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Introduction

Euclid’s Elements is by far the most famous mathematical work of classical antiquity, and also has the distinction
of being the world’s oldest continuously used mathematical textbook. Little is known about the author, beyond
the fact that he lived in Alexandria around 300 BCE. The main subjects of the work are geometry, proportion, and
number theory.

Most of the theorems appearing in the Elements were not discovered by Euclid himself, but were the work of
earlier Greek mathematicians such as Pythagoras (and his school), Hippocrates of Chios, Theaetetus of Athens, and
Eudoxus of Cnidos. However, Euclid is generally credited with arranging these theorems in a logical manner, so as to
demonstrate (admittedly, not always with the rigour demanded by modern mathematics) that they necessarily follow
from five simple axioms. Euclid is also credited with devising a number of particularly ingenious proofs of previously
discovered theorems: e.g., Theorem 48 in Book 1.

The geometrical constructions employed in the Elements are restricted to those which can be achieved using a
straight-rule and a compass. Furthermore, empirical proofs by means of measurement are strictly forbidden: i.e.,
any comparison of two magnitudes is restricted to saying that the magnitudes are either equal, or that one is greater
than the other.

The Elements consists of thirteen books. Book 1 outlines the fundamental propositions of plane geometry, includ-
ing the three cases in which triangles are congruent, various theorems involving parallel lines, the theorem regarding
the sum of the angles in a triangle, and the Pythagorean theorem. Book 2 is commonly said to deal with “geometric
algebra”, since most of the theorems contained within it have simple algebraic interpretations. Book 3 investigates
circles and their properties, and includes theorems on tangents and inscribed angles. Book 4 is concerned with reg-
ular polygons inscribed in, and circumscribed around, circles. Book 5 develops the arithmetic theory of proportion.
Book 6 applies the theory of proportion to plane geometry, and contains theorems on similar figures. Book 7 deals
with elementary number theory: e.g., prime numbers, greatest common denominators, etc. Book 8 is concerned with
geometric series. Book 9 contains various applications of results in the previous two books, and includes theorems
on the infinitude of prime numbers, as well as the sum of a geometric series. Book 10 attempts to classify incommen-
surable (i.e., irrational) magnitudes using the so-called “method of exhaustion”, an ancient precursor to integration.
Book 11 deals with the fundamental propositions of three-dimensional geometry. Book 12 calculates the relative
volumes of cones, pyramids, cylinders, and spheres using the method of exhaustion. Finally, Book 13 investigates the
five so-called Platonic solids.

This edition of Euclid’s Elements presents the definitive Greek text—i.e., that edited by J.L. Heiberg (1883-
1885)—accompanied by a modern English translation, as well as a Greek-English lexicon. Neither the spurious
books 14 and 15, nor the extensive scholia which have been added to the Elements over the centuries, are included.
The aim of the translation is to make the mathematical argument as clear and unambiguous as possible, whilst still
adhering closely to the meaning of the original Greek. Text within square parenthesis (in both Greek and English)
indicates material identified by Heiberg as being later interpolations to the original text (some particularly obvious or
unhelpful interpolations have been omitted altogether). Text within round parenthesis (in English) indicates material
which is implied, but not actually present, in the Greek text.

My thanks to Mariusz Wodzicki (Berkeley) for typesetting advice, and to Sam Watson & Jonathan Fenno (U.
Mississippi), and Gregory Wong (UCSD) for pointing out a number of errors in Book 1.
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Fundamentals of Plane Geometry Involving
Straight-Lines
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Definitions

1. A point is that of which there is no part.

2. And a line is a length without breadth.

3. And the extremities of a line are points.

4. A straight-line is (any) one which lies evenly with
points on itself.

5. And a surface is that which has length and breadth
only.

6. And the extremities of a surface are lines.

7. A plane surface is (any) one which lies evenly with
the straight-lines on itself.

8. And a plane angle is the inclination of the lines to
one another, when two lines in a plane meet one another,
and are not lying in a straight-line.

9. And when the lines containing the angle are
straight then the angle is called rectilinear.

10. And when a straight-line stood upon (another)
straight-line makes adjacent angles (which are) equal to
one another, each of the equal angles is a right-angle, and
the former straight-line is called a perpendicular to that
upon which it stands.

11. An obtuse angle is one greater than a right-angle.

12. And an acute angle (is) one less than a right-angle.

13. A boundary is that which is the extremity of some-
thing.

14. A figure is that which is contained by some bound-
ary or boundaries.

15. A circle is a plane figure contained by a single line
[which is called a circumference], (such that) all of the
straight-lines radiating towards [the circumference] from
one point amongst those lying inside the figure are equal
to one another.

16. And the point is called the center of the circle.

17. And a diameter of the circle is any straight-line,
being drawn through the center, and terminated in each
direction by the circumference of the circle. (And) any
such (straight-line) also cuts the circle in half.

18. And a semi-circle is the figure contained by the
diameter and the circumference cuts off by it. And the
center of the semi-circle is the same (point) as (the center
of) the circle.

19. Rectilinear figures are those (figures) contained
by straight-lines: trilateral figures being those contained
by three straight-lines, quadrilateral by four, and multi-
lateral by more than four.

20. And of the trilateral figures: an equilateral trian-
gle is that having three equal sides, an isosceles (triangle)
that having only two equal sides, and a scalene (triangle)
that having three unequal sides.
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21. And further of the trilateral figures: a right-angled
triangle is that having a right-angle, an obtuse-angled
(triangle) that having an obtuse angle, and an acute-
angled (triangle) that having three acute angles.

22. And of the quadrilateral figures: a square is that
which is right-angled and equilateral, a rectangle that
which is right-angled but not equilateral, a rhombus that
which is equilateral but not right-angled, and a rhomboid
that having opposite sides and angles equal to one an-
other which is neither right-angled nor equilateral. And
let quadrilateral figures besides these be called trapezia.

23. Parallel lines are straight-lines which, being in the
same plane, and being produced to infinity in each direc-
tion, meet with one another in neither (of these direc-
tions).

T This should really be counted as a postulate, rather than as part of a definition.
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Postulates

1. Let it have been postulated’ to draw a straight-line
from any point to any point.

2. And to produce a finite straight-line continuously
in a straight-line.

3. And to draw a circle with any center and radius.

4. And that all right-angles are equal to one another.

5. And that if a straight-line falling across two (other)
straight-lines makes internal angles on the same side
(of itself whose sum is) less than two right-angles, then
the two (other) straight-lines, being produced to infinity,
meet on that side (of the original straight-line) that the
(sum of the internal angles) is less than two right-angles
(and do not meet on the other side).*

T The Greek present perfect tense indicates a past action with present significance. Hence, the 3rd-person present perfect imperative "Hithio0w

could be translated as “let it be postulated”, in the sense “let it stand as postulated”, but not “let the postulate be now brought forward”. The

literal translation “let it have been postulated” sounds awkward in English, but more accurately captures the meaning of the Greek.

t This postulate effectively specifies that we are dealing with the geometry of flat, rather than curved, space.
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Common Notions

1. Things equal to the same thing are also equal to
one another.

2. And if equal things are added to equal things then
the wholes are equal.

3. And if equal things are subtracted from equal things
then the remainders are equal.”

4. And things coinciding with one another are equal
to one another.

5. And the whole [is] greater than the part.

 As an obvious extension of C.N.s 2 & 3—if equal things are added or subtracted from the two sides of an inequality then the inequality remains
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Proposition 1

To construct an equilateral triangle on a given finite
straight-line.
C

Let AB be the given finite straight-line.

So it is required to construct an equilateral triangle on
the straight-line AB.

Let the circle BC'D with center A and radius AB have
been drawn [Post. 3], and again let the circle ACE with
center B and radius BA have been drawn [Post. 3]. And
let the straight-lines C A and C'B have been joined from
the point C, where the circles cut one another, to the
points A and B (respectively) [Post. 1].

And since the point A is the center of the circle CDB,
AC is equal to AB [Def. 1.15]. Again, since the point
B is the center of the circle CAE, BC is equal to BA
[Def. 1.15]. But C' A was also shown (to be) equal to AB.
Thus, C'A and CB are each equal to AB. But things equal
to the same thing are also equal to one another [C.N. 1].
Thus, C'A is also equal to CB. Thus, the three (straight-
lines) CA, AB, and BC are equal to one another.

Thus, the triangle ABC' is equilateral, and has been
constructed on the given finite straight-line AB. (Which
is) the very thing it was required to do.

 The assumption that the circles do indeed cut one another should be counted as an additional postulate. There is also an implicit assumption

that two straight-lines cannot share a common segment.
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Proposition 2f

To place a straight-line equal to a given straight-line
at a given point (as an extremity).

Let A be the given point, and BC' the given straight-
line. So it is required to place a straight-line at point A
equal to the given straight-line BC.

For let the straight-line AB have been joined from
point A to point B [Post. 1], and let the equilateral trian-
gle D AB have been been constructed upon it [Prop. 1.1].
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And let the straight-lines AF and BF have been pro-
duced in a straight-line with DA and DB (respectively)
[Post. 2]. And let the circle CGH with center B and ra-
dius BC have been drawn [Post. 3], and again let the cir-
cle GK L with center D and radius DG have been drawn
[Post. 3].
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Therefore, since the point B is the center of (the cir-
cle) CGH, BC is equal to BG [Def. 1.15]. Again, since
the point D is the center of the circle GK L, DL is equal
to DG [Def. 1.15]. And within these, DA is equal to DB.
Thus, the remainder AL is equal to the remainder BG
[C.N. 3]. But BC was also shown (to be) equal to BG.
Thus, AL and BC are each equal to BG. But things equal
to the same thing are also equal to one another [C.N. 1].
Thus, AL is also equal to BC.

Thus, the straight-line AL, equal to the given straight-
line BC, has been placed at the given point A. (Which
is) the very thing it was required to do.

T This proposition admits of a number of different cases, depending on the relative positions of the point A and the line BC. In such situations,

Euclid invariably only considers one particular case—usually, the most difficult—and leaves the remaining cases as exercises for the reader.
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Proposition 3

For two given unequal straight-lines, to cut off from
the greater a straight-line equal to the lesser.

Let AB and C be the two given unequal straight-lines,
of which let the greater be AB. So it is required to cut off
a straight-line equal to the lesser C from the greater AB.

Let the line AD, equal to the straight-line C, have
been placed at point A [Prop. 1.2]. And let the circle
DEF have been drawn with center A and radius AD
[Post. 3].
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And since point A is the center of circle DEF, AE
is equal to AD [Def. 1.15]. But, C is also equal to AD.
Thus, AE and C are each equal to AD. So AF is also
equal to C' [C.N. 1].

C

F

Thus, for two given unequal straight-lines, AB and C,
the (straight-line) AF, equal to the lesser C, has been cut
off from the greater AB. (Which is) the very thing it was
required to do.

Proposition 4

If two triangles have two sides equal to two sides, re-
spectively, and have the angle(s) enclosed by the equal
straight-lines equal, then they will also have the base
equal to the base, and the triangle will be equal to the tri-
angle, and the remaining angles subtended by the equal
sides will be equal to the corresponding remaining an-
gles.

A D

B C E F

Let ABC and DEF be two triangles having the two
sides AB and AC equal to the two sides DE and DF, re-
spectively. (Thatis) AB to DE, and AC to DF. And (let)
the angle BAC (be) equal to the angle EDF'. I say that
the base BC is also equal to the base EF, and triangle
ABC will be equal to triangle DEF, and the remaining
angles subtended by the equal sides will be equal to the
corresponding remaining angles. (Thatis) ABC to DEF,
and ACB to DFE.

