Fair Share Modeling for Large Systems:

Aggregation, Hierarchical Decomposition and Randomization

Ethan Bolker

BMC Software, Inc,

University of Massachusetts, Boston;

eb@cs.umb.edu
Yiping Ding

BMC Software, Inc; 

Yiping_Ding@bmc.com
Anatoliy Rikun

BMC Software, Inc; 

Anatoliy_Rikun@bmc.com
HP, IBM and Sun each offer fair share scheduling packages on their UNIX platforms, so that customers can manage the performance of multiple workloads by allocating shares of system resources among the workloads. A good model can help you use such a package effectively. Since the target systems are potentially large, a model is useful only if we have a scalable algorithm to analyze it. In this paper we discuss three approaches to solving the scalability problem, based on aggregation, hierarchical decomposition and randomization. We then compare our scalable algorithms to each other and to the existing expensive exact solution that runs in time proportional to n! for an n workload model.

1. Introduction

Fair Share scheduling is now a mainstream technology for managing application performance on Unix systems. Hewlett Packard offers Process Resource Manager (PRM) for HP-UX  [HP99], IBM offers Workload Manager (WLM) for AIX [IBM00] and Sun offers System Resource Manager (SRM) for Solaris. [Sun99a], [Sun99b], [Sun00]. Fortunately, accurate models exist that allow planners to understand how to use that technology effectively  [BD00], [BB99].  Unfortunately, the evaluation algorithm takes time proportional to n! for an n workload model. On today's processors that becomes unbearably slow when n is about 10. 

In this paper we study several ways to speed up the computations. First we investigate when it is possible to compute the response times for particular workloads of interest efficiently by aggregating other workloads. These aggregation answers are not encouraging, but they are enlightening. Fortunately, aggregation is both accurate and efficient when studying fair share implementations that allow the user to build a hierarchy of workloads and then allocate shares within that hierarchy. Finally, we present a Monte Carlo approximation to the exact solution for an arbitrary multi-workload model. That approximation gives good results quickly for models with up to 100 workloads whether or not the workloads are hierarchically organized.

Before beginning our study let’s review the basics of fair share semantics. We assume the system runs a number of transaction processing workloads whose average arrival rates and service times are known. That is, we assume we know the workload utilizations. The performance metric of interest is workload response time. In order to meet negotiated service level agreements (SLAs), the administrator must be able to prioritize the work. In fair share scheduling that is accomplished by assigning each workload a fractional share of the processor, on the understanding that the assigned share is a guarantee: if at some moment of time just two workloads with allocated shares of 20 and 30 respectively have jobs on the run queue then those workloads will divide CPU time slices in proportion 2:3. There may be other workloads that do not happen to have jobs queued for service - the CPU time slices that their share allocations might entitle them to is not left idle.

2. The Standard Model

In the standard model for fair share CPU allocation introduced in  [BD00] a CPU share of s% for workload w is interpreted as saying that workload w runs at highest priority s% of the time. During those times when workload w has that highest priority the priority ordering of the other workloads is determined in a similar way: each of the remaining workloads runs at the next highest priority for a proportion of time determined by its relative share among the workloads whose priority has not yet been assigned. This interpretation of fair share semantics assigns a probability p(() to every possible priority ordering ( of the workloads. There are well known algorithms for computing the response time R(w,i) of a workload w running at priority i  [BB83]. If we write ((w) for the priority of w in the permutation ( then the response time R(w) for workload w can be computed as the expected value 

R(w)  = (( p(()R(w,((w)),          (1) 

where R(w,((w)) is the response time of workload w when ( is the priority ordering.

The good news is that benchmark experiments show that this model correctly predicts workload response times as a function of allocated shares [BD00]. The bad news is that there are n! possible priority orderings in an n workload model, so this algorithm takes time at least proportional to n!. Table 1 and Figure 1 show how model evaluation time grows with the number of workloads for a naive implementation and a carefully optimized version of that implementation. The times reported are independent of workload shares and utilizations: only the number of workloads matters. Both curves show that the logarithm of the time exhibits the expected faster than linear growth. The optimization extends the feasible range by a few additional workloads
 but will not scale to larger systems.

Table 1. Model evaluation time as a function of the number of workloads.

