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Abstract

We present an algorithm for clustering nominal data that
is based on a metric on the set of partitions of a finite set of
objects; this metric is defined starting from a lower valu-
ation of the lattice of partitions. The proposed algorithm
seeks to determine a clustering partition such that the to-
tal distance between this partition and the partitions deter-
mined by the attributes of the objects has a local minimum.
The resulting clustering is quite stable relative to the order-
ing of the objects.

1 Introduction

Clustering is an unsupervised learning process that parti-
tions data such that similar data items are grouped together
in sets referred to as clusters. This activity is important
for condensing and identifying patterns in data. Despite
the substantial effort invested in researching clusteringalgo-
rithms by the data mining community, there are still many
difficulties to overcome in building clustering algorithms.
Indeed, as pointed in [12] “there is no clustering technique
that is universally applicable in uncovering the variety of
structures present in multidimensional data sets”.

In this paper we focus on an incremental clustering algo-
rithm that can be applied to nominal data, that is, to data
whose attributes have no particular natural ordering. In
general clustering, objects to be clustered are represented
as points in ann-dimensional spaceRn and standard dis-
tances, such as the Euclidean distance is used to evaluate
similarity between objects. For objects whose attributes are

nominal (e.g., color, shape, diagnostic, etc.), no such natural
representation of objects is possible, which leaves only the
Hamming distance as a dissimilarity measure, a poor choice
for discriminating among multi-valued attributes of objects.

Incremental clustering has attracted a substantial amount
of attention starting with Hartigan’s algorithm [11] imple-
mented in [6]. A seminal paper by D. Fisher [10] contained
COBWEB, an incremental clustering algorithm that in-
volved restructurings of the clusters in addition to the incre-
mental additions of objects. Incremental clustering related
to dynamic aspects of databases were discussed in [4, 5]. It
is also notable that incremental clustering has been used in
a variety of applications [13, 14, 7, 9]. The interest in incre-
mental clustering stems from the fact that the main memory
usage is minimal since there is no need to keep in memory
the mutual distances between objects and the algorithms are
scalable with respect to the size of the set of objects and the
number of attributes.

An object systemis a pairS = (S, H), whereS is set
called the set of objects ofS, H = {A1, . . . , Am} is a set of
mappings defined onS. We assume that for each mapping
Ai (referred to as an attribute ofS) there exists a nonempty
setEi called the domain ofAi such thatAi : S −→ Ei

for 1 ≤ i ≤ m. The value of an attributeAi on an object
t is denoted byt[Ai]. Our terminology is consistent with
the terminology used in relational databases, where a table
can be regarded as an object system; however, the notion
of object system is more general because objects have an
identity as members of the setS, instead of being regarded
as justm-tuples of values. In this spirit, we shall refer to
t[Ai] asprojection oft onAi.

LetS be a set. A partition onS is a non-empty collection
of subsets ofS indexed by a setI, π = {Bi | i ∈ I} such



that
⋃

i∈I Bi = S andi 6= j impliesBi ∩ Bj = ∅. The sets
Bi are commonly referred to as theblocks of the partition
π. The set of partitions onS is denoted byPART(S).

PART(S) can be naturally equipped with a partial order.
For π, σ ∈ PART(S) we write π ≤ σ if every blockB

of π is included in a block ofσ, or equivalently, if every
block of σ is an exact union of blocks ofπ. This partial
order generates a lattice structure; this means that for every
π, π′ ∈ PART(S) there is a least partitionπ1 such thatπ ≤
π1 andπ′ ≤ π1 and there is a largest partitionπ2 such that
π2 ≤ π andπ2 ≤ π′. The first partition is denoted byπ∨π′,
while the second is denoted byπ ∧ π′.

An attributeA of an object systemS = (S, H) generates
a partitionπA of the set of objectsS, where two objects be-
long to the same block ofπA if they have the same projec-
tion onA. We denote byBA

a the block ofπA that consists
of all tuples ofS whoseA-component isa. Note that for
relational databases,πA is the partition of the set of rows of
a table that is obtained by using thegroup by A option of
select in standard SQL.

A clustering of an object systemS = (S, H) is defined as
a partitionκ of S. We seek to find clusterings starting from
their relationships with partitions induced by attributes. As
we shall see, this is a natural approach for nominal data.

The mappingv : PART(S) −→ R by v(π) =
∑n

i=1 |Bi|2, whereπ = {B1, . . . , Bn} is a lower valuation
onPART(S), that is,

v(π ∨ σ) + v(π ∧ σ) ≥ v(π) + v(σ) (1)

for π, σ ∈ PART(S). For every lower valuationv the map-
pingd : (PART(S))2 −→ R defined byd(π, σ) = v(π) +
v(σ) − 2v(π ∧ σ) is a metric onPART(S) (see [2, 1, 15]).
A special property of this metric allows the formulation of
an incremental clustering algorithm.