For if triangle ABC is applied to triangle DEF,! the
point A being placed on the point D, and the straight-line
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AB on DE, then the point B will also coincide with F,
on account of AB being equal to DE. So (because of)
AB coinciding with DE, the straight-line AC will also
coincide with DF, on account of the angle BAC' being
equal to EDF'. So the point C will also coincide with the
point F, again on account of AC' being equal to DF'. But,
point B certainly also coincided with point E, so that the
base BC will coincide with the base E'F. For if B coin-
cides with F, and C with F, and the base BC does not
coincide with E'F, then two straight-lines will encompass
an area. The very thing is impossible [Post. 1].} Thus,
the base BC will coincide with EF, and will be equal to
it [C.N. 4]. So the whole triangle ABC will coincide with
the whole triangle DEF, and will be equal to it [C.N. 4].
And the remaining angles will coincide with the remain-
ing angles, and will be equal to them [C.N. 4]. (That is)
ABC to DEF, and ACB to DFE [C.N. 4].

Thus, if two triangles have two sides equal to two
sides, respectively, and have the angle(s) enclosed by the
equal straight-line equal, then they will also have the base
equal to the base, and the triangle will be equal to the tri-
angle, and the remaining angles subtended by the equal
sides will be equal to the corresponding remaining an-
gles. (Which is) the very thing it was required to show.

 The application of one figure to another should be counted as an additional postulate.

¥ Since Post. 1 implicitly assumes that the straight-line joining two given points is unique.
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Proposition 5

For isosceles triangles, the angles at the base are equal
to one another, and if the equal sides are produced then
the angles under the base will be equal to one another.

A

D E

Let ABC be an isosceles triangle having the side AB
equal to the side AC, and let the straight-lines BD and
CE have been produced in a straight-line with AB and
AC (respectively) [Post. 2]. I say that the angle ABC is
equal to ACB, and (angle) CBD to BCE.

For let the point F have been taken at random on BD,
and let AG have been cut off from the greater AE, equal
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to the lesser AF' [Prop. 1.3]. Also, let the straight-lines
FC and GB have been joined [Post. 1].

In fact, since AF is equal to AG, and AB to AC,
the two (straight-lines) F'A, AC are equal to the two
(straight-lines) GA, AB, respectively. They also encom-
pass a common angle, F'AG. Thus, the base F'C is equal
to the base G B, and the triangle AF'C will be equal to the
triangle AGB, and the remaining angles subtendend by
the equal sides will be equal to the corresponding remain-
ing angles [Prop. 1.4]. (Thatis) ACF to ABG, and AFC
to AGB. And since the whole of AF is equal to the whole
of AG, within which AB is equal to AC, the remainder
BF is thus equal to the remainder CG [C.N. 3]. But F'C
was also shown (to be) equal to GB. So the two (straight-
lines) BF, FC are equal to the two (straight-lines) CG,
GB, respectively, and the angle BFC (is) equal to the
angle CG B, and the base BC is common to them. Thus,
the triangle BF'C will be equal to the triangle CGB, and
the remaining angles subtended by the equal sides will be
equal to the corresponding remaining angles [Prop. 1.4].
Thus, FBC is equal to GCB, and BCF to CBG. There-
fore, since the whole angle A BG was shown (to be) equal
to the whole angle ACF, within which CBG is equal to
BCF, the remainder ABC' is thus equal to the remainder
ACB [C.N. 3]. And they are at the base of triangle ABC.
And FBC was also shown (to be) equal to GCB. And
they are under the base.

Thus, for isosceles triangles, the angles at the base are
equal to one another, and if the equal sides are produced
then the angles under the base will be equal to one an-
other. (Which is) the very thing it was required to show.

Proposition 6

If a triangle has two angles equal to one another then
the sides subtending the equal angles will also be equal
to one another.

A

B C
Let ABC be a triangle having the angle ABC equal
to the angle ACB. I say that side AB is also equal to side
AC.
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For if AB is unequal to AC then one of them is
greater. Let AB be greater. And let DB, equal to
the lesser AC, have been cut off from the greater AB
[Prop. 1.3]. And let DC have been joined [Post. 1].

Therefore, since DB is equal to AC, and BC (is) com-
mon, the two sides DB, BC are equal to the two sides
AC, CB, respectively, and the angle DBC is equal to the
angle ACB. Thus, the base DC' is equal to the base AB,
and the triangle DBC will be equal to the triangle ACB
[Prop. 1.4], the lesser to the greater. The very notion (is)
absurd [C.N. 5]. Thus, AB is not unequal to AC. Thus,
(it is) equal.f

Thus, if a triangle has two angles equal to one another
then the sides subtending the equal angles will also be
equal to one another. (Which is) the very thing it was
required to show.

t Here, use is made of the previously unmentioned common notion that if two quantities are not unequal then they must be equal. Later on, use

is made of the closely related common notion that if two quantities are not greater than or less than one another, respectively, then they must be

equal to one another.
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Proposition 7

On the same straight-line, two other straight-lines
equal, respectively, to two (given) straight-lines (which
meet) cannot be constructed (meeting) at a different
point on the same side (of the straight-line), but having
the same ends as the given straight-lines.

C
D

A B

For, if possible, let the two straight-lines AC, CB,
equal to two other straight-lines AD, DB, respectively,
have been constructed on the same straight-line AB,
meeting at different points, C' and D, on the same side
(of AB), and having the same ends (on AB). So CA is
equal to DA, having the same end A as it, and CB is
equal to DB, having the same end B as it. And let CD
have been joined [Post. 1].

Therefore, since AC' is equal to AD, the angle ACD
is also equal to angle ADC [Prop. 1.5]. Thus, ADC (is)
greater than DCB [C.N. 5]. Thus, C' DB is much greater
than DCB [C.N. 5]. Again, since C'B is equal to DB, the
angle C'DB is also equal to angle DCB [Prop. 1.5]. But
it was shown that the former (angle) is also much greater
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(than the latter). The very thing is impossible.

Thus, on the same straight-line, two other straight-
lines equal, respectively, to two (given) straight-lines
(which meet) cannot be constructed (meeting) at a dif-
ferent point on the same side (of the straight-line), but
having the same ends as the given straight-lines. (Which
is) the very thing it was required to show.

Proposition 8

If two triangles have two sides equal to two sides, re-
spectively, and also have the base equal to the base, then
they will also have equal the angles encompassed by the
equal straight-lines.

A D G

B E

Let ABC and DEF be two triangles having the two
sides AB and AC equal to the two sides DE and DF,
respectively. (That is) AB to DE, and AC to DF. Let
them also have the base BC equal to the base E'F. I say
that the angle BAC is also equal to the angle EDF.

For if triangle ABC is applied to triangle DEF, the
point B being placed on point F, and the straight-line
BC on EF, then point C will also coincide with F', on
account of BC' being equal to EF. So (because of) BC
coinciding with EF’, (the sides) BA and C A will also co-
incide with ED and DF (respectively). For if base BC
coincides with base E'F, but the sides AB and AC do not
coincide with ED and DF (respectively), but miss like
EG and GF (in the above figure), then we will have con-
structed upon the same straight-line, two other straight-
lines equal, respectively, to two (given) straight-lines,
and (meeting) at a different point on the same side (of
the straight-line), but having the same ends. But (such
straight-lines) cannot be constructed [Prop. 1.7]. Thus,
the base BC being applied to the base E'F, the sides BA
and AC cannot not coincide with ED and DF' (respec-
tively). Thus, they will coincide. So the angle BAC will
also coincide with angle EDF, and will be equal to it
[C.N. 4].

Thus, if two triangles have two sides equal to two
side, respectively, and have the base equal to the base,

14
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then they will also have equal the angles encompassed
by the equal straight-lines. (Which is) the very thing it
was required to show.

Proposition 9

To cut a given rectilinear angle in half.

A

F
B C

Let BAC be the given rectilinear angle. So it is re-
quired to cut it in half.

Let the point D have been taken at random on AB,
and let AF, equal to AD, have been cut off from AC
[Prop. 1.3], and let DE have been joined. And let the
equilateral triangle DEF have been constructed upon
DE [Prop. 1.1], and let AF' have been joined. I say that
the angle BAC has been cut in half by the straight-line
AF.

For since AD is equal to AE, and AF is common,
the two (straight-lines) DA, AF are equal to the two
(straight-lines) F A, AF, respectively. And the base DF
is equal to the base EF. Thus, angle DAF is equal to
angle EAF [Prop. 1.8].

Thus, the given rectilinear angle BAC has been cut in
half by the straight-line AF. (Which is) the very thing it
was required to do.

Proposition 10

To cut a given finite straight-line in half.

Let AB be the given finite straight-line. So it is re-
quired to cut the finite straight-line AB in half.

Let the equilateral triangle ABC have been con-
structed upon (AB) [Prop. 1.1], and let the angle ACB
have been cut in half by the straight-line C' D [Prop. 1.9].
I say that the straight-line AB has been cut in half at
point D.

For since AC is equal to CB, and C'D (is) common,
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the two (straight-lines) AC, CD are equal to the two
(straight-lines) BC, CD, respectively. And the angle
ACD is equal to the angle BC'D. Thus, the base AD
is equal to the base BD [Prop. 1.4].

C

A D B

Thus, the given finite straight-line AB has been cut
in half at (point) D. (Which is) the very thing it was
required to do.

Proposition 11

To draw a straight-line at right-angles to a given
straight-line from a given point on it.

F

A B

D C E

Let AB be the given straight-line, and C the given
point on it. So it is required to draw a straight-line from
the point C at right-angles to the straight-line AB.

Let the point D be have been taken at random on AC,
and let CFE be made equal to CD [Prop. 1.3], and let the
equilateral triangle FFDFE have been constructed on DFE
[Prop. 1.1], and let F'C have been joined. I say that the
straight-line F'C' has been drawn at right-angles to the
given straight-line AB from the given point C on it.

For since DC is equal to CE, and C'F is common,
the two (straight-lines) DC, CF are equal to the two
(straight-lines), EC, C'F, respectively. And the base DF
is equal to the base F'E. Thus, the angle DCF is equal
to the angle FCF [Prop. 1.8], and they are adjacent.
But when a straight-line stood on a(nother) straight-line
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makes the adjacent angles equal to one another, each of
the equal angles is a right-angle [Def. 1.10]. Thus, each
of the (angles) DCF and FCE is a right-angle.

Thus, the straight-line C'F' has been drawn at right-
angles to the given straight-line AB from the given point
C on it. (Which is) the very thing it was required to do.

Proposition 12

To draw a straight-line perpendicular to a given infi-
nite straight-line from a given point which is not on it.

F

A B

G~_ H _“E
D

Let AB be the given infinite straight-line and C' the
given point, which is not on (AB). So it is required to
draw a straight-line perpendicular to the given infinite
straight-line AB from the given point C, which is not on
(AB).

For let point D have been taken at random on the
other side (to C) of the straight-line AB, and let the
circle EFG have been drawn with center C' and radius
CD [Post. 3], and let the straight-line EG have been cut
in half at (point) H [Prop. 1.10], and let the straight-
lines CG, CH, and C'E have been joined. I say that the
(straight-line) C'H has been drawn perpendicular to the
given infinite straight-line AB from the given point C,
which is not on (AB).

For since GH is equal to HE, and HC (is) common,
the two (straight-lines) GH, HC are equal to the two
(straight-lines) EH, HC, respectively, and the base CG
is equal to the base CE. Thus, the angle CHG is equal
to the angle FHC [Prop. 1.8], and they are adjacent.
But when a straight-line stood on a(nother) straight-line
makes the adjacent angles equal to one another, each of
the equal angles is a right-angle, and the former straight-
line is called a perpendicular to that upon which it stands
[Def. 1.10].

