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MATHEMATICAL NOTES 

GROUPS WHOSE ELEMENTS ARE OF ORDER TWO OR THREE 

E. D. BOLKER,Bryn Mawr College 

In this note we characterize those groups all of whose elements are of order 
two or three and which contain at least one element of each kind. Call such a group 
acceptable. There are two classes of acceptable groups : some resemble S ,  , the sym- 
metric group on three symbols, the others A,, the alternating group on four. The 
result, which I state precisely below, is not new; it was first proved by B. H. Neumann 
in [I] and used by him to settle the Burnside conjecture for k = 3 :  every finitely 
generated group all of whose elements have order 5 k = 3 is finite. I rediscovered 
Neumann's theorem while solving a special case of a problem posed in this MONTHLY 
[2] : Characterize those pairs A < G (" <" means "is a subgroup of") for which 
for all x ,  A u {x,x-l) < G.  When A = {e), A u {x,x-l)  < G just when x has 
order two or three. To solve the problem then means to characterize acceptable 
groups. There are two reasons for publishing this new proof. First, it is easy and 
elementary. The little the reader needs to know about group extensions is explained 
in the course of the argument. Second, recent progress has been made on charac- 
terizing groups whose elements have orders less than or equal to five, so it seemed 
worthwhile to have this easier case accessible. 

Let G be a group. Write S (T) for the set of elements of G of order two (three) 
and, when R G G,  write R* for R U{e). Then G is acceptable when neither S 
nor T is empty and G = S* U T. Before we can characterize acceptable groups, 
we must study two almost acceptable cases. 

Suppose T is empty, so that every element of G has order two. Then G is abelian 
and is naturally a vector space over the field Z, , so that it is characterized by its 
dimension d .  Let r be a set of cardinality d ;  then G is isomorphic to J - , Z ~ ,  the 
group of functions from I- to Z2 each of which is 0 except at finitely many points 
of I-. 

If S is empty, so that all elements are of order three, then G is said to have ex- 
ponent three. Finding all such groups is nontrivial. If, however, G is abelian, then 
it is easy to verify that it is naturally a vector space over Z, and hence is just J-,Z,; 
the cardinality of I- determines G .  We shall need to know later that, whether or 
not G is abelian, if it has more than three elements then it contains a subgroup 
isomorphic to Z, x Z,. 

We prove that it suffices to find a nontrivial pair of commuting elements. If 
we knew that G had a finite subgroup with more than three elements that would 
follow from the well-known nontriviality of the center of such a group. But without 
that knowledge we proceed as follows. Since G has more than three elements, we 
can find x, y # e with x # y ,y-' . If x and y do  not commute, then we shall show 
that xy and yx do. First note that, by assumption, e # xy # yx. Moreover, 
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xy # (yx)-l because xy = (yx)-l = x-'y-l = x2y2 implies e = xy .  Finally, xy 
and yx commute because 

Now we can build all the acceptable groups. 

Groups of type T. Let l- be a set of given cardinality and let H = +H3. The 
map sending each element of H to its inverse is an automorphism of order two, 
so we can form the semidirect product (splitting extension) G = H@Z, determined 
by this automorphism: G is the set H x {+ 1) with multiplication (h, a) (k, b) 
= (hka,ab). Then it is easy to see that G is an acceptable group in which 
T* = H < G. When l- has one element, G is isomorphic to S,.  

Groups of type S .  Let l- be a set of given cardinality, V the Klein four-group 
and K = lrV. A cyclic permutation a of the three nonidentity elements of V is 
an automorphism of order three of V and hence determines such an automorphism 
of K .  Let G be the semidirect product K @ Z,determined by this action. That 
is, G is the set K x Z3 with multiplication (h, a) (k, b) = (h aa(k), a + b) , where 
we think of Z, as {0,1,2) under addition modulo three. Then G is an acceptable 
group in which S* = K < G. When l- has one element, G is isomorphic to A, .  

We shall show that every acceptable group is of type S or T.  We write a, b, c, ... 
(resp. ... x, y, z )  for elements of S (resp. T) . When p and q commute, write p - q . 
Our argument begins with some elementary observations, clearly true in groups 
of types S or T, which we prove for an arbitrary acceptable group. 

1. a - X .  (If ax = x a ,  then ax has order six, a contradiction.) 
2. a - b  	e a b ~ S * .  ( a b =  b a G - ( a b ) 2 = a 2 b 2 = e = > a b ~ S * = > a b  


= (ab)-l = b-la- l  = ba.) 