2 AMICA - A Metric Incremental Clustering
Algorithm

Let S = (S, H) be an object system. We seek a clus-
teringκ = {C1, . . . , Cn} ∈ PART(S) such that the total
distance fromκ to the partitions of the attributes:D(κ) =
∑n

i=1 d(κ, πAi) is minimal. The definition ofd allows us
to write:

d(κ, πA) =

n
∑

i=1

|Ci|
2 +

mA
∑

j=1

|BA
aj
|2 −2

n
∑

i=1

mA
∑

j=1

|Ci ∩BA
aj
|2,

Suppose now thatt is a new object,t 6∈ S, and letZ =
S ∪ {t}. The following cases may occur:

1. the objectt is added to an existing clusterCk;

2. a new cluster,Cn+1 is created that consists only oft.

Also, from the point of view of partitionπA, t is added to
the blockBA

t[A], which corresponds to the valuet[A] of the
A-component oft.

In the first case let:

κ(k) = {C1, . . . , Ck−1, Ck ∪ {t}, Ck+1, . . . , Cn}

πA′
= {BA

a1
, . . . , BA

t[A] ∪ {t}, . . . , BA
amA

}

be the partitions ofZ. Now, we have:

d(κ(k), π
A′

) − d(κ, πA)

= (|Ck| + 1)2 − |Ck|
2 + (|BA

t[A]| + 1)2

−|BA
t[A]|

2 − 2(2|Ck ∩ BA
t[A]| + 1)

= 2|Ck| + 1 + 2|BA
t[A]| + 1 − 4|Ck ∩ BA

t[A]| − 2

= 2|Ck ⊕ BA
t[A]|.

The minimal increase ofd(κ(k), π
A′

) is given by:

min
k

∑

A

2|Ck ⊕ BA
t[A]|.

In the second case we deal with the partitions:

κ′ = {C1, . . . , . . . , Cn, {t}}

πA′
= {BA

a1
, . . . , BA

t[A] ∪ {t}, . . . , BA
amA

}

and we haved(κ′, πA′
) − d(κ, πA) = 2|BA

t[A]|. Conse-
quently,

D(κ′) − D(κ) =

{

2 ·
∑

A |Ck ⊕ BA
t[A]| in Case 1

2 ·
∑

A |BA
t[A]| in Case 2.

Thus, ifmink

∑

A |Ck ⊕ BA
t[A]| <

∑

A |BA
t[A]| we addt to

a clusterCk for which
∑

A |Ck ⊕ BA
t[A]| is minimal; other-

wise, we create a new one-object cluster.
Incremental clustering algorithms are affected, in gen-

eral, by the order in which objects are processed by the
clustering algorithm. Moreover, as pointed in [8], each such
algorithm proceeds typically in a hill-climbing fashion that
yields local minima rather than global ones. For some incre-
mental clustering algorithms certain object orderings may
result in rather poor clusterings. To diminish the ordering
effect problem we expand the initial algorithm by adopting
the “not-yet” technique introduced by Roure and Talavera
in [16]. The basic idea is that a new cluster is created only
when the inequality:

r(t) =

∑

A |BA
t[A]|

mink

∑

A |Ck ⊕ BA
t[A]|

< α,

is satisfied, that is, only when the effectr(t) of adding the
objectt on the total distance is significant enough. Hereα



is a parameter provided by the user, such thatα <= 1. Note
that if α = 1, we make no use of theNOT-YET buffer.

We formulate now a metric incremental clustering algo-
rithm (referred to as AMICA – an acronym of the previ-
ous five words) that is using the properties of distanced.
The variablenc denotes the current number of clusters. If
α < r(t) ≤ 1, then we place the objectt in a NOT-YET
buffer. If r(t) ≤ α a new cluster that consists of the ob-
ject {t} is created. Otherwise, that is ifr(t) > 1, the
objectt is placed in an existing clusterCk that minimizes
∑

A |Ck ⊕ BA
t[A]|; this limits the number of new singleton

clusters that would be otherwise created. After all objects
of the setS have been examined, the objects contained by
theNOT-YET buffer are processed withα = 1. This pre-
vents new insertions in the buffer and results in either plac-
ing these objects in existing clusters or in creating new clus-
ters. The pseudocode of the algorithm is given next:

Input: data set S and threshold α

Output: clustering C1, . . . , Cnc

Method:
nc = 0;
ℓ = 1;
while S 6= ∅ do

select an object t;
S = S − {t};
if

∑

A |BA
t[A]| ≤ α min1≤k≤nc

∑

A |Ck ⊕ BA
t[A]|

then
nc ++;
create a new single-object

cluster Cnc = {t};
else

r(t) =
P

A |BA
t[A]|

min1≤k≤nc
P

A |Ck⊕BA
t[A]

|

if r(t) > 1
then

k = arg mink

∑

A |Ck ⊕ BA
t[A]|

add t to cluster Ck;
else /* this means α < r(t) ≤ 1 */

place t in NOT-YET buffer;
end if;

endwhile;
process objects in the NOT-YET buffer
as above with α = 1;

3 Experimental Results

We applied AMICA to synthetic data sets produced by
an algorithm that generates clusters of objects having real-
numbered components grouped around a specified number
of centroids. The resulting tuples were discretized using a
specified number of discretization intervals which allowed

us to treat the data as nominal. The experiments were ap-
plied to several data sets with an increasing number of tu-
ples and increased dimensionality and using several permu-
tations of the set of objects. All experiments describe in this
paper usedα = 0.95.