Thus, the (straight-line) C'H has been drawn perpen-
dicular to the given infinite straight-line AB from the

17
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given point C, which is not on (AB). (Which is) the very
thing it was required to do.

Proposition 13

If a straight-line stood on a(nother) straight-line
makes angles, it will certainly either make two right-
angles, or (angles whose sum is) equal to two right-
angles.

E A

D B C

For let some straight-line AB stood on the straight-
line CD make the angles CBA and ABD. 1 say that
the angles CBA and ABD are certainly either two right-
angles, or (have a sum) equal to two right-angles.

In fact, if CBA is equal to ABD then they are two
right-angles [Def. 1.10]. But, if not, let BE have been
drawn from the point B at right-angles to [the straight-
line] CD [Prop. 1.11]. Thus, CBE and EBD are two
right-angles. And since CBF is equal to the two (an-
gles) CBA and ABE, let EBD have been added to both.
Thus, the (sum of the angles) CBE and EBD is equal to
the (sum of the) three (angles) CBA, ABF, and EBD
[C.N. 2]. Again, since DBA is equal to the two (an-
gles) DBE and EBA, let ABC have been added to both.
Thus, the (sum of the angles) DBA and ABC is equal to
the (sum of the) three (angles) DBE, EBA, and ABC
[C.N. 2]. But (the sum of) CBE and EBD was also
shown (to be) equal to the (sum of the) same three (an-
gles). And things equal to the same thing are also equal
to one another [C.N. 1]. Therefore, (the sum of) CBE
and EBD is also equal to (the sum of) DBA and ABC.
But, (the sum of) CBE and EBD is two right-angles.
Thus, (the sum of) ABD and ABC is also equal to two
right-angles.

Thus, if a straight-line stood on a(nother) straight-
line makes angles, it will certainly either make two right-
angles, or (angles whose sum is) equal to two right-
angles. (Which is) the very thing it was required to show.
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Proposition 14

If two straight-lines, not lying on the same side, make
adjacent angles (whose sum is) equal to two right-angles
with some straight-line, at a point on it, then the two
straight-lines will be straight-on (with respect) to one an-
other.

A E

C B D

For let two straight-lines BC and BD, not lying on the
same side, make adjacent angles ABC and ABD (whose
sum is) equal to two right-angles with some straight-line
AB, at the point B on it. I say that BD is straight-on with
respect to CB.

For if BD is not straight-on to BC then let BE be
straight-on to C'B.

Therefore, since the straight-line AB stands on the
straight-line CBE, the (sum of the) angles ABC and
ABE is thus equal to two right-angles [Prop. 1.13]. But
(the sum of) ABC and ABD is also equal to two right-
angles. Thus, (the sum of angles) CBA and ABF is equal
to (the sum of angles) CBA and ABD [C.N. 1]. Let (an-
gle) C BA have been subtracted from both. Thus, the re-
mainder ABF is equal to the remainder ABD [C.N. 3],
the lesser to the greater. The very thing is impossible.
Thus, BFE is not straight-on with respect to CB. Simi-
larly, we can show that neither (is) any other (straight-
line) than BD. Thus, CB is straight-on with respect to
BD.

Thus, if two straight-lines, not lying on the same side,
make adjacent angles (whose sum is) equal to two right-
angles with some straight-line, at a point on it, then the
two straight-lines will be straight-on (with respect) to
one another. (Which is) the very thing it was required
to show.

Proposition 15

If two straight-lines cut one another then they make
the vertically opposite angles equal to one another.
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(angle) DEB, and (angle) CEB to (angle) AED.
A

B
For since the straight-line AF stands on the straight-
line C'D, making the angles CEA and AED, the (sum
of the) angles CEA and AED is thus equal to two right-
angles [Prop. 1.13]. Again, since the straight-line DFE
stands on the straight-line AB, making the angles AED
and DEB, the (sum of the) angles AED and DEB is
thus equal to two right-angles [Prop. 1.13]. But (the sum
of) CEA and AED was also shown (to be) equal to two
right-angles. Thus, (the sum of) CEA and AED is equal
to (the sum of) AED and DEB [C.N. 1]. Let AED have
been subtracted from both. Thus, the remainder CE A is
equal to the remainder BED [C.N. 3]. Similarly, it can
be shown that CEB and DE A are also equal.
Thus, if two straight-lines cut one another then they
make the vertically opposite angles equal to one another.
(Which is) the very thing it was required to show.

Proposition 16

For any triangle, when one of the sides is produced,
the external angle is greater than each of the internal and
opposite angles.

Let ABC be a triangle, and let one of its sides BC'
have been produced to D. I say that the external angle
ACD is greater than each of the internal and opposite
angles, CBA and BAC.

Let the (straight-line) AC have been cut in half at
(point) E [Prop. 1.10]. And BFE being joined, let it have
been produced in a straight-line to (point) F.! And let
E'F be made equal to BE [Prop. 1.3], and let F'C have
been joined, and let AC have been drawn through to
(point) G.

Therefore, since AF is equal to EC, and BFE to EF,
the two (straight-lines) AE, EB are equal to the two
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Thus, BAF is equal to ECF. But ECD is greater than
ECF. Thus, ACD is greater than BAFE. Similarly, by
having cut BC in half, it can be shown (that) BCG—that
is to say, AC D—(is) also greater than ABC.
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B A B D
I C
H G
Iavtog dpo tpry®vou Wde TV TAELP®Y TEOCEX- Thus, for any triangle, when one of the sides is pro-
Bindeionc N €xtoc ywvia exatépac TV evtoc ol ane- duced, the external angle is greater than each of the in-
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was required to show.

t The implicit assumption that the point F lies in the interior of the angle ABC should be counted as an additional postulate.

WL Proposition 17
TToavtog tprydvou ai dYo ywvia 8o dpddv Ehdooovéc For any triangle, (the sum of) two angles taken to-
glot Tévti] petahauBovépevol. gether in any (possible way) is less than two right-angles.
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For let BC have been produced to D.

And since the angle ACD is external to triangle ABC,
it is greater than the internal and opposite angle ABC
[Prop. 1.16]. Let AC'B have been added to both. Thus,
the (sum of the angles) ACD and ACB is greater than
the (sum of the angles) ABC and BC A. But, (the sum of)
ACD and ACB is equal to two right-angles [Prop. 1.13].
Thus, (the sum of) ABC and BC A is less than two right-
angles. Similarly, we can show that (the sum of) BAC
and ACB is also less than two right-angles, and further
(that the sum of) CAB and ABC (is less than two right-
angles).

Thus, for any triangle, (the sum of) two angles taken
together in any (possible way) is less than two right-
angles. (Which is) the very thing it was required to show.

Proposition 18

In any triangle, the greater side subtends the greater
angle.

A

B C

For let ABC be a triangle having side AC greater than
AB. 1say that angle ABC is also greater than BC A.

For since AC is greater than AB, let AD be made
equal to AB [Prop. 1.3], and let BD have been joined.

And since angle ADB is external to triangle BCD, it
is greater than the internal and opposite (angle) DC'B
[Prop. 1.16]. But ADB (is) equal to ABD, since side
AB is also equal to side AD [Prop. 1.5]. Thus, ABD is
also greater than AC'B. Thus, ABC is much greater than
ACB.

Thus, in any triangle, the greater side subtends the
greater angle. (Which is) the very thing it was required
to show.

Proposition 19

In any triangle, the greater angle is subtended by the
greater side.

Let ABC be a triangle having the angle ABC' greater
than BCA. I say that side AC is also greater than side
AB.



YTOIXEIOQN o'

ELEMENTS BOOK 1

El yap uy, fitol Ton éotlv iy AL fj AB 1| éNdoowv Ton
uev obv oOx €otwv /) AL tf] AB- Tom vap av fiv xol ywvio 7
Ono ABT 1] Uno AI'B- olx €oti 8¢+ 00x dpa lon éotiv ) AT
tfj AB. 008¢ unv éhdoowv éotiv | AT tfic AB- éNdoowv
yop &v fiv xoi yovio 7 Ond ABI tfic Uno AI'B: o0x éott
0¢- obx dpa ENdoowy éotly 1) AL tfic AB. €delydn 8¢, ét
o0dE Tom éotiv. uellwv dpa eotiv /) AL tijc AB.

A

T

IMovtog dpa terydvou Uno ™y Yeillova ywviay N uellwy
mhevpd brotelvel: Onep €t BETEaL.

7

x.

IMovtog tpry@vou ol dVo mhevpol tiic Aownfic pellovég
giol vty petohouBovoueva.

A

B r
"Eotww yop tplywvov 10 ABI™ Aéyw, 6u 1ol ABI

For if not, AC is certainly either equal to, or less than,
AB. In fact, AC is not equal to AB. For then angle ABC
would also have been equal to ACB [Prop. 1.5]. But it
is not. Thus, AC is not equal to AB. Neither, indeed, is
AC less than AB. For then angle ABC would also have
been less than AC'B [Prop. 1.18]. But it is not. Thus, AC
is not less than AB. But it was shown that (AC) is not
equal (to AB) either. Thus, AC is greater than AB.

A

C
Thus, in any triangle, the greater angle is subtended
by the greater side. (Which is) the very thing it was re-
quired to show.

Proposition 20

In any triangle, (the sum of) two sides taken to-
gether in any (possible way) is greater than the remaining
(side).

D

For let ABC be a triangle. I say that in triangle ABC

Tolydvou ol dvo mhevpal tfic hownfic peillovéc eiot mévty (the sum of) two sides taken together in any (possible
petohopPavopevar, ol pwev BA, AT tfic BT, ai 8¢ AB, BI' way) is greater than the remaining (side). (So), (the sum
tfic AT', oi 8¢ BT, T'A tfic AB. of) BA and AC (is greater) than BC, (the sum of) AB

23
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and BC than AC, and (the sum of) BC and C'A than
AB.

For let BA have been drawn through to point D, and
let AD be made equal to CA [Prop. 1.3], and let DC
have been joined.

Therefore, since DA is equal to AC, the angle ADC
is also equal to AC'D [Prop. 1.5]. Thus, BCD is greater
than ADC. And since DCB is a triangle having the angle
BCD greater than BDC, and the greater angle subtends
the greater side [Prop. 1.19], DB is thus greater than
BC. But DA is equal to AC. Thus, (the sum of) BA and
AC is greater than BC. Similarly, we can show that (the
sum of) AB and BC is also greater than C'A, and (the
sum of) BC and C A than AB.

Thus, in any triangle, (the sum of) two sides taken to-
gether in any (possible way) is greater than the remaining
(side). (Which is) the very thing it was required to show.

Proposition 21

If two internal straight-lines are constructed on one
of the sides of a triangle, from its ends, the constructed
(straight-lines) will be less than the two remaining sides
of the triangle, but will encompass a greater angle.

A
E

B C

For let the two internal straight-lines BD and DC
have been constructed on one of the sides BC of the tri-
angle ABC, from its ends B and C (respectively). I say
that BD and DC are less than the (sum of the) two re-
maining sides of the triangle BA and AC, but encompass
an angle BDC greater than BAC.

For let BD have been drawn through to E. And since
in any triangle (the sum of any) two sides is greater than
the remaining (side) [Prop. 1.20], in triangle ABE the
(sum of the) two sides AB and AFE is thus greater than
BE. Let EC have been added to both. Thus, (the sum
of) BA and AC is greater than (the sum of) BE and EC.
Again, since in triangle CED the (sum of the) two sides
CFE and ED is greater than C'D, let DB have been added
to both. Thus, (the sum of) CFE and EB is greater than
(the sum of) CD and DB. But, (the sum of) BA and
AC was shown (to be) greater than (the sum of) BE and
EC. Thus, (the sum of) BA and AC is much greater than
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(the sum of) BD and DC.

