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Abstract. We propose a novel approach for the estimation of the size of training
sets that are needed for constructing valid models in machine learning and data
mining. We aim to provide a good representation of the underlying population
without making any distributional assumptions.
Our technique is based on the computation of the standard deviation of the χ2-
statistics of a series of samples. When successive statistics are relatively close,
we assume that the samples produced represent adequately the true underlying
distribution of the population, and the models learned from these samples will
behave almost as well as models learned on the entire population.
We validate our results by experiments involving classifiers of various levels of
complexity and learning capabilities.

1 Introduction
Estimating a sample size that allows the inference of a good model is an important part of

the learning process. We seek to determine the minimum size of a sample which is very likely
to be a “fair” representative of the underlying population. Models learned from these samples
will behave almost as well as models learned on the entire population and any increase in the
size of the sample would result in insignificant increases in the quality of the models.

Our goal is to determine sample sizes that are sufficient to ensure that these samples ade-
quately represent the underlying population. These samples are used as training sets for con-
structing models comparable in performance with those inferred from the entire population,
but are cheaper to build.

Sections 2 and 3 describe in detail our approach for finding the size of a sample from a data
set and a population respectively. The experimental work is presented in Section 4.

2 Estimating the Size of a Sample from Data
Let U = {u1, u2, . . . , un} be a set of attributes. The set of possible states for attribute ui,

Dom(ui), is assumed to be finite and is commonly referred to as domain of ui. The notion of
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domain of attributes is extended to sets of attributes by defining the set Dom(V ) for the set of
attributes V ⊆ U as Dom(V ) =

∏
v∈V Dom(v).

A dataset of U is a multi-set D of tuples t ∈ Dom(U). The multiplicity of a member t of
D is the numberMD(t) which equals the number of occurrences of tuple t in D. The size of
D is |D| =

∑
t∈dom(U)MD(t).

Let PU (t) denote the unknown joint probability distribution of U where t ∈ Dom(U).
Define the λ-active domain of U to be the set AdomU (λ) = {t ∈ Dom(U) | PU (t) ≥ λ},
where 0 ≤ λ < 1 is a user specified parameter which we refer to as the outlier threshold.

Definition 2.1. NλS = (MS(t1), . . . ,MS(tk)) is the extracted frequency vector of data sam-
ple S for λ.

If ELEM(D)−Adom
D

U (λ) 6= ∅, we add an extra tuple to account for those tuples consid-
ered as outliers, that is, we set k = m+ 1 andMS(tm+1) = |S| −

∑m
i=1MS(ti); otherwise

we set k = m.
Since the tuples of sample S are i.i.d., we can regard the frequency vector NλS for an

arbitrary sample S of fixed size q from D as a random vector with distribution

NλS ∼ Multinomial

(
q,
MD(t1)

|D|
, . . . ,

MD(tk)

|D|

)
, (1)

where q=
∑k
i=1MS(ti) and MD(tk)= |D|−

∑k−1
i=1 MD(ti).

Define the χ2-statistics of sample S for outlier threshold λwith respect to target probability
distribution p = (p1, . . . , pk) as X 2

S(λ,p) =
∑k
i=1

(MS(ti)−qpi)2
qpi

. We refer to X 2
S(λ,p) as

χ2-statistics, because if NλS ∼ Multinomial (q, p1, . . . , pk) then, as q → ∞, the distribution
of the random variable X 2

S(λ,p) converges in distribution to χ2-distribution with k− 1 degree
of freedom (Pearson, 1900). We use X 2

S(λ,p) as a measure of how close NλS is in representing
the target distribution p. As we increase the sample size q, by the strong law of large numbers,
X 2
S(λ,p) becomes smaller.

Our aim is to estimate q, the size of a sample from data, such that the extracted frequency
vectors of the samples of size q are likely to closely represent the empirical distribution of D
for those tuples that are not λ-outliers. Therefore, we specify the target distribution to be the
empirical distribution of the data and define χ2-statistics of data sample S for outlier threshold
λ with respect to empirical distribution of data set D to be

X 2
S(λ,D) =

k∑
i=1

(
MS(ti)− qMD(ti)

|D|

)2
qMD(ti)
|D|

=
|D|
q

k∑
i=1

M2
S(ti)

MD(ti)
− q.