	 Number of Workloads n
	Time 

(seconds)

	
	Naive

Algorithm
	Optimized Algorithm

	1
	0.02
	0.09

	3
	0.02
	0.09

	6
	0.02
	0.09

	7
	0.06
	0.09

	8
	0.56
	0.09

	9
	5.58
	0.09

	10
	62.89
	0.86

	11
	749.69
	9.66


Moreover, even an improvement of several orders of magnitude in hardware performance would allow us to evaluate only models with up to fifteen workloads. Clearly we need new ideas and solutions. 

Figure 1. Model evaluation time as a function of the number of workloads.
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2. Aggregation

Table 2 shows the workload utilizations, 

shares and response times for one of the

largest models we can evaluate in reasonable time with the optimized algorithm. This particular model has 10 workloads with utilizations decreasing from nearly 60% to less than one percent. The total utilization is 90%. Each workload runs transactions that require one second of CPU time, so that response times really reflect workload performance, not job size. All the workloads have the same share (10%). Of course this is not a model of any real system. We chose its parameters in a systematic simple way in order to show clearly how those parameters affect response times. The lessons learned will apply to real systems.

Table 2. Response times in a 10 workload model. Transaction service times are 1 sec, so utilization has the same value as arrival rate (in jobs/sec).

	Wkl #
	Utilization
	Share
	Resp. time

	1
	0.581
	0.1
	6.40

	2
	0.145
	0.1
	13.18

	3
	0.065
	0.1
	17.15

	4
	0.036
	0.1
	19.28

	5
	0.023
	0.1
	20.48

	6
	0.016
	0.1
	21.19

	7
	0.012
	0.1
	21.64

	8
	0.009
	0.1
	21.95

	9
	0.007
	0.1
	22.16

	10
	0.006
	0.1
	22.32


Before we see how we might evaluate this model faster and thus position ourselves to tackle still larger models we can draw some interesting conclusions from this data.

1. The average transaction response time, weighted by workload utilization, is 10 seconds. The Response Time Conservation Law says that sum will be the same as the identical response time all workloads will experience when the processor is 90% busy and there is no priority scheme in effect.

2. Since shares are guarantees, not caps, a workload’s utilization can exceed its share. You should think of large shares as analogous to high priorities.

3. Workload response time depends on utilization, even though workload shares are identical. 

4. When the shares and service times are equal the smaller workloads have a higher response time. Thus if you wanted all the workloads to have the same response time, small workloads would have to have large shares. Most people's intuition suggests the opposite.

You might hope (and we did for a while) that you could speed up model evaluation when you care about the response times for just a few of the workloads by aggregating some of the others. We tried that, and found out that sometimes you can and sometimes you can’t. In order to cover the interesting cases with the least work, imagine that the workloads with the largest and smallest utilizations are the ones that matter. To aggregate a subset of the rest, we created a new workload with utilization and share the sum of the corresponding attributes of the workloads being aggregated. First we built a three workload model, with workloads 1, 10 and the aggregate {2,…,9}. Then we tried the four workload model 1,2,10, {3,…,9} and finally the five workload model 1,2,3,10,{4,….,9}.  For comparison, we carried out the same experiment when the total utilization was just 60% (Table 4). These simple experiments allow us to make the following observations.
Table 3. Results of aggregation experiments, total utilization 90%.
	Workloads


	Response Times



	
	Exact
	Aggregation

	
	
	1,10 ,

{2-9}
	1,2,10,

{3-9}
	1,2,3,10, {4-9}

	Large (1)
	6.40
	12.95
	  9.21
	  7.91

	Small  (10)
	22.32
	47.23
	34.66
	29.32


Table 4. Results of aggregation experiments, total utilization 60%.
	Workloads


	Response Times



	
	Exact
	Aggregation

	
	
	1,10 ,

{2-9}
	1,2,10,

{3-9}
	1,2,3,10, {4-9}

	Large (1)
	2.31
	2.99
	2.67
	2.48

	Small  (10)
	2.97
	3.80
	3.50
	3.23


1. In each case, aggregation increases the predicted response times of the un-aggregated workloads. That is not surprising. In both the model and in the real system, giving aggregated workloads the sum of the shares of the aggregands improves their performance by lowering their response times [BD00]. Since the average response time remains unchanged, the un-aggregated workloads must have increased response times. In order to get the correct response times for the un-aggregated workloads the aggregate must have a share smaller than the sum of the shares of its constituents. 