Again, since in any triangle the external angle is
greater than the internal and opposite (angles) [Prop.
1.16], in triangle CDE the external angle BDC' is thus
greater than CED. Accordingly, for the same (reason),
the external angle CEB of the triangle ABFE is also
greater than BAC. But, BDC was shown (to be) greater
than CEB. Thus, BDC is much greater than BAC.

Thus, if two internal straight-lines are constructed on
one of the sides of a triangle, from its ends, the con-
structed (straight-lines) are less than the two remain-
ing sides of the triangle, but encompass a greater angle.
(Which is) the very thing it was required to show.

Proposition 22

To construct a triangle from three straight-lines which
are equal to three given [straight-lines]. It is necessary
for (the sum of) two (of the straight-lines) taken together
in any (possible way) to be greater than the remaining
(one), [on account of the (fact that) in any triangle (the
sum of) two sides taken together in any (possible way) is
greater than the remaining (one) [Prop. 1.20]].

A

B
C
K
D B G H E
L

Let A, B, and C be the three given straight-lines, of
which let (the sum of) two taken together in any (possible
way) be greater than the remaining (one). (Thus), (the
sum of) A and B (is greater) than C, (the sum of) A and
C than B, and also (the sum of) B and C than A. So
it is required to construct a triangle from (straight-lines)
equal to A, B, and C.

Let some straight-line DE be set out, terminated at D,
and infinite in the direction of . And let D F' made equal
to A, and F'G equal to B, and GH equal to C [Prop. 1.3].
And let the circle DK L have been drawn with center F’
and radius F'D. Again, let the circle KLH have been
drawn with center G and radius GH. And let KF and
KG have been joined. I say that the triangle K F'G has
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been constructed from three straight-lines equal to A, B,
and C.

For since point F' is the center of the circle DK L, FFD
is equal to F'K. But, F'D is equal to A. Thus, K F is also
equal to A. Again, since point G is the center of the circle
LKH,GH is equal to GK. But, GH is equal to C. Thus,
KG is also equal to C. And F'G is also equal to B. Thus,
the three straight-lines K'F', FG, and GK are equal to A,
B, and C (respectively).

Thus, the triangle K F'G has been constructed from
the three straight-lines KF, FG, and GK, which are
equal to the three given straight-lines A, B, and C (re-
spectively). (Which is) the very thing it was required to
do.

Proposition 23

To construct a rectilinear angle equal to a given recti-
linear angle at a (given) point on a given straight-line.

D

A G B

Let AB be the given straight-line, A the (given) point
on it, and DCF the given rectilinear angle. So it is re-
quired to construct a rectilinear angle equal to the given
rectilinear angle DCFE at the (given) point A on the given
straight-line AB.

Let the points D and E have been taken at random
on each of the (straight-lines) C'D and C'E (respectively),
and let DE have been joined. And let the triangle AFG
have been constructed from three straight-lines which are
equal to CD, DE, and CFE, such that CD is equal to AF,
CFE to AG, and further DFE to F'G [Prop. 1.22].

Therefore, since the two (straight-lines) DC, CE are
equal to the two (straight-lines) F'A, AG, respectively,
and the base DFE is equal to the base F'G, the angle DCFE
is thus equal to the angle F'AG [Prop. 1.8].

Thus, the rectilinear angle FAG, equal to the given
rectilinear angle DCE, has been constructed at the
(given) point A on the given straight-line AB. (Which
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is) the very thing it was required to do.

Proposition 24

If two triangles have two sides equal to two sides, re-
spectively, but (one) has the angle encompassed by the
equal straight-lines greater than the (corresponding) an-
gle (in the other), then (the former triangle) will also
have a base greater than the base (of the latter).

A D

C ¢ F

Let ABC and DEF be two triangles having the two
sides AB and AC equal to the two sides DE and DF,
respectively. (That is), AB (equal) to DFE, and AC to
DF'. Let them also have the angle at A greater than the
angle at D. I say that the base BC is also greater than
the base EF'.

For since angle BAC is greater than angle EDF,
let (angle) EDG, equal to angle BAC, have been
constructed at the point D on the straight-line DFE
[Prop. 1.23]. And let DG be made equal to either of
AC or DF [Prop. 1.3], and let EG and F'G have been
joined.

Therefore, since AB is equal to DE and AC to DG,
the two (straight-lines) BA, AC are equal to the two
(straight-lines) ED, DG, respectively. Also the angle
BAC is equal to the angle EDG. Thus, the base BC
is equal to the base EG [Prop. 1.4]. Again, since DF
is equal to DG, angle DGF is also equal to angle DFG
[Prop. 1.5]. Thus, DFG (is) greater than EGF. Thus,
EFG is much greater than FGF. And since triangle
EFG has angle EFG greater than EGF, and the greater
angle is subtended by the greater side [Prop. 1.19], side
EG (is) thus also greater than FF. But EG (is) equal to
BC. Thus, BC (is) also greater than E'F.

Thus, if two triangles have two sides equal to two
sides, respectively, but (one) has the angle encompassed
by the equal straight-lines greater than the (correspond-
ing) angle (in the other), then (the former triangle) will
also have a base greater than the base (of the latter).
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(Which is) the very thing it was required to show.

Proposition 25

If two triangles have two sides equal to two sides,
respectively, but (one) has a base greater than the base
(of the other), then (the former triangle) will also have
the angle encompassed by the equal straight-lines greater
than the (corresponding) angle (in the latter).

A

E F

Let ABC and DEF be two triangles having the two
sides AB and AC equal to the two sides DE and DF,
respectively (That is), AB (equal) to DE, and AC to DF.
And let the base BC' be greater than the base EF. I say
that angle BAC is also greater than EDF.

For if not, (BAC) is certainly either equal to, or less
than, (EDF). In fact, BAC is not equal to EDF. For
then the base BC would also have been equal to the base
EF [Prop. 1.4]. But it is not. Thus, angle BAC is not
equal to EDF. Neither, indeed, is BAC' less than EDF.
For then the base BC would also have been less than the
base EF [Prop. 1.24]. But it is not. Thus, angle BAC is
not less than FDF. But it was shown that (BAC is) not
equal (to EDF) either. Thus, BAC is greater than EDF'.

Thus, if two triangles have two sides equal to two
sides, respectively, but (one) has a base greater than the
base (of the other), then (the former triangle) will also
have the angle encompassed by the equal straight-lines
greater than the (corresponding) angle (in the latter).
(Which is) the very thing it was required to show.

Proposition 26

If two triangles have two angles equal to two angles,
respectively, and one side equal to one side—in fact, ei-
ther that by the equal angles, or that subtending one of
the equal angles—then (the triangles) will also have the
remaining sides equal to the [corresponding] remaining
sides, and the remaining angle (equal) to the remaining
angle.
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Let ABC and DEF be two triangles having the two
angles ABC and BCA equal to the two (angles) DEF
and EF D, respectively. (That is) ABC (equal) to DEF,
and BCA to EFD. And let them also have one side equal
to one side. First of all, the (side) by the equal angles.
(That is) BC (equal) to EFF'. I say that they will have
the remaining sides equal to the corresponding remain-
ing sides. (That is) AB (equal) to DE, and AC to DF.
And (they will have) the remaining angle (equal) to the
remaining angle. (That is) BAC (equal) to EDF.

D
A
G

E F

B T

For if AB is unequal to DFE then one of them is
greater. Let AB be greater, and let BG be made equal
to DE [Prop. 1.3], and let GC have been joined.

Therefore, since BG is equal to DFE, and BC to EF,
the two (straight-lines) GB, BC' are equal to the two
(straight-lines) DFE, EF, respectively. And angle GBC' is
equal to angle DEF'. Thus, the base GC is equal to the
base DF, and triangle GBC' is equal to triangle DEF,
and the remaining angles subtended by the equal sides
will be equal to the (corresponding) remaining angles
[Prop. 1.4]. Thus, GCB (is equal) to DF'E. But, DFE
was assumed (to be) equal to BCA. Thus, BCG is also
equal to BCA, the lesser to the greater. The very thing
(is) impossible. Thus, AB is not unequal to DE. Thus,
(it is) equal. And BC is also equal to EF. So the two
(straight-lines) AB, BC' are equal to the two (straight-
lines) DE, EF, respectively. And angle ABC is equal to
angle DEF'. Thus, the base AC is equal to the base DF,
and the remaining angle BAC is equal to the remaining
angle EDF [Prop. 1.4].

But, again, let the sides subtending the equal angles
be equal: for instance, (let) AB (be equal) to DE. Again,
I say that the remaining sides will be equal to the remain-
ing sides. (That is) AC (equal) to DF, and BC to EF.
Furthermore, the remaining angle BAC is equal to the
remaining angle EDF'.

For if BC is unequal to EFF then one of them is
greater. If possible, let BC be greater. And let BH be
made equal to EF [Prop. 1.3], and let AH have been
joined. And since BH is equal to EF, and AB to DE,
the two (straight-lines) AB, BH are equal to the two
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(straight-lines) DFE, EF, respectively. And the angles
they encompass (are also equal). Thus, the base AH is
equal to the base DF, and the triangle ABH is equal to
the triangle DEF, and the remaining angles subtended
by the equal sides will be equal to the (corresponding)
remaining angles [Prop. 1.4]. Thus, angle BH A is equal
to EFD. But, EFD is equal to BCA. So, in triangle
AHC, the external angle BH A is equal to the internal
and opposite angle BC'A. The very thing (is) impossi-
ble [Prop. 1.16]. Thus, BC' is not unequal to EF. Thus,
(it is) equal. And AB is also equal to DE. So the two
(straight-lines) AB, BC' are equal to the two (straight-
lines) DE, EF, respectively. And they encompass equal
angles. Thus, the base AC is equal to the base DF, and
triangle ABC' (is) equal to triangle DEF, and the re-
maining angle BAC (is) equal to the remaining angle
EDF [Prop. 1.4].

Thus, if two triangles have two angles equal to two
angles, respectively, and one side equal to one side—in
fact, either that by the equal angles, or that subtending
one of the equal angles—then (the triangles) will also
have the remaining sides equal to the (corresponding) re-
maining sides, and the remaining angle (equal) to the re-
maining angle. (Which is) the very thing it was required
to show.

Proposition 27

If a straight-line falling across two straight-lines
makes the alternate angles equal to one another then
the (two) straight-lines will be parallel to one another.

C D

For let the straight-line EF, falling across the two
straight-lines AB and C'D, make the alternate angles
AEF and EFD equal to one another. I say that AB and
CD are parallel.

For if not, being produced, AB and C'D will certainly
meet together: either in the direction of B and D, or (in
the direction) of A and C [Def. 1.23]. Let them have
been produced, and let them meet together in the di-
rection of B and D at (point) G. So, for the triangle
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GEF, the external angle AEF is equal to the interior
and opposite (angle) EFG. The very thing is impossible
[Prop. 1.16]. Thus, being produced, AB and C'D will not
meet together in the direction of B and D. Similarly, it
can be shown that neither (will they meet together) in
(the direction of) A and C'. But (straight-lines) meeting
in neither direction are parallel [Def. 1.23]. Thus, AB
and CD are parallel.

Thus, if a straight-line falling across two straight-lines
makes the alternate angles equal to one another then
the (two) straight-lines will be parallel (to one another).
(Which is) the very thing it was required to show.

Proposition 28

If a straight-line falling across two straight-lines
makes the external angle equal to the internal and oppo-
site angle on the same side, or (makes) the (sum of the)
internal (angles) on the same side equal to two right-
angles, then the (two) straight-lines will be parallel to
one another.