Let S1, . . . ,Sz be repeatedly drawn z samples of a fixed size q from D. Given a threshold
λ we compute X 2

Si(λ,D) for each Si followed by This process is summarized in Algorithm 1,
where σ̂q is the standard deviation among values X 2

Si(λ,D) for different i.
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Algorithm 1: The pseudocode for finding the size of a sufficient training set from data
set D.

foreach sample size q from smallest to largest do
draw data samples of size q: S1, . . . ,Sz with replacement from data set D;
compute the standard deviation σ̂q of sequence X 2

S1(λ,D), . . . ,X 2
Sz (λ,D);

output: sample size q such that for any sample size v ≥ q we have σ̂q ≈ σ̂v

3 An Iterative Estimation of the Size of a Sample from a
Population

We apply our approach to estimate the size of a fair sample from a population without
having a data set at hand. Since PU (t) is unknown, we assume that AdomU (λ) = {t1, . . . , tm}
for some outlier threshold λ.

Definition 3.1. The extracted frequency vector of a population sample S for outlier threshold
λ is Mλ

S = (MS(t1), . . . ,MS(tk)) where, as in Definition 2.1, we have two cases: (1) if
Dom(U) −AdomU (λ) 6= ∅ we add an extra tuple to account for those tuples considered as
outliers, that is, we set k = m+ 1 andMS(tm+1) = |S| −

∑m
i=1MS(ti), and (2) otherwise,

that is, if Dom(U) = AdomU (λ) we set k = m.

Informally, we consider a sample of size q as a λ-fair representative of the population if
Mλ
S/q closely approximates the population’s true distribution vector of the tuples in AdomU (λ).

Similar to previous section, we treat Mλ
S for arbitrary population sample S of size q as a ran-

dom vector Mλ
S ∼ Multinomial (q, PU (t1), . . . , PU (tk)), where PU (tk) = 1−

∑k−1
i=1 PU (ti).

However, the probabilities PU (ti) for 1 ≤ i ≤ k are unknown. Hence, we define the random
probability vector p = (p1, . . . , pk) to represent the occurrence of a k-dimensional probability
distribution as the true underlying distribution of the population. Then, p is represented by
the probability space (Ω,P(Ω), f) of k-dimensional probability distribution vectors where the
sample space Ω is a standard (k − 1)-simplex.

Note that X 2
S(λ,p) is a random variable itself with values in R≥0. We approximate the

χ2-statistics of a population sample S with respect to the true underlying distribution by the
conditional expected value of X 2

S(λ,p) given that we have another sample of the same size
from the same population at hand. This conditioned sample approximates the shape of the
probability distribution of p (the second order distribution) if it is large enough to unbiasedly
represent the underlying distribution of the population. Let S1, . . . ,S2z be a sequence of inde-
pendent samples of size q drawn uniformly at random with replacement from the underlying
population.

We compute the conditional expected value of χ2-statistics (CECS statistics)E[X 2
Si(λ,p)|Sz+i]

for 1 ≤ i ≤ z. This statistics is used as a substitute for the actual χ2-statistics of Si with
respect to target distribution PU . Next, we we compute the standard deviation among the
CECS statistics of Si given Sz+i for 1 ≤ i ≤ z. If q is large enough, then the probabil-
ity distributions captured by the frequencies extracted from Si and Sz+i would be similar to
PU and thus, similar to each other. Therefore, the variation in CECS statistics is expected
to be small. Next, observe that P (S`|p) =

∏k
j=1 p

MS`
(tj)

j . If we further assume the prior,
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p ∼ Dirichlet(µ1, . . . , µk) for µ1, . . . , µk > 0, then, it can be shown that f(p|S`) follows
the Dirichlet distribution, Dirichlet(α1, . . . , αk) of order k ≥ 2.

We draw (with replacement) simple random samples S1, . . . ,S2z of size q from OP, where
|OP| is a domain-dependent multiple of q and the larger the size of the observation pool is
relative to q, the more reliable is the conclusion of the process. E[X 2

Si(λ,p)|Sz+i] is evaluated
for each i. If the standard deviation among conditional expectations is sufficiently small and
stabilizes at a certain value of q, then we choose this value of q as the threshold of the size
of fair samples or adequate training/evaluation sets. Otherwise, we increase q and repeat the
process.

