, C1, . . . , Cn} as its vertices, where

π = {B1, . . . , Bm} andσ = {C1, . . . , Cn}.

An edge exists betweenBi andCj if and only ifBi∩Cj 6=
∅. The blocks of the partitionπ ∧ σ consist of non-empty
sets of the formBi ∩ Cj and correspond to the edges of
Gπ,σ.

Let C1, . . . , Ck be the connected components ofGπ,σ.
For every connected componentC we have

⋃

{Bi | Bi ∈ C} =
⋃

{Cj | Cj ∈ C}

and that the blocks of the partitionπ ∨ σ have the form
⋃

C.
A partition π covers a partitionµ in (PART(S),6)

if π can be obtained fromµ by fusing two blocks ofµ.
Partition lattices are prototypical for the so called upper
semimodular lattices [1], characterized by the following
property: if π1 6= π2 and bothπ1, π2 cover a partitionσ,
theπ1 ∨ π2 covers bothπ1 andπ2.

If π ∈ PART(S) and∅ 6= C ⊆ S, we denote byπC

the partitionπC = {B ∩ C | B ∈ π}. This is thetrace
of π on C.

Note that if π, σ ∈ PART(S), π = {B1, . . . , Bn},
andσ = {C1, . . . , Cn}, then we have

π ∧ σ = πC1
+ · · ·+ πCn

= σB1
+ · · ·+ σBm

. (3.3)

Let S be a finite set such that|S| > 2 and letβ be a
number,β > 1.

For a partitionπ = {B1, . . . , Bm} ∈ PART(S) define
the functionfS : PART(S) −→ R as

fS(π) = b



1−
m
∑

j=1

(

|Bj |

|S|

)β



 ,

where β > 1. Then, fS(ωS) = 0 and fS(αS) =
b(1− |S|β−1).

Let S1, . . . , Sℓ be ℓ non-empty and pairwise dis-
joint sets and letS =

⋃ℓ
k=1 Sk. Assume thatπk =

{Bk1, . . . , Bkmk
} is a partition onSk for 1 6 k 6 ℓ.

Then, the collection of sets{Bkj | 1 6 k 6 ℓ, 1 6 j 6

mk} is a partition of the setS denoted byπ1 + · · ·+ πℓ.
We have

fS(π1+· · ·+πℓ) =

ℓ
∑

k=1

(

|Sk|

|S|

)β

fSk
(πk)+fS({S1, . . . , Sℓ}).

(3.4)
Therefore, taking into account Equalities (3.3) we can
write

fS(π ∧ σ) =

n
∑

j=1

(

|Cj |

|S|

)β

fCj
(πCj

) + fS(σ).

By the definition ofκfS we have

κfS (π, σ) = fS(π∧σ)−fS(σ) =

n
∑

j=1

(

|Cj |

|S|

)β

fCj
(πCj

).

(3.5)

LEMMA 3.1. Let φ : [0, 1] −→ R be a convex function
such that φ(x) 6 x for x ∈ [0, 1], w1, . . . , wn be
n positive numbers such that

∑n
i=1 wi = 1, and let



a1, . . . , an ∈ [0, 1]. We have

1− φ

(

n
∑

i=1

wiai

)

− φ

(

n
∑

i=1

wi(1− ai)

)

>

n
∑

i=1

φ(wi)(1 − φ(ai)− φ(1 − ai)).

Proof: By Jensen’s inequality applied toφ we have

φ

(

n
∑

i=1

wiai

)

6

n
∑

i=1

wiφ(ai),

φ

(

n
∑

i=1

wi(1− ai)

)

6

n
∑

i=1

wiφ(1 − ai).

Taking into account that
∑n

i=1 wi = 1 we have

1− φ

(

n
∑

i=1

wiai

)

− φ

(

n
∑

i=1

wi(1− ai)

)

>

n
∑

i=1

wi(1 − φ(ai)− φ(1− ai))

>

n
∑

i=1

φ(wi)(1 − φ(ai)− φ(1− ai))

becausewi > φ(wi) for 1 6 i 6 n.

LEMMA 3.2. Letπ ∈ PART(S) and letC,D be two non-
empty disjoint subsets ofS. We have

|C|βfC(πC)+ |D|βfD(πD) 6 (|C|+ |D|)βfC∪D(πC∪D).

Proof: Let π = {B1, . . . , Bn}. Define

wi =
|Bi ∩ (C ∪D)|

|C ∪D|
, ai =

|Bi ∩C|

|Bi ∩ (C ∪D)|

for 1 6 i 6 n, so 1− ai =
|Bi∩D|

|Bi∩(C∪D)| .
By Lemma 3.1 applied to the functionφ(x) = xβ ,

that is convex on[0, 1] whenβ > 1 we have:

1−

(

n
∑

i=1

|Bi ∩ C|

|C ∪D|

)β

−

(

n
∑

i=1

|Bi ∩D|

|C ∪D|

)β

>

n
∑

i=1

(

|Bi ∩ (C ∪D)|

|C ∪D|

)β
(

1−

(

|Bi ∩ C|

|Bi ∩ (C ∪D)|

)β

−

(

|Bi ∩D|

|Bi ∩ (C ∪D)|

)β
)

,

which is equivalent to the inequality of the lemma.

THEOREM 3.1. The functionfS : PART(S) −→ R is
anti-monotonic and submodular.

Proof: To prove thatfS is anti-monotonic it suffices
to show that if π 6 τ such that τ covers π, then
f(π) > f(τ).

Suppose thatπ = {B1, . . . , Bm}; without loss of
generality we may assume thatτ results fromπ by fusing
the blocksBm−1 andBm. SinceBm−1 andBm are non-
empty sets we have|Bm−1| > 1 and |Bm| > 1 which
implies |Bm−1|β + |Bm|β 6 |Bm−1 ∪Bm|β . Therefore,

fS(π) = b



1−
m
∑

j=1

(

|Bj |

|S|

)β





> b



1−
m−2
∑

j=1

(

|Bj |

|S|

)β

−

(

|Bm−1 ∪Bm|

|S|

)β





= fS(τ),

which allows us to conclude thatfS is indeed anti-
monotonic.

To prove thatfS is submodular we shall use the
second part of Theorem 2.5 and show that the function
κfS (π, σ) is monotonic in its second argument.

Let π, σ, τ ∈ PART(S) such thatσ 6 τ andτ covers
σ. Again, we may assume without loss of generality that
σ = {C1, . . . , Cn} and τ is obtained fromσ by fusing
Cn−1 andCn. By Equality (3.5) it suffices to show that

|Cn−1|
βfCn−1

(πCn−1
) + |Cn|

βfCn
(πCn

)

6 |Cn−1 ∪ Cn|
βfCn−1∪Cn

(πCn−1∪Cn
),

which holds by Lemma 3.2.

IV. Further Work

The characterization of submodular (or supermodular)
monotonic and anti-monotonic functions provided by
Corollary 2.2 makes use only of one of the operations of
the lattice. This makes it possible to extend the notions of
submodularity and supermodularity to functions defined
on semilattices. This extension is relevant to defining
entropies for set covers and metrics on the space of
covers of a set. In turn, metrics on set covers can help
extending well-known data mining algorithms that make
use of the metric space of partitions in feature selection
and classification to multi-valued attributes.
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