E

F

For let E'F, falling across the two straight-lines AB
and C'D, make the external angle FGB equal to the in-
ternal and opposite angle GH D, or the (sum of the) in-
ternal (angles) on the same side, BGH and GH D, equal
to two right-angles. I say that AB is parallel to C'D.

For since (in the first case) EGB is equal to GH D, but
EGB is equal to AGH [Prop. 1.15], AGH is thus also
equal to GHD. And they are alternate (angles). Thus,
AB is parallel to CD [Prop. 1.27].

Again, since (in the second case, the sum of) BGH
and GHD is equal to two right-angles, and (the sum
of) AGH and BGH is also equal to two right-angles
[Prop. 1.13], (the sum of) AGH and BGH is thus equal
to (the sum of) BGH and GHD. Let BGH have been
subtracted from both. Thus, the remainder AGH is equal
to the remainder GH D. And they are alternate (angles).
Thus, AB is parallel to C'D [Prop. 1.27].
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Thus, if a straight-line falling across two straight-lines
makes the external angle equal to the internal and oppo-
site angle on the same side, or (makes) the (sum of the)
internal (angles) on the same side equal to two right-
angles, then the (two) straight-lines will be parallel (to
one another). (Which is) the very thing it was required
to show.

Proposition 29

A straight-line falling across parallel straight-lines
makes the alternate angles equal to one another, the ex-
ternal (angle) equal to the internal and opposite (angle),
and the (sum of the) internal (angles) on the same side
equal to two right-angles.

E

F

For let the straight-line E'F fall across the parallel
straight-lines AB and CD. I say that it makes the alter-
nate angles, AGH and GH D, equal, the external angle
EGB equal to the internal and opposite (angle) GHD,
and the (sum of the) internal (angles) on the same side,
BGH and GHD, equal to two right-angles.

For if AGH is unequal to GHD then one of them is
greater. Let AGH be greater. Let BGH have been added
to both. Thus, (the sum of) AGH and BGH is greater
than (the sum of) BGH and GHD. But, (the sum of)
AGH and BGH is equal to two right-angles [Prop 1.13].
Thus, (the sum of) BGH and GHD is [also] less than
two right-angles. But (straight-lines) being produced to
infinity from (internal angles whose sum is) less than two
right-angles meet together [Post. 5]. Thus, AB and CD,
being produced to infinity, will meet together. But they do
not meet, on account of them (initially) being assumed
parallel (to one another) [Def. 1.23]. Thus, AGH is not
unequal to GH D. Thus, (it is) equal. But, AGH is equal
to EGB [Prop. 1.15]. And EGB is thus also equal to
GHD. Let BGH be added to both. Thus, (the sum of)
EGB and BGH is equal to (the sum of) BGH and GHD.
But, (the sum of) EGB and BGH is equal to two right-
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angles [Prop. 1.13]. Thus, (the sum of) BGH and GHD
is also equal to two right-angles.

Thus, a straight-line falling across parallel straight-
lines makes the alternate angles equal to one another, the
external (angle) equal to the internal and opposite (an-
gle), and the (sum of the) internal (angles) on the same
side equal to two right-angles. (Which is) the very thing
it was required to show.

Proposition 30

(Straight-lines) parallel to the same straight-line are
also parallel to one another.
G/

A B
E H F
C K D

/

Let each of the (straight-lines) AB and C'D be parallel
to E'F. I say that AB is also parallel to C'D.

For let the straight-line GK fall across (AB, CD, and
EF).

And since the straight-line GK has fallen across the
parallel straight-lines AB and E'F, (angle) AGK (is) thus
equal to GH F [Prop. 1.29]. Again, since the straight-line
GK has fallen across the parallel straight-lines FF and
CD, (angle) GHF is equal to GKD [Prop. 1.29]. But
AGK was also shown (to be) equal to GHF'. Thus, AGK
is also equal to GK D. And they are alternate (angles).
Thus, AB is parallel to C'D [Prop. 1.27].

[Thus, (straight-lines) parallel to the same straight-
line are also parallel to one another.] (Which is) the very
thing it was required to show.

Proposition 31

To draw a straight-line parallel to a given straight-line,
through a given point.

Let A be the given point, and BC the given straight-
line. So it is required to draw a straight-line parallel to
the straight-line BC, through the point A.

Let the point D have been taken a random on BC, and
let AD have been joined. And let (angle) DAF, equal to
angle ADC, have been constructed on the straight-line



YTOIXEIOQN o'

ELEMENTS BOOK 1

ExPefriodw én’ ebielog tff EA eblcia ) AZ.

B A 7

B r
A

Kot érnet gic 8o eddeloc tac BI', EZ edicia éunintovoa
N AA tac evodrdE yoviog tac bno EAA, AAT ioac
SAAAhouc Temoinxey, tapdhiniog Bpo éotiv | EAZ tfj BI.

A t00 Sovévtocg dpa onueiov Tod A tfj Sodeior ebdeln
tfj BI' nopdhiniog ebdeio ypouun fixtow | EAZ- érnep €del

ToLfjoo.

A
Iavtog teydvou wbic tésv mhevpdy mpooexBAandeione
1 ExTOC ywvia Suct tollg €vtog xol anevavtiov ion éotiy, xol
ol €vtoc tol Tprywvou Teelc Ywvio duaty dpdalc too eioty.

A E

B T A

"Eotw tplywvov 10 ABT, xal npocexBeAnodw adtod
plo mhevpd 7 BT énl 10 A+ Aéyw, 6Tl ) €xT0C Ywvia | OO
AT'A Ton éotl Sual toic €vtog xal drevavtiov taic Uno TAB,
ABT, xol ol évtoc tol tprydhvou tpeic yoviow ol Und ABI,
BT'A, I'AB Suotv 6pdaic oot eiotv.

"Hy 0w ydp 81& tob I' onuelov tfj AB ebdeia topdhinioc
7 T'E.

Kot énel napdhiniog éotv ) AB tfj T'E, xal el adtac
gunéntwxey N AT, al évod &g ywviow ai bnd BAT, ATE oo
SAMAhouc eioly. mdhwy, énel mopdAnhdc éotv /| AB 1fj I'E,
xal eig a0tde éunéntoxev evdela | BA, 1 éxtog yovio 7
Oono EI'A Ton éotl tf] évtog xol dnevavtiov tfj no ABI.
€delydn 6¢ xal 1y Uno AI'E tfj Ono BAT Ton 6An dpa 1) 1o
ATA yovio Ton éotl duol taiic €vtog xal dnevavtiov Tolc Lo

BAT, ABT.

DA at the point A on it [Prop. 1.23]. And let the straight-
line AF have been produced in a straight-line with F'A.

E A F

B C
D

And since the straight-line AD, (in) falling across the
two straight-lines BC' and E'F, has made the alternate
angles FAD and ADC equal to one another, EAF is thus
parallel to BC [Prop. 1.27].

Thus, the straight-line FAF has been drawn parallel
to the given straight-line BC, through the given point A.
(Which is) the very thing it was required to do.

Proposition 32

In any triangle, (if) one of the sides (is) produced
(then) the external angle is equal to the (sum of the) two
internal and opposite (angles), and the (sum of the) three
internal angles of the triangle is equal to two right-angles.

A E

B C D

Let ABC be a triangle, and let one of its sides BC
have been produced to D. I say that the external angle
ACD is equal to the (sum of the) two internal and oppo-
site angles CAB and ABC, and the (sum of the) three
internal angles of the triangle—ABC, BC' A, and CAB—
is equal to two right-angles.

For let C'E have been drawn through point C parallel
to the straight-line AB [Prop. 1.31].

And since AB is parallel to CE, and AC has fallen
across them, the alternate angles BAC and ACE are
equal to one another [Prop. 1.29]. Again, since AB is
parallel to CFE, and the straight-line BD has fallen across
them, the external angle ECD is equal to the internal
and opposite (angle) ABC [Prop. 1.29]. But ACFE was
also shown (to be) equal to BAC. Thus, the whole an-

34
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gle ACD is equal to the (sum of the) two internal and
opposite (angles) BAC and ABC.

Let ACB have been added to both. Thus, (the sum
of) ACD and ACB is equal to the (sum of the) three
(angles) ABC, BCA, and C AB. But, (the sum of) ACD
and ACB is equal to two right-angles [Prop. 1.13]. Thus,
(the sum of) ACB, CBA, and CAB is also equal to two
right-angles.

Thus, in any triangle, (if) one of the sides (is) pro-
duced (then) the external angle is equal to the (sum of
the) two internal and opposite (angles), and the (sum of
the) three internal angles of the triangle is equal to two
right-angles. (Which is) the very thing it was required to
show.

Proposition 33

Straight-lines joining equal and parallel (straight-
lines) on the same sides are themselves also equal and

parallel.
B A

D C

Let AB and CD be equal and parallel (straight-lines),
and let the straight-lines AC and BD join them on the
same sides. I say that AC and BD are also equal and
parallel.

Let BC have been joined. And since AB is paral-
lel to CD, and BC has fallen across them, the alter-
nate angles ABC and BCD are equal to one another
[Prop. 1.29]. And since AB is equal to CD, and BC
is common, the two (straight-lines) AB, BC are equal
to the two (straight-lines) DC, C B.'And the angle ABC
is equal to the angle BC'D. Thus, the base AC is equal
to the base BD, and triangle ABC' is equal to triangle
DCB?, and the remaining angles will be equal to the
corresponding remaining angles subtended by the equal
sides [Prop. 1.4]. Thus, angle ACB is equal to CBD.
Also, since the straight-line BC, (in) falling across the
two straight-lines AC' and BD, has made the alternate
angles (AC B and C'BD) equal to one another, AC is thus
parallel to BD [Prop. 1.27]. And (AC) was also shown
(to be) equal to (BD).

Thus, straight-lines joining equal and parallel (straight-
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lines) on the same sides are themselves also equal and
parallel. (Which is) the very thing it was required to
show.

Proposition 34

In parallelogrammic figures the opposite sides and angles
are equal to one another, and a diagonal cuts them in half.

A B

C D

Let ACDB be a parallelogrammic figure, and BC' its
diagonal. I say that for parallelogram ACD B, the oppo-
site sides and angles are equal to one another, and the
diagonal BC cuts it in half.

For since AB is parallel to CD, and the straight-line
BC has fallen across them, the alternate angles ABC and
BCD are equal to one another [Prop. 1.29]. Again, since
AC is parallel to BD, and BC has fallen across them,
the alternate angles ACB and CBD are equal to one
another [Prop. 1.29]. So ABC and BCD are two tri-
angles having the two angles ABC and BCA equal to
the two (angles) BC'D and C'BD, respectively, and one
side equal to one side—the (one) by the equal angles and
common to them, (namely) BC. Thus, they will also
have the remaining sides equal to the corresponding re-
maining (sides), and the remaining angle (equal) to the
remaining angle [Prop. 1.26]. Thus, side AB is equal to
CD, and AC to BD. Furthermore, angle BAC is equal
to CDB. And since angle ABC is equal to BCD, and
CBD to ACB, the whole (angle) ABD is thus equal to
the whole (angle) ACD. And BAC was also shown (to
be) equal to CDB.

Thus, in parallelogrammic figures the opposite sides
and angles are equal to one another.