In this iterative process we may need to expand the observation pool to make sure it is a sub-
stantial multiple of q. As we add new observations to our pool, we need to update Adom

OP

U (λ),
the set of tuples to be considered according to outlier threshold λ, and subsequently k, the num-
ber of dimensions of the probability space. Observe that as we expand the observation pool
OP, Adom

OP

U (λ) becomes a closer approximation of the set AdomU (λ). The following pseu-
docode explains the process of finding the size of a fair sample from a population as explained
in this section.

Algorithm 2: The pseudocode for finding size of a sufficient training set from a popula-
tion.

foreach sample size q from smallest to largest do
if ¬(|OP| >> q) then

expand the OP such that |OP| � q;

evaluate Adom
OP

U (λ) and find k based on this set;
draw independent samples of size q: S1,S2, . . . ,S2z (with replacement) from OP;
compute the standard deviation σ̂q of sequence
E[X 2

S1(λ,p)|T1], . . . , E[X 2
Sz (λ,p)|Tz];

output: sample size q such that for any size v ≥ q we have σ̂q ≈ σ̂v

4 Experimental Results

In the first experiment we employed the Algorithm 1 to estimate the size of a data sample
from the Bank Marketing Data Set (Moro et al., 2011) which contains 45, 211 records (see
Figure 1). For λ = 0, the standard deviation drops to its minimal level when q is around 5, 000
so a sample of size 5, 000 is very likely to fairly represent the entire data which is of size
45, 211. For λ = 0.00039 a training sample of size 2, 000 is suitable.

In the next experiment we evaluated our approach for determining the size of a represen-
tative sample from a population as summarized in Algorithm 2 for ε = 0.005. We simulated
the process of gathering observations from a population in order to expand the observation
pool by synthetically generating tuples of four attributes using a multinomial distribution with
randomly selected parameters, |Dom(U)| = 24 and λ = 0 and we executed the Algorithm 2
with z = 1000.
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FIG. 1 – Standard deviation of χ2-statistics of data samples with respect to changes in sam-
ple size q for Bank Marketing data. Each curve corresponds to a particular value of outlier
threshold λ listed in the right hand side.

FIG. 2 – Average and STD for 20-NN

For each q we generated one hundred samples of size q from a synthetic data set and used
WEKA to learn a k-nearest neighbor (k-NN) classifier from each sample. Then, we evaluated
the prediction performance of the classifiers using a fixed test set of size 10, 000 which is
large enough to represent unbiasedly the underlying distribution of the domain. The average
and standard deviation of the percentage of correctly classified instances (CCI) are shown in
Figure 2. Similar results were obtained for Bayesian Networks.

On the other hand, experiments with naive Bayes classifiers yield quite different results
shown in Figure 3. The improvement in average percentage of CCI as a result of increasing
the sample size q is much smaller than in the previous cases and the average percentage of
CCI reaches its peak at sample size q = 2, 000 and then slightly decreases to a constant level
afterwards. Finally, the standard deviation of the percentage of CCI converges to zero slower
than previous two cases. These differences are due to the fact that naive Bayes classifiers are
less dependent on the global joint probability distribution than k-NN classifiers and Bayesian
networks because of the naive independence assumption.

The experimental results show that it does not make sense to go beyond the size that we
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FIG. 3 – The average and standard deviation of the percentage of correctly classified instances
for naive Bayes classifiers

determine here, because the improvement we gain in the performance is insignificant or inex-
istent. If the evaluated size of the training set is prohibitively large, then, we may be able to
reduce the sample size approximation by analyzing it in the context of a specific classifier.
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Résumé
Nous proposons une nouvelle approche pour l’estimation de la taille des ensembles d’ap-

prentissage qui sont nécessaires pour construire des modèles valides dans l’extraction de connais-
saices. Nous visons à fournir une bonne représentation de l’ensemble de données sans faire des
hypothèses de répartition.

Notre technique est basée sur le calcul de l’écart-type des χ2-statistiques d’une série d’échan-
tillons. Lorsque les statistiques successives sont relativement proches, nous supposons que les
échantillons produits représentent adéquatement la vraie distribution sous-jacente de la popula-
tion, et les modèles tirés de ces échantillons se comportent presque aussi bien que les modèles
appris sur l’ensemble de la population.

Nous validons nos résultats par des travaux expérimentaux impliquant une variété des clas-
sificateurs.