The stability of the obtained clusterings is quite remark-
able. For example, in an experiment applied to a set that
consists of 10,000 objects (grouped by the synthetic data
algorithm around 6 centroids) a first pass of the algorithm
produced 11 clusters; however, most objects (9895) are con-
centrated in the top 6 clusters, which approximate very well
the “natural” clusters produced by the synthetic algorithm.

The next table compares the clusters produced by the
first run of the algorithm with the cluster produced from
a data set obtained by applying a random permutation.

Initial Run Random Permutation
Cluster Size Cluster Size Distribution

(Original cluster)
1 1548 1 1692 1692 (2)
2 1693 2 1552 1548 (1), 3 (3), 1 (2)
3 1655 3 1672 1672 (5)
4 1711 4 1711 1711 (4)
5 1672 5 1652 1652 (3)
6 1616 6 1616 1616 (6)
7 1 7 85 85 (8)
8 85 8 10 10 (9)
9 10 9 8 8 (10)

10 8 10 1 1 (11)
11 1 11 1 1 (7)

Note that the clusters are stable; they remain almost invari-
ant with the exception of their numbering. Similar results
were obtained for other random permutations and collec-
tions of objects.

As expected with incremental clustering algorithms, the
time requirements scale up very well with the number of
tuples. On an IBM T20 system equipped with a 700 MHz
Pentium III and with a 256 MB RAM, we obtained the fol-
lowing results for three randomly chosen permutations of
each set of objects.

Number of Time for 3 Average
objects permutations (ms) time (ms)

2000 131 140 154 141.7
5000 410 381 432 407.7

10000 782 761 831 794.7
20000 1103 1148 1061 1104

Another series of experiments involved the application
of the algorithm to databases that contain nominal data. We
applied AMICA to the mushroom data set from the stan-
dard UCI data mining collection (see [3]). The data set
contains 8124 mushroom records and is typically used as



test set for classification algorithms. In classification ex-
periments the task is to construct a classifier that is able
to predict the poisonous/edible character of the mushrooms
based on the values of the attributes of the mushrooms.
We discarded the class attribute (poisonous/edible) and ap-
plied AMICA to the remaining data set. Then, we identi-
fied the edible/poisonous character of mushrooms that are
grouped together in the same cluster. This yields the clus-
tersC1, . . . , C9:

Cl. Poisonous/Edible Total Percentage of
num. dominant group
1 825/2752 3577 76.9%
2 8/1050 1058 99.2%
3 1304/0 1304 100%
4 0/163 163 100%
5 1735/28 1763 98.4%
6 0/7 7 100%
7 0/192 192 100%
8 36/16 52 69%
9 8/0 8 100%

Note that in almost all resulting clusters there is a dom-
inant character, and for five out of the total of nine clusters
there is complete homogeneity.

A study of the stability of the clusters similar to the one
performed for synthetic data shows the same stability rel-
ative to input orderings as follows from the next table that
describe a clustering obtained under a randomly chosen per-
mutation of the set of objects:

Ci Computed Clusters
First Random Permutation

C′
1 C′

2 C′
3 C′

4 C′
5 C′

6 C′
7 C′

8 C′
9 C′

10
3540 1797 1095 192 1296 8 36 7 137 16

3577 3540 0 37 0 0 0 0 0 0 0
1058 0 0 1058 0 0 0 0 0 0 0
1304 0 8 0 0 1296 0 0 0 0 0
163 0 26 0 0 0 0 0 0 137 0

1763 0 1763 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 7 0 0

192 0 0 0 192 0 0 0 0 0 0
52 0 0 0 0 0 0 36 0 0 16
8 0 0 0 0 0 8 0 0 0 0

Note that the previous table contains mostly zeros. This
shows that the clusters remain essentially stable under input
data permutations (with the exception of the order in which
they are created).

4 Conclusion and Future Work

AMICA provides good quality, stable clusterings for
nominal data, an area of clustering that is less explored than
the standard clustering algorithms that act on ordinal data.
Clusterings produced by the algorithm show a rather low
sensitivity to input orderings.

Further investigations in the behavior of the algorithm
are warranted. For example, we ran AMICA with a rather
high value of the thresholdα = 0.95. Future work will

include an examination of the dependency of the maximal
size of theNOT-YET buffer for various values ofα.

AMICA could be combined with special discretization
algorithms such as metric discretization [17] to obtain a
more general incremental clustering algorithm applicableto
mixed data, that is, to data having both nominal and ordinal
attributes. This is currently work in progress.
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