And, I also say that a diagonal cuts them in half. For
since AB is equal to CD, and BC (is) common, the two
(straight-lines) AB, BC' are equal to the two (straight-
lines) DC, CBY, respectively. And angle ABC is equal to
angle BCD. Thus, the base AC (is) also equal to DB,
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N AE Ay tfj AZ éotw Ton. €oti 8¢ xad ) AB tfj AL Ton
d0o N ai EA, AB dVo twic ZA, AT foo ciolv éxatépa
exatépy xol ywvia ) Uno ZAT yovia tfj Ondo EAB ot
Ton A éxtog 1] €vioc Bdoic dpa ) EB Bdoel tf] ZI Ton éotiy,
xol T EAB tplywvov 16 AZL torydhve Toov €oton xowov
dgopnenodw 1o AHE: hownov dpa 1o ABHA tpoanéliov hoinds
6 EHI'Z tponelioy éotiv ioov: xowov mpooxeiotw 1o HBI
tplywvov: 6hov dpa 10 ABI'A nopodAnhéypopuov 6he @
EBI'Z maparAnhoyeduue loov éotiv.

Ta Spo topolknhdypoupo to énl thic adthic Bdocwe dvta
xall €v Tollg avTolc naparAnholc toa dhAAAowc Eotiv: dmep Edel
Oei€an.

and triangle ABC is equal to triangle BC'D [Prop. 1.4].
Thus, the diagonal BC cuts the parallelogram AC D B*
in half. (Which is) the very thing it was required to show.

Proposition 35

Parallelograms which are on the same base and be-
tween the same parallels are equal’ to one another.
A D E F

B C

Let ABCD and EBCF be parallelograms on the same
base BC, and between the same parallels AF' and BC. [
say that ABCD is equal to parallelogram EBCF.

For since ABCD is a parallelogram, AD is equal to
BC [Prop. 1.34]. So, for the same (reasons), EF is also
equal to BC. So AD is also equal to EF. And DE is
common. Thus, the whole (straight-line) AF is equal to
the whole (straight-line) DF. And AB is also equal to
DC. So the two (straight-lines) EA, AB are equal to
the two (straight-lines) F'D, DC, respectively. And angle
FDC is equal to angle FAB, the external to the inter-
nal [Prop. 1.29]. Thus, the base EB is equal to the base
FC, and triangle EAB will be equal to triangle DFC
[Prop. 1.4]. Let DGE have been taken away from both.
Thus, the remaining trapezium ABGD is equal to the re-
maining trapezium EGCF. Let triangle GBC have been
added to both. Thus, the whole parallelogram ABCD is
equal to the whole parallelogram EBCF'.

Thus, parallelograms which are on the same base and
between the same parallels are equal to one another.
(Which is) the very thing it was required to show.

 Here, for the first time, “equal” means “equal in area”, rather than “congruent”.

AF.

Ta mopoAAnhoypopua o €nl lowv Pdoewy Gvta xol €v
Tailc aTaic mopodiholg Too A holg Eativ.

"Eotw nopadnhéypopua ¢ ABTA, EZHO énl Towv
Bdoewv 6vta ey BI', ZH xol év tolig adtolc mapaAiiiols
twic AO, BH- Aéyw, &t foov éotl 10 ABI'A mopoh-

Proposition 36

Parallelograms which are on equal bases and between
the same parallels are equal to one another.

Let ABCD and EFGH be parallelograms which are
on the equal bases BC and F'G, and (are) between the
same parallels AH and BG. I say that the parallelogram

37
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Anhoypoapuoyv 16 EZHO.

ABCD isequal to EFGH.

e M
B T 7. H B  C F G

‘Eneletydwoav ydp oi BE, I'©. xal énel lon éotlv 7
BT <fj ZH, é\\& 7 ZH <jj E© &otw lon, xoi 1) BI' dpa T
EO éotw Ton. eiol 8¢ xal mopdhhniot. xol Emleuyviouoty
abtac al EB, OI' ai 8¢ td¢ loac e %ol mapariihoug éml
& Ot pépn émlevyviouoa oo Te %ol mopdAAnAol eiot
[xol o EB, OT dpo loon 1€ eiot xol mopdhhnhol]. mopoh-
Anhoypapuov dpa éotl T0 EBI'O. xaf éotwv Toov 16 ABI'A-
Béowy te yap adtEs v adTy Exer Y BI, xal €v Toic adtolg
napahAhoLe EoTiy adtd Tolc BTN, AG. Sla té& adtdl 87 ol o
EZHO 6 avtd 16 EBI'O ¢oty loov: dote xal 16 ABTA
napahAnAéypaupov 16 EZHO éoty Toov.

Ta Gpor mapahAnAoypaupa o el Towv Bdoswy Gvta xol
év Tolc avtdic mopaAAnholc Toa dhARAowc Eotlv: dmep Edel
OeiEan.

2.
Ta tplywva t& énl tfig adtfic Bdoewe dvta xal év Tolg
adtollg mapahhrolg Too dAARAoLE Eotiv.

E A A 7

B r

"Eotw tplywva t& ABI', ABI énl tfic adtfic fdoewc tfic
BI' xai év Tolc adtolc noporiiholg toic AA, BI™ AMéyw, &t
{oov éott 10 ABI tpiywvov 1@ ABL tpiydhve.

ExBepriodo | AA é@” éxdrepa ta puépn ént ta E, Z, xal
oo pev tod B tfj A napdiinhog fydw | BE, Slo 8¢ 1o I T
BA rmapdiinroc Aydw | I'Z. napadAnhéypoppov dpa Eotiv
exdrepov v EBI'A, ABI'Z: xol eiow loar &ni te ydp tiic
abTiic Bdoed elol tfic BI' %ol €v tollg adtollc mopaAAnholg
wilc BI', EZ- xai éon to¥ pev EBI'A nopahhnioypdypou
Auov to ABT tplywvov: 1 yap AB Siuduetpoc adtd diya
téuver 1ol 8¢ ABI'Z nopodinhoyeduuou fuou to ABI
Tplywvov: 7 yop AT diduetpoc adtd diya téuvel. [t& B¢
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Forlet BE and C'H have been joined. And since BC'is
equal to F'G, but F'G is equal to FH [Prop. 1.34], BC'is
thus equal to EH. And they are also parallel, and £ B and
HC join them. But (straight-lines) joining equal and par-
allel (straight-lines) on the same sides are (themselves)
equal and parallel [Prop. 1.33] [thus, EB and HC are
also equal and parallel]. Thus, EBCH is a parallelogram
[Prop. 1.34], and is equal to ABCD. For it has the same
base, BC, as (ABCD), and is between the same paral-
lels, BC and AH, as (ABCD) [Prop. 1.35]. So, for the
same (reasons), EFGH is also equal to the same (par-
allelogram) FBCH [Prop. 1.34]. So that the parallelo-
gram ABCD is also equal to EFGH.

Thus, parallelograms which are on equal bases and
between the same parallels are equal to one another.
(Which is) the very thing it was required to show.

Proposition 37

Triangles which are on the same base and between
the same parallels are equal to one another.
B A D

B C

Let ABC and D BC be triangles on the same base BC,
and between the same parallels AD and BC'. 1 say that
triangle ABC'is equal to triangle DBC.

Let AD have been produced in both directions to FE
and F, and let the (straight-line) BFE have been drawn
through B parallel to CA [Prop. 1.31], and let the
(straight-line) C'F' have been drawn through C parallel
to BD [Prop. 1.31]. Thus, EBCA and DBCF are both
parallelograms, and are equal. For they are on the same
base BC, and between the same parallels BC and EF
[Prop. 1.35]. And the triangle ABC is half of the paral-
lelogram EBCA. For the diagonal AB cuts the latter in
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@&V Towv fulon Toa AAAow Eotiv]. Toov pa éoti o ABT
telywvov 16 ABI' tpiydve.

T dipa tplywvo té énl tiic adtiic Bdoewe Gvta xal €v Tolg
adtollg mapahhirolc Too dAARAoL Eotiv: Omep EDel BeTEau.

T This is an additional common notion.

AN
Ta telywva td énl lowv Bdoewy dvta xal év Taic adTtolg
napoAhhols Too dAAholg Eotiv.

H A A C)

B I E Z

"Eotw tplywva t& ABIY, AEZ éni {owv Bdoewv tév B,
EZ xal &v toilg adtailc topodiholg toic BZ, AA- Aévyw, 6t
Toov éotl 10 ABI tplywvov 16 AEZ torydve.

‘ExBefAnodo yap | AA ¢ éxdtepa o péen énl ta H,
O, ol duo pev o0 B tfj TA mapdhinioc 9w | BH, dlo 8¢
toU Z tfj AE nopddinhoc fiydw N ZO. nopod A\nhoYpouuov
Gpa eotiv Exdrtepov v HBI'A, AEZO- xal {oov 1o HBT'A
w6 AEZO- énl te yap lowv Bdoedv elol v BI', EZ xal
v Tailc adtolc mapaAirolc tolc BZ, HO- xal éott 1ol pev
HBTA rapaiinioyedupou fiuou 1o ABL tplywvov. 7 yop
AB Sudpetpoc atto diyo téuver 1ol 8¢ AEZO mnapain-
hoypdupou fiuou 1o ZEA tplywvov: 1 ydp AZ Slopetpoc
a0TO diyor tépver [td 8¢ 1@V Towv Nuion Toa A AL oic Eotiv].
loov 8pa €0t T ABT tplywvov 16 AEZ tpiydve.

Ta Gpo tplywva td énl lowv Bdoewv dvta xol év Tolg
avtolic mapahhirols Too dAAAAoLG Eotiv: Omep Edel BETEau.

A

Ta oo tplywva ta énl tiic adtfic Bdoewe Gvta ol €ml
T 0T Yépm xol v Tollg adTollg mapahhAolg Eotiv.

"Eotw loa tplywva 1 ABI', ABI énl tijc adtiic Bdoewc
Ovta xol éml ta avTa péen thc BI Aéyw, 6TL xol év Tdic
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half [Prop. 1.34]. And the triangle DBC' (is) half of the
parallelogram DBCF'. For the diagonal DC cuts the lat-
ter in half [Prop. 1.34]. [And the halves of equal things
are equal to one another.]’ Thus, triangle ABC is equal
to triangle DBC.

Thus, triangles which are on the same base and
between the same parallels are equal to one another.
(Which is) the very thing it was required to show.

Proposition 38

Triangles which are on equal bases and between the
same parallels are equal to one another.

G A D H

B C E F

Let ABC and DEF be triangles on the equal bases
BC and EF, and between the same parallels BF' and
AD. I say that triangle ABC'is equal to triangle DEF".

For let AD have been produced in both directions
to G and H, and let the (straight-line) BG have been
drawn through B parallel to C'A [Prop. 1.31], and let the
(straight-line) F'H have been drawn through F parallel
to DE [Prop. 1.31]. Thus, GBCA and DEF H are each
parallelograms. And GBC A is equal to DEF H. For they
are on the equal bases BC' and EF, and between the
same parallels BF and GH [Prop. 1.36]. And triangle
ABC is half of the parallelogram GBC A. For the diago-
nal AB cuts the latter in half [Prop. 1.34]. And triangle
FED (is) half of parallelogram DEF H. For the diagonal
DF cuts the latter in half. [And the halves of equal things
are equal to one another.] Thus, triangle ABC is equal
to triangle DEF'.

Thus, triangles which are on equal bases and between
the same parallels are equal to one another. (Which is)
the very thing it was required to show.

Proposition 39

Equal triangles which are on the same base, and on
the same side, are also between the same parallels.

Let ABC and DBC be equal triangles which are on
the same base BC, and on the same side (of it). I say that
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adTollg mapahhhhols Eotiv.
m
B I

‘Eneletydw yap 1 AA Aéyw, 6Tl nopdAAnhoc oty 1
AA =jj BT

Ei yap un, fydo 6 w00 A onuelov tfj BI' edleia
napdhinioc | AE, xol énelevydw M EI'. Toov dpa éotl 0
ABT tplywvov 1@ EBI toiydve: énl te yap tiic adtiic
Baoene oty adte tic BI' %ol év toic adtolc mapahhirole.
e o ABT 16 ABI oty Toov xal to ABI dpa 165 EBI
{oov éotl 10 Yeilov 13 Ehdocovl émep EoTiv AB0VUTOV" 0UX
Gpo mapdhnioc eotv ) AE tfj BI'. ouolwe 87 delloyev,
6t 00d” AN Tc A Tiic AA- | AA dpa tff BI' ot
TapdAANAog.