Note that in groups of type S we always have a - b ,  while in groups of type 

T, a # b implies a .U b.  This motivates the next observation. 
3. 	- is transitive on S .  (If ab = ba and bc = cb then b - ac .  Hence 

ac#  T (#I )  so ac E S* and thus a - c (#2).) 
4. 	a *  b => a b ~ T(#2) => ababab = e = >  aba = bab. 
5. a y e s  => ayay = e G- aya-' = aya = y-' . 
6 .  x = x3y3 T*.N y G- ( ~ y ) ~  = e => x y ~  

LEMMA.If G i s  acceptable, then either S* < G or T* < G .  

Proof. If every pair of elements of S commutes then S* < G, and conversely 
(#2), so suppose there is a noncommuting pair and S* 4 G .  We shall show that 
no two distinct elements of S commute. For a E S ,  let C, be the centralizer of a .  
Then C, c S* (#I )  and S* # C, < G, for if they were equal, S* would be a sub- 
group of G. Suppose b - a and c - a ;  we shall show c = a or e .  If c + e ,  then 
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since - is transitive, c N b.  Let d = bcab. Then 

= cbcab (#4  again) 

Now d2 = e because a - c .  If d - a then (*) implies a = c ,  while if ii - a then 

so d = c - a ,  a contradiction. 
Now we can show T* is closed under multiplication. If xy q! T*,  then x y ~ S  

so xyxy = e and yxyx = y(xyxy)y-' = e and yx E S as well. We must have x + 1 

lest xy E T* (#6) so xy # yx and hence xql + yx . Then 

z = xyyx = xy2x q! S* ( # 2 )  so e = z3  = xy2x2(y2x2)y2x. 

But y2x2 = y-'x-' = (xy)-l = xy SO substituting in the last equation yields 

so z = e ,  a contradiction. Thus x j ? ~  T* and T* < G . 

THEOREM. Every acceptablegroup i s  of type S or T. 

Proof. We shall show that if S* (T*)< G then G is of type S (T). Suppose 
T* < G. If a E S and y E T then ay q! T* lest a be in T*, which is closed under 
multiplication. Thus ay E S ,  so, fixing a E S and applying #5, we see that the map 
y -+ aya- '  = y-' is an automorphism of T*. Hence T* is abelian and so is a 
product l r Z 3 .  NOW suppose a, b q! T*.  Then abyb-la- '  = ay- la - '  = Y SO 

ab  - y . Thus ab E T*,  so T* is of index two in G,  which is therefore a semidirect 
product of T* with Z, , with the induced action y --+ y-' making G of type T. 

Suppose, on the other hand, that S* < G. Since S* is abelian, it is a product 
l A Z 2 .  S* is normal in G; let K be any subgroup of G/S*. Then K acts on S* by 
conjugation. Let R be an orbit of that action; we shall show R* < S*.  Suppose 
a ,  ~ E R  # {e) and a f b .  Then there is a ~ E G  and yay-' with ~ S * E K  = b.  
Let c = yby-'E R;  then a = ycy-' since y has order three. Then y(abc)y-' = 

bca = a b c ~ S * .  Since y - abc, #1 implies abc = e ,  so ab = c .  Thus R* < S*. 
Moreover, since no y fixes an a E R ,  #R = #K.  Now if G/S* had more than 
three elements, we could take for K a nine element subgroup and thus produce a 
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ten element subgroup of S * .  Since every such subgroup has order a power of two, 
we must have G/S* isomorphic to Z 3  and for each orbit R # { e )  of the action of 
Z 3  on S * ,  R* is isomorphic to V and R* @ Z 3  is isomorphic to A, and hence is 
of type S .  

Call a family {R,),,,  of orbits independent if in the subgroup H of S* they 
generate, each element has a unique expansion n,,,a, where a, E R: and a, = e 
for almost all y . Then H @ Z 3  is of type S .  Let r index a maximal independent 
family. Then H is invariant under the action of Z ,  on S * .  If it were a proper sub- 
group of S* there would be an orbit R disjoint from H and {R,) u{R) would be 
a larger independent family. Thus H = S* and G is of type S .  
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SUMS OF FINITE SETS OF INTEGERS 

MELVINB. NATI-IANSON,