What we need is a way to compute the share for the aggregated workload that will leave the response times of the other workloads unchanged. Unfortunately, we have been unable to do that. Neither the maximum nor the average nor several other combinations of the shares and utilizations provides a value that works well in all cases. Using the sum of the shares has two advantages: it is simple, and it always overestimates the response times of the workloads of interest.

2. The less we aggregate the closer the results are to the original model. Tables 3 and 4 both show the smallest errors when we aggregate just five workloads {4,…,9}.  These are in fact themselves small: their total utilization is just 10% in Table 3 and 7% in Table 4. Nevertheless, aggregating them leads to significant errors in the estimation of the response time for workload 10 (30% and 10%, for Tables 3 and 4, respectively).

3. The error in the predicted response time is larger for the smaller workload. 

4. The errors in predicted response times increase as total utilization increases.

Thus naïve aggregation provides approximate answers that are good enough only when you aggregate small workloads and total utilization is not very high.

These results support the analogy we have made between shares and priorities. It is well known that changing the attributes of low priority workloads or workloads with low utilization hardly affects the response times of high priority jobs in high utilization workloads [B00]. The same is true for shares. 

Since we have validated our model [BD00], these results apply to the system itself, not just to the model. Thus they can guide an administrator who is trying to set up workloads in order to meet negotiated service level objectives.

3. Hierarchical Share Allocation 

It is often convenient to be able to allocate resource shares hierarchically. For example, an administrator might group work by department, and, within each department, by priority.  Then shares are allocated to departments and to priority groupings within each department. HP's PRM and Sun's SRM explicitly allow such hierarchies. IBM's WLM provides an approximation to this kind of organization.

Hierarchical allocation has several advantages. For the system administrator it offers a finer granularity for tuning to meet service level objectives. For the modeler, we shall see that it makes possible an aggregation algorithm that produces the same answers as the existing expensive algorithm in much less time.

Figure 2 shows shares allocated to three departments: web users (labeled web),

Figure 2. A hierarchical model.
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database/decision support system related activity (db) and the system administrators (it). Within each department work is divided into two groups - critical (hi) and less critical (lo). 

For example, users in web.hi might correspond to a group of recognized regular customers, while those in web.lo are occasional buyers or visitors.
  It is natural to represent this kind of structure graphically as a tree. The exact computation of the response times in a two level tree like this one with n internal nodes (children of the root) each of which has m children (the workloads) requires an analysis of n! ( (m!)n possible priority orderings of the n ( m workloads. That is less than the (n(m)!  possible orderings for a flat model with that many workloads but still grows pretty rapidly. In this example it is just 3!((2!)3  = 48 priority orderings of six workloads, but for n= 5 and m=2 it we would have to examine   5! (25 = 23040 priority orderings.

The Hierarchical Aggregation Algorithm replaces this model using a single tree by a set of smaller models each of which has a much simpler tree. To find the response times for the workloads db.hi, db.lo  (the leaf children 

of the node db) one need not investigate the details of those workloads’ cousins. It suffices to consider the siblings of db as aggregated workloads (leaves), as in Figure 3.

Figure 3. One of the three aggregated models for the model in Figure 2.
Root

web

   util.: 0.35
share: 0.50


db

   

share: 0.35

db.hi
  util.: 0.20
share: 0.75

db.lo    util.: 0.20
share: 0.25
it

  util.:
0.05
share: 0.15

The distribution of shares inside the web and it groups affects only the response times of the jobs in those groups.  

The aggregated nodes web and it have their original shares. Each has utilization that is the sum of the utilizations of the leaves that lie below it. It is then easy to prove that the db.hi and db.lo workload response times are the same when the algorithm in [BD00] is used to compute them in this tree and in the original model. In the aggregated model the algorithm investigates just 12 possible priority orders for the four workloads (two real, two aggregated).

If we carry out this kind of analysis, aggregating all but one of the children of the root each time, we can find the response times for the six original workloads (leaves of the original tree) by evaluating 3(12 =36 priority orderings of four workloads.