Ta dpa Too tplywva t& énl tfic adtfic Bdocwe dvta ol

gml T oOTa Yép ol €v Tailc adTollg mapaAAhol Eotiv: Bmep
€deL deiou.

4
T oo tpiywva té el lowvy Bdoewy Gvto xol €t T adTd
uéen xal év Tailc avTaic napaAAniol Eotiv.

A

Z

B T E

"Eotw loa tplywva t& ABT, TAE éni lowv Bdoewv tév
BI', T'E xol énl t& a0t péen. Aéyw, 6Tt xol €V Tolg avTais
napoAAihoLg EGTiV.

‘Eneletydw yap 7 AA Aéyw, 6Tl nopdAAnhoc oty 1
AA +ij BE.

El yap uy, fiydw 6 1ol A tfj BE noapdhinioc 1) AZ,
xal eneledydw 7 ZE. loov dpo éoti 10 ABI' tplywvov
16 ZI'E toiydve enl te yop lowv Bdoedyv elol t@év Bl
I'E xol év taiic adtolc maporhirolc toic BE, AZ. d\k& to
ABT tplywvov loov éotl 16 ATE [tplywve]: xol to ATE
Gpa [tplywvov] Toov Eotl 1% ZTE tpiydve 10 peilov @
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they are also between the same parallels.
m
B C

For let AD have been joined. I say that AD and BC
are parallel.

For, if not, let AE have been drawn through point A
parallel to the straight-line BC' [Prop. 1.31], and let EC
have been joined. Thus, triangle ABC is equal to triangle
EBC. For it is on the same base as it, BC, and between
the same parallels [Prop. 1.37]. But ABC' is equal to
DBC. Thus, DBC is also equal to EBC, the greater to
the lesser. The very thing is impossible. Thus, AF is not
parallel to BC. Similarly, we can show that neither (is)
any other (straight-line) than AD. Thus, AD is parallel
to BC.

Thus, equal triangles which are on the same base, and

on the same side, are also between the same parallels.
(Which is) the very thing it was required to show.

Proposition 407

Equal triangles which are on equal bases, and on the
same side, are also between the same parallels.

A D

B C E

Let ABC and CDE be equal triangles on the equal
bases BC' and CE (respectively), and on the same side
(of BE). I say that they are also between the same par-
allels.

For let AD have been joined. I say that AD is parallel
to BE.

For if not, let AF have been drawn through A parallel
to BE [Prop. 1.31], and let FE have been joined. Thus,
triangle ABC' is equal to triangle FCE. For they are on
equal bases, BC' and CFE, and between the same paral-
lels, BE and AF [Prop. 1.38]. But, triangle ABC is equal
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ghdocovt 6nep €Ty AdUvVaTov: 00X dpa mapdhinioc | AZ  to [triangle] DCE. Thus, [triangle] DCE is also equal to
] BE. opoiwe 87 Sei€opev, &t 008" dhhn ic mhny tfic AA-  triangle FCE, the greater to the lesser. The very thing is
N AA dpa tfi BE éot nopdhinloc. impossible. Thus, AF' is not parallel to BE. Similarly, we
T& dpo Too Tplywva & et Towy Bdoewy évta xol énl & can show that neither (is) any other (straight-line) than
a0Td épn xal v Tollc adtaic Topalllolc Eotiv Onep €det  AD. Thus, AD is parallel to BE.
detlou. Thus, equal triangles which are on equal bases, and
on the same side, are also between the same parallels.
(Which is) the very thing it was required to show.

T This whole proposition is regarded by Heiberg as a relatively early interpolation to the original text.

wot'. Proposition 41
‘Eav mopadnhéypoppov tolydvew Bdow te Exn Y If a parallelogram has the same base as a triangle, and
aOThY xol €v Tolc adtaic mapahhAhoic 1, dimAdoiév Eoti  is between the same parallels, then the parallelogram is
T TapAAANAGYPaUOY TOT TELYVOU. double (the area) of the triangle.
A A E A D E
B r B C

Iapahhniéypoppov yae t© ABIA tpiydve ¢ EBI For let parallelogram ABCD have the same base BC
Bdow te Exétw v avthy v BT xol év toic avtoic no- astriangle EBC, and let it be between the same parallels,
padAAhowc Eotw Tolc BT, AE: Aéyw, éu dinhdowdy éott 10 BC and AE. I say that parallelogram ABCD is double
ABTA napadnhéypappov 100 BET tpiydivou. (the area) of triangle BEC.

‘Eneletydw yop | AL Toov 8% ot 16 ABT tpiywvoyv For let AC have been joined. So triangle ABC' is equal
6 EBT tpiydveys énl te yop tiic adtiic Bdoeme éotv  to triangle FBC. For it is on the same base, BC, as
a0td tiic BT xol év tolic adtaic napalhihow toiic BI', AE. (EBC), and between the same parallels, BC' and AE
A& 0 ABTA mopodAnhéypopoy dinhdotdy ot 1ol ABI'  [Prop. 1.37]. But, parallelogram ABCD is double (the
Torydvour 1 yap A Sudpetpoc adtd diya téuver dote area) of triangle ABC. For the diagonal AC cuts the for-
10 ABT'A naparhnhéypoppov xai 100 EBI' tpiydvou €oti  mer in half [Prop. 1.34]. So parallelogram ABCD is also

dimhdiolov. double (the area) of triangle EBC.

"Eav dpa mopadAinAdypoppoy telydve Bdoty te Exn thy Thus, if a parallelogram has the same base as a trian-
0TV xal év Tolc aTols mapakhihols 1, dithdoléy éoti o gle, and is between the same parallels, then the parallel-
TopOAANAG YooY ToD Ty dvou: Gnep Edet Seiou. ogram is double (the area) of the triangle. (Which is) the

very thing it was required to show.

up’. Proposition 42
T& 80dévtl Tpry®dve 0oV TopoAANAGYPUUOY CUOTH- To construct a parallelogram equal to a given triangle
cacYou €v tfj dodelon ywvia edduypduuw. in a given rectilinear angle.
"Ecte 10 pév dodev tplywvov to ABI, 1 8¢ Sodcioa Let ABC be the given triangle, and D the given recti-

yevio e0¥0ypoupoc N A+ 8et 81 1@ ABI toiydhve Toov mo-  linear angle. So it is required to construct a parallelogram
pahAnh6ypappov cuothoacdou ev T A ywvia edduypduuew. equal to triangle ABC in the rectilinear angle D.

41
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Tetunodw N BT diya xata 10 E, xal éneledydw | AE,
%ol oLUVESTATK PO Tf) EI' ebdelq xal 16 npog adtH onpelew
6 E tf] A yovia lon 7y Ono T'EZ, xol 8w yev 1ot A tfj EI
napdhiniog Yydw | AH, Swa 8¢ tob I' tfj EZ nopdiinioc
Ax Ve H I'H: nopolnAdypoppov dpa éott 16 ZEIH. xal enel
{on ¢otiv | BE tfj EI, Toov éotl xai 10 ABE tplywvov w6
AET tpiydove- ént te yap lowv Bdoedy elol tév BE, EI' xal
&v Tailc aTailc mapahhirolc taic BI', AH- Sinhdotov dpa éotl
70 ABI tplywvov 10U AEL tpuyddvou. ot de xal to ZET'H
napahAnAGypaupov dinhdotov tol AEL tpuyddvou- Bdowv te
yap aOTE TV avThV €xel xol €v Tolc adTolc EoTv avTE
napoAhiholc” Toov dpa €otl 10 ZETH mapodhnidypopuov
w6 ABT torydve. xol Exet v Ono I'EZ ywviay Tony T
dovelon tfj A.

Té Gpa SodévTt Tprydve 16 ABI loov mapalhnidypay-
pov cuvéotaton 0 ZEI'H év yovia tfj Und I'EZ, ¥tic éotly
Ton tf] A- énep €del motfjoou.

wy

IMovtog nopoAknhoyeduyou @y tepl TV SLEUETEOV Tta-
poAANhOY YWY T& TopamAneduata (oo dAARAoLE EoTiv.

"Eotw nopodAnhoypopuov 1o ABTA, Sidpetpoc de
avtol N AL, mepl 8¢ thv AI' napahAnAoypaupa uev €0tw
w0 EO©, ZH, t& 8¢ Aeyoueva nopamineopata to BK, KA-
Myw, 6t Toov éotl 10 BK nopanifpwpa 16 KA nogo-
TANPOUATL.

"Enel yop nopodAnhoypopudy éot 1o ABI'A, didpetpoc
8¢ adtob 7 AT, loov éoti 10 ABI tpiywvov 1@ ATA
TELYOVR.  TEAY, €nel mopolhnAdypauudy ot 10 EO,
dudpetpog de avtob oty 1) AK, Toov éotl 10 AEK tplywvov
6 AOK tpiydve. S ta adtd o %ol 1o KZIN tplywvov
w6 KHI' éotwv loov. émel oliv 10 pev AEK tplywvov @
AOK torydve oty Toov, to 8¢ KZI' w6 KHI', 16 AEK
tplywvov petd tob KHI Toov éotl 16 AOK tprydhve petd
100 KZI'" ot 8¢ xal 6hov 10 ABI tplywvov 6Ae 16 AAT
loov- hownov dpa 10 BK nopaniipwpa hownd 16 KA nogo-
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B E C

Let BC have been cut in half at £ [Prop. 1.10], and
let AE have been joined. And let (angle) CEF, equal to
angle D, have been constructed at the point F on the
straight-line FC' [Prop. 1.23]. And let AG have been
drawn through A parallel to EC [Prop. 1.31], and let CG
have been drawn through C parallel to EF [Prop. 1.31].
Thus, FECG is a parallelogram. And since BF is equal
to EC, triangle ABF is also equal to triangle AEC. For
they are on the equal bases, BE and EC, and between
the same parallels, BC and AG [Prop. 1.38]. Thus, tri-
angle ABC' is double (the area) of triangle AEC. And
parallelogram FECG is also double (the area) of triangle
AEC. For it has the same base as (AEC), and is between
the same parallels as (AEC) [Prop. 1.41]. Thus, paral-
lelogram F'ECG is equal to triangle ABC. (FECG) also
has the angle CEF equal to the given (angle) D.

Thus, parallelogram FECG, equal to the given trian-
gle ABC, has been constructed in the angle CEF, which
is equal to D. (Which is) the very thing it was required
to do.

Proposition 43

For any parallelogram, the complements of the paral-
lelograms about the diagonal are equal to one another.

Let ABCD be a parallelogram, and AC' its diagonal.
And let EH and FG be the parallelograms about AC, and
BK and K D the so-called complements (about AC). I
say that the complement BK is equal to the complement
KD.

For since ABC'D is a parallelogram, and AC its diago-
nal, triangle ABC'is equal to triangle ACD [Prop. 1.34].
Again, since F'H is a parallelogram, and AK is its diago-
nal, triangle AEK is equal to triangle AH K [Prop. 1.34].
So, for the same (reasons), triangle K F'C is also equal to
(triangle) KGC. Therefore, since triangle AEK is equal
to triangle AHK, and KFC to KGC, triangle AEK plus
KGC is equal to triangle AHK plus KFC. And the
whole triangle ABC is also equal to the whole (triangle)
ADC'. Thus, the remaining complement BK is equal to



YTOIXEIOQN o'

ELEMENTS BOOK 1

Thnewpati éoty loov.