In a general case of this kind with an n ( m workload tree, the exact algorithm must evaluate n! ( (m!)n possible priority orderings, while the hierarchical aggregation  algorithm evaluates the much smaller number (n(n!(m! ). For example, when n = 5 and m=2 this is just 1200 orderings of six workloads instead of 23040 orderings of  ten workloads.

Table 5 shows the dramatic savings in execution time provided by the hierarchical allocation algorithm in this special case where the model is a tree

of height two in which all of the children of the root have the same number of leaves. It is clear how to extend the aggregation algorithm to more general trees: if you are interested in the response time of a particular workload you can aggregate all sub-trees that do not contain that workload. If you are interested in all the workloads you can do this maximal aggregation sequentially for each set of sibling workloads and dramatically reduce computation time (compared with the exact solution). 

Table 5. Hierarchical Aggregation Algorithm Analysis.

	n children of root, each with m children
	Evaluation method

(priority orderings checked)

	n,m
	Num   wkls

n(m
	Naïve Exact
n!(m!)n
	Hierarch.Aggreg.

n!m!( n
	Flat

(nm)!

	3,2
	6
	48
	36
	720

	5,2
	10
	3840
	1200
	3.6(106

	5,5
	25
	3(1012
	72000
	1.6(1025

	10,5
	50
	1(1035
	4.4(109
	1.6(1064


4. Monte Carlo Approximations for Large Models

We have seen how aggregation can dramatically reduce the computation time when finding exact solutions for hierarchical models of reasonable size, and how some aggregation can provide approximate solutions for flat models. That still leaves us with an unsolved scalability problem for larger models, whether flat or hierarchical. In this section we present a method for finding approximate solutions for any model in time that grows more or less linearly with the size of the model.
The basic idea follows from the observation that the sum in (1) is the expected value of the workload's response times for a particular probability distribution on the set of all possible priority orderings ( of the workloads. Thus, it is possible to replace the sum 

((  p(()R(w,((w))

by the expected value for a random sample of the possible orderings. Some algorithm details can be found in the Appendix. 

We have found that sampling only a few thousand of the n! possible priority orderings yields useful information quickly for very large models. Figure 4 shows the time consumed and the accuracy obtained as a function of sample size for an eleven workload model similar to the ones we have been examining. The largest sample size we tried was 16,000. That's a lot smaller than 11! = 39,916,800.

Figure 4 shows that using only 2000 samples the Monte Carlo algorithm produces highly accurate results: the maximum and average relative errors are ~3% and 1.3%, respectively. The sample size required for this kind of accuracy does depend to some extent on the model. The most difficult models are those in which workloads with higher utilization have smaller shares (see Table 9, below). But even in those cases the number of samples needed to achieve a reasonable level of accuracy is not unreasonably large.

Figure 5 shows how execution time and accuracy vary as the number of workloads grows. The sample size is 

fixed, at 5000. The relative error in the estimated response times grows very slowly (still just a few percents for models of 40 workloads). The evaluation time grows more rapidly, but not prohibitively fast.

Figure 4. Monte Carlo algorithm performance as a function of sample size.
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Figure 5. Monte Carlo algorithm performance as a function of model size.
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These figures (and data from other experiments we have performed) demonstrate that the Monte Carlo algorithm provides an  accurate and efficient way to evaluate models with many workloads when the use of the exact algorithms would be too time consuming.

5. Summary

We have investigated three strategies for quickly predicting the effect of fair share scheduling.

Aggregation is effective when you are interested in the response times of only a few of the workloads, the system is not too heavily loaded, and the workloads of interest place the largest load on the system. When those criteria are not met you can still use aggregation to provide conservative estimates (that is, overestimates) for response times.

Hierarchical aggregation is the method of choice when the shares are actually allocated hierarchically and the model is not too large. It produces exact solutions in those cases in times significantly shorter than the published exact algorithm. And carrying out the aggregation by hand can actually provide insights into system configuration and behavior.

Monte Carlo approximation will evaluate essentially arbitrary models (dozens, perhaps hundreds of workloads) in reasonable time (seconds) with small error (a few percent). For large

hierarchical models Hierarchical Aggregation and Monte Carlo approximation may be effectively combined.

We conclude with tables showing the accuracy achieved and time required to evaluate two hierarchical models four ways: exactly using the naive algorithm (EN), exactly using the hierarchical aggregation algorithm (EH), approximately using the Monte Carlo (AMC) algorithm, and approximately using both hierarchical aggregation and Monte Carlo (AHMC). We chose models that provide good comparisons.

Table 6 summarizes the data from four evaluations of the model in Table 7.  Note that the exact hierarchical aggregation algorithm is faster than the approximate algorithms. That will be the case when each share group has few workloads      (m < 6). But it does not scale well. For models in which total number of workloads is big enough, (n(m>50) the combination of hierarchical aggregation and Monte Carlo approximation  (AHMC) is clearly best.

Table 6. Accuracy and computation time for four evaluations of a 19 workload model.

	Evaluation method


	Sample

size

	Evaluation results

	
	
	Max.

error
	Time

	Exact
	EN
	109
	0
	9.5 hour

	
	EH
	9216
	0
	0.35 sec

	Approx-imate


	AMC
	5000
	2.7%
	1.45 sec

	
	AHMC
	4000
	3.5%
	0.52 sec


Table 7.  Shares, utilizations and response times for a 19 workload model. 

	Group 


	Wkl #
	Share


	Util.


	Resp.

Time

	1


	
	1
	0.20
	

	
	1.1

1.2

1.3

1.4

1.5
	1

1

1

1

1
	0.04

0.04

0.04

0.04

0.04
	 6.391

 6.391

 6.391

 6.391

 6.391

	2


	
	2
	0.20
	

	
	2.1

2.2

2.3

2.4

2.5
	1

2

3

4

5
	0.04

0.04

0.04

0.04

0.04
	5.073

4.383

3.993

3.741

3.564

	3


	
	3
	0.20
	

	
	3.1

3.2

3.3

3.4

3.5
	1

4

9

16

25
	0.04

0.04

0.04

0.04

0.04
	4.106

3.398

2.973

2.708

2.536

	4


	
	4
	0.20
	

	
	4.1

4.2

4.3

4.4
	1

8

27

64
	0.04

0.04

0.04

0.04
	3.317

2.761

2.428

2.234


Table 8 shows a 28 workload model designed specifically to make Monte Carlo simulation perform poorly. Our experience shows that to be the case when the workloads with the smallest utilization have the largest shares.

Table 9 shows the results of evaluating that model. Note, that the Monte Carlo methods (both AMC and AHMC) provide relatively high accuracy even in this difficult case. For 28 workloads AHMC  is approximately 3 times as fast and a little more accurate than straightforward Monte Carlo. For bigger models these differences will be even more significant. 

Table 8.  Shares, utilizations and response times for a 28 workload model. 

	Group 


	Wkl #
	Share


	Util.


	Resp.

Time

	1


	
	1
	0.20
	

	
	1.1

1.2

1.3

1.4

1.5

1.6

1.7
	1

2

5

10

50

100

1000
	0.10

0.05

0.03

0.01

0.005

0.004

0.001
	5.648

4.953

4.038

3.593

3.098

3.016

2.917

	2


	
	1
	0.20
	

	
	2.1

2.2

2.3

2.4

2.5

2.6

2.7
	1

2

5

10

50

100

1000
	0.10

0.05

0.03

0.01

0.005

0.004

0.001
	5.648

4.953

4.038

3.593

3.098

3.016

2.917

	1


	
	1
	0.20
	

	
	3.1

3.2

3.3

3.4

3.5

3.6

3.7
	1

2

5

10

50

100

1000
	0.10

0.05

0.03

0.01

0.005

0.004

0.001
	5.648

4.953

4.038

3.593

3.098

3.016

2.917

	1


	
	1
	0.20
	

	
	4.1

4.2

4.3

4.4

4.5

4.6

4.7
	1

2

5

10

50

100

1000
	0.10

0.05

0.03

0.01

0.005

0.004

0.001
	5.648

4.953

4.038

3.593

3.098

3.016

2.917


Table 9. Accuracy and computation time for three evaluations of a 28 workload model.

	Methods


	Sample

Size

	Evaluation Results

	
	
	Max.