A &)
B H

A

L

I

IMovtog dpa maparAnhoypdupou ywelou @y mepl Ty
BLAUETEOV TUPUAANAOY EAUULY T Topamhneuato too GAAY-
how €otiv: 6mep €de Bellan.

uo’.
Toapd v dodeicay ebdelo 16 80¥EVTL Ty WV (oov Ta-
poAAnAoypaupov tapofahely év tfj bodelon ywvia ebduypdy-
-

A
E K

|2
G A A

"Eotw 1 pev dodeloa ebideio iy AB, 10 8¢ bodev tplywvov
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Yuveotdtw 6 I' tpiydve loov mapadAnhdypaupov To
BEZH év yovia tfj bno EBH, # éotv Ton tij A+ xal xelodw
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énl 10 O, xal S ol A onotépa tév BH, EZ noapdiinioc
Ao 7 AO, xol éneledydo 1 OB. xal énel eic topalhiioug
tac AO, EZ ebdcia événeoev 1) ©Z, ol dpa Uno AOZ, OZE
yoviow ducty opdaic elowv Toon. ol dpa Umo BOH, HZE
000 6p0BV ENdocovég elov' ol B dmd Ehaccdvwv 1) BLO
6p06V cig dnelpov ExBourlduevon cuurintousty: ol ©B, ZE
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the remaining complement K D.

A H D

NN 4

B G C

Thus, for any parallelogramic figure, the comple-
ments of the parallelograms about the diagonal are equal
to one another. (Which is) the very thing it was required
to show.

Proposition 44

To apply a parallelogram equal to a given triangle to
a given straight-line in a given rectilinear angle.

4 ;

]

LT ]
H A L
Let AB be the given straight-line, C' the given trian-
gle, and D the given rectilinear angle. So it is required to
apply a parallelogram equal to the given triangle C to the
given straight-line AB in an angle equal to (angle) D.
Let the parallelogram BEFG, equal to the triangle C,
have been constructed in the angle EBG, which is equal
to D [Prop. 1.42]. And let it have been placed so that
BE is straight-on to AB." And let FG have been drawn
through to H, and let AH have been drawn through A
parallel to either of BG or EF' [Prop. 1.31], and let HB
have been joined. And since the straight-line HF falls

across the parallels AH and EF, the (sum of the) an-
gles AHF and HFFE is thus equal to two right-angles
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T This can be achieved using Props. 1.3, 1.23, and 1.31.
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[Prop. 1.29]. Thus, (the sum of) BHG and GFE is less
than two right-angles. And (straight-lines) produced to
infinity from (internal angles whose sum is) less than two
right-angles meet together [Post. 5]. Thus, being pro-
duced, HB and F'E will meet together. Let them have
been produced, and let them meet together at K. And let
KL have been drawn through point K parallel to either
of EA or FH [Prop. 1.31]. And let HA and GB have
been produced to points L and M (respectively). Thus,
HLKF is a parallelogram, and HK its diagonal. And
AG and ME (are) parallelograms, and LB and BF the
so-called complements, about H K. Thus, LB is equal to
BF [Prop. 1.43]. But, BF is equal to triangle C. Thus,
LB is also equal to C. Also, since angle GBE is equal to
ABM [Prop. 1.15], but GBE is equal to D, ABM is thus
also equal to angle D.

Thus, the parallelogram LB, equal to the given trian-
gle C, has been applied to the given straight-line AB in
the angle ABM, which is equal to D. (Which is) the very
thing it was required to do.

Proposition 45

To construct a parallelogram equal to a given rectilin-
ear figure in a given rectilinear angle.

Let ABCD be the given rectilinear figure,” and F the
given rectilinear angle. So it is required to construct a
parallelogram equal to the rectilinear figure ABCD in
the given angle F.

Let DB have been joined, and let the parallelogram
FH, equal to the triangle ABD, have been constructed
in the angle H K I, which is equal to E [Prop. 1.42]. And
let the parallelogram GM, equal to the triangle DBC,
have been applied to the straight-line GH in the angle
GH M, which is equal to E [Prop. 1.44]. And since angle
E is equal to each of (angles) HKF and GHM, (an-
gle) HKF is thus also equal to GHM. Let KHG have
been added to both. Thus, (the sum of) FKH and K HG
is equal to (the sum of) KHG and GHM. But, (the
sum of) FKH and KHG is equal to two right-angles
[Prop. 1.29]. Thus, (the sum of) KHG and GHM is
also equal to two right-angles. So two straight-lines, K H
and H M, not lying on the same side, make adjacent an-
gles with some straight-line GH, at the point H on it,
(whose sum is) equal to two right-angles. Thus, K H is
straight-on to HM [Prop. 1.14]. And since the straight-
line HG falls across the parallels KM and FG, the al-
ternate angles M HG and HGF are equal to one another
[Prop. 1.29]. Let HGL have been added to both. Thus,
(the sum of) MHG and HGL is equal to (the sum of)
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HGF and HGL. But, (the sum of) M HG and HGL is
equal to two right-angles [Prop. 1.29]. Thus, (the sum of)
HGF and HGL is also equal to two right-angles. Thus,
F@ is straight-on to GL [Prop. 1.14]. And since FK is
equal and parallel to HG [Prop. 1.34], but also HG to
ML [Prop. 1.34], K'F' is thus also equal and parallel to
ML [Prop. 1.30]. And the straight-lines KM and FL
join them. Thus, KM and FL are equal and parallel as
well [Prop. 1.33]. Thus, K F LM is a parallelogram. And
since triangle ABD is equal to parallelogram FH, and
DBC to GM, the whole rectilinear figure ABCD is thus
equal to the whole parallelogram K FLM.

D
C
A
E
B
/ | /G / |
K H M
Thus, the parallelogram K F LM, equal to the given
rectilinear figure ABC D, has been constructed in the an-

gle 'K M, which is equal to the given (angle) E. (Which
is) the very thing it was required to do.

T The proof is only given for a four-sided figure. However, the extension to many-sided figures is trivial.

b
Ano tiic Sodelone evldelac tetpdywvov dvarypddou.
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i AE, | 6¢ AA tfj BE. ddha 7 AB tfj AA éotw Tlon:
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Proposition 46

To describe a square on a given straight-line.

Let AB be the given straight-line. So it is required to
describe a square on the straight-line AB.

Let AC have been drawn at right-angles to the
straight-line AB from the point A on it [Prop. 1.11],
and let AD have been made equal to AB [Prop. 1.3].
And let DFE have been drawn through point D parallel to
AB [Prop. 1.31], and let BE have been drawn through
point B parallel to AD [Prop. 1.31]. Thus, ADEB is a
parallelogram. Therefore, AB is equal to DFE, and AD to
BE [Prop. 1.34]. But, AB is equal to AD. Thus, the four
(sides) BA, AD, DE, and EB are equal to one another.
Thus, the parallelogram ADEB is equilateral. So I say
that (it is) also right-angled. For since the straight-line
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AD falls across the parallels AB and DE, the (sum of
the) angles BAD and ADF is equal to two right-angles
[Prop. 1.29]. But BAD (is a) right-angle. Thus, ADFE
(is) also a right-angle. And for parallelogrammic figures,
the opposite sides and angles are equal to one another
[Prop. 1.34]. Thus, each of the opposite angles ABE
and BED (are) also right-angles. Thus, ADFEB is right-
angled. And it was also shown (to be) equilateral.

C
D E
A B

Thus, (ADEB) is a square [Def. 1.22]. And it is de-
scribed on the straight-line AB. (Which is) the very thing
it was required to do.

Proposition 47

In right-angled triangles, the square on the side sub-
tending the right-angle is equal to the (sum of the)
squares on the sides containing the right-angle.

Let ABC be a right-angled triangle having the angle
BACa right-angle. I say that the square on BC is equal
to the (sum of the) squares on BA and AC.

For let the square BDEC have been described on
BC, and (the squares) GB and HC on AB and AC
(respectively) [Prop. 1.46]. And let AL have been
drawn through point A parallel to either of BD or CE
[Prop. 1.31]. And let AD and F'C have been joined. And
since angles BAC and BAG are each right-angles, then
two straight-lines AC' and AG, not lying on the same
side, make the adjacent angles with some straight-line
BA, at the point A on it, (whose sum is) equal to two
right-angles. Thus, C' A is straight-on to AG [Prop. 1.14].
So, for the same (reasons), BA is also straight-on to AH.
And since angle DBC is equal to F'BA, for (they are)
both right-angles, let ABC have been added to both.
Thus, the whole (angle) DBA is equal to the whole (an-
gle) FBC. And since DB is equal to BC, and FB to
BA, the two (straight-lines) DB, BA are equal to the
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t The Greek text has “F' B, BC”, which is obviously a mistake.

1 This is an additional common notion.
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two (straight-lines) CB, BF,' respectively. And angle
DBA (is) equal to angle FBC. Thus, the base AD [is]
equal to the base F'C, and the triangle ABD is equal to
the triangle FBC [Prop. 1.4]. And parallelogram BL
[is] double (the area) of triangle ABD. For they have
the same base, BD, and are between the same parallels,
BD and AL [Prop. 1.41]. And square GB is double (the
area) of triangle FFBC. For again they have the same
base, F'B, and are between the same parallels, F'B and
GC [Prop. 1.41]. [And the doubles of equal things are
equal to one another.]* Thus, the parallelogram BL is
also equal to the square GB. So, similarly, AE and BK
being joined, the parallelogram CL can be shown (to
be) equal to the square HC. Thus, the whole square
BDEC is equal to the (sum of the) two squares GB and
HC. And the square BDEC is described on BC, and
the (squares) GB and HC on BA and AC (respectively).
Thus, the square on the side BC' is equal to the (sum of
the) squares on the sides BA and AC.
H

D L E
Thus, in right-angled triangles, the square on the
side subtending the right-angle is equal to the (sum of
the) squares on the sides surrounding the right-[angle].
(Which is) the very thing it was required to show.
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Proposition 48

If the square on one of the sides of a triangle is equal
to the (sum of the) squares on the two remaining sides of
the triangle then the angle contained by the two remain-
ing sides of the triangle is a right-angle.

C

D A B

For let the square on one of the sides, BC, of triangle
ABC be equal to the (sum of the) squares on the sides
BA and AC. I say that angle BAC is a right-angle.

For let AD have been drawn from point A at right-
angles to the straight-line AC' [Prop. 1.11], and let AD
have been made equal to BA [Prop. 1.3], and let DC
have been joined. Since DA is equal to AB, the square
on DA is thus also equal to the square on AB.' Let the
square on AC have been added to both. Thus, the (sum
of the) squares on DA and AC is equal to the (sum of
the) squares on BA and AC. But, the (square) on DC' is
equal to the (sum of the squares) on DA and AC. For an-
gle DAC is a right-angle [Prop. 1.47]. But, the (square)
on BC is equal to (sum of the squares) on BA and AC.
For (that) was assumed. Thus, the square on DC is equal
to the square on BC. So side DC is also equal to (side)
BC. And since DA is equal to AB, and AC (is) com-
mon, the two (straight-lines) DA, AC are equal to the
two (straight-lines) BA, AC. And the base DC' is equal
to the base BC. Thus, angle DAC [is] equal to angle
BAC [Prop. 1.8]. But DAC is a right-angle. Thus, BAC
is also a right-angle.

Thus, if the square on one of the sides of a triangle is
equal to the (sum of the) squares on the remaining two
sides of the triangle then the angle contained by the re-
maining two sides of the triangle is a right-angle. (Which
is) the very thing it was required to show.

 Here, use is made of the additional common notion that the squares of equal things are themselves equal. Later on, the inverse notion is used.
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