Error
	Time

	Exact
	EH
	483840
	0
	10.1 sec

	Approx-imate


	AMC
	5000
	7%
	2.25 sec

	
	AHMC
	5000
	6%
	0.72 sec


Appendix: Monte Carlo Approximation

"Monte Carlo" is the adjective used to describe algorithms that use random sampling to compute quantities that would be difficult or impossible to find with analytic methods. Monte Carlo computations came of age when the physicist Enrico Fermi and mathematicians John von Neumann and Stanislaw Ulam used them during the Second World War to evaluate integrals needed to design the first atomic bombs
. They are now standard tools in numerical analysis [MC].

In our case we wish to evaluate the sum 
((  p(()R(w,((w))

over all permutations ( of the integers {1,…n}where p(() is the probability that the workload priority ordering is given by ( and R(w,((w)) is the response time for workload w in that case. 

Think of each permutation as a vector in n dimensional space. Since all those vectors have the same entries, they have the same length, and so live on the surface of a sphere in that space. That surface is bounded. Although its area (suitably defined) grows as n grows, the number of permutations, n!, grows much faster, so we should imagine the permutations densely packed on that surface. Each of the many individual permutations has very low probability but collectively the probabilities sum to 1 and define a probability density on the surface of the sphere. The sum we are interested in is the average value of the workload's response time with respect to that probability density.

The CPU shares allocated to the workloads determine the probability of any individual permutation: permutations that give high priority to workloads with large shares are more likely than those that give such workloads low priority. Here is pseudocode for our Monte Carlo algorithm to approximate the sum we want by sampling the permutations:

1. choose S random priority orderings ( using probabilities determined by workload share allocations share(w) 

2. for each ( and each workload w compute response time R(w,((w))
3. for each workload, w return the average of its response times

Step 2 is standard queueing theory. There are well known algorithms that compute it in time O(n3) [BB83]. Step 1 requires an algorithm to select a random priority ordering appropriately. Below we provide one that runs in time O(n2) . Thus the entire process runs in time S(O(n2 + n3) = S(O(n3). Figure 4 confirms the linear dependence on the sample size S.  Figure 5 shows that our analysis of the dependence on the number of workloads is too conservative. The trend seems not much worse than linear. 

The Central Limit Theorem explains in principle why we get relatively accurate results from a sample size s mach less than n!. A conservative rough estimate of the Monte Carlo error is (1/((1-u)( s). where u is per-processor utilization. Thus,  s (10,000 should be sufficient for 5% accuracy at moderately high utilizations (u<0.8). 

Since the accuracy and running time are acceptable with s ~ 5000 for the values of n that interest us we have not refined our algorithm analysis further.

Finally, here is Step 2. The model in [BD00] asserts that workload w runs at highest priority with probability given by its relative share. When priorities have already been assigned to some workloads the workload with the next highest priority is chosen from among the remaining workloads using as probabilities the relative shares of those workloads.  The following algorithm chooses a priority order that way in time O(n2), assuming an O(1) random number generator. It's based on an idea in Knuth [K] for choosing a permutation at random when all permutations are equally likely.
// initialize

sum = 0 // sum of all shares

for w = 1 to n

  mark workload w unchosen

  sum = sum + share(w)

// prioritize workloads 

for i = 1 to n // find prio i wkl

   pick random x with 0 < x < sum

   top = 0

   for w = 1 to n

      if w chosen, next w

      top = top + share(w)

      if x < top

         choose w for priority i

         mark w chosen

         sum = sum ( share(w) 
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� An alternative interpretation of shares treats them as caps rather than guarantees. Then a workload with a 20% share cannot use more than 20% of the processor even if no other work is queued for service. This is easier to understand and to model: each workload runs in a virtual environment independent of the other workloads  [BD00].


� At a small cost for small models.


� If one were cynical one might want to give better service to prospective customers than to actual ones …


� For the exact algorithms sample size gives the number of priority distributions which must be considered by the method. For approximated algorithms sample size is a parameter of method.


� For the exact algorithm sample size gives the total number of priority distributions since they all must be examined. For approximate algorithms sample size is an input parameter. 


� Another earlier example: in 1850 R. Wolf threw a needle 5000 times to verify Buffon's probabilistic algorithm for computing (. He found the approximate value 3.1596 





�PAGE \# "'Page: '#'�'"  ��One reviewer comments that the average error line is missing in figures 4 and 5. That's probably because the default yellow prints badly on the gray background. Change the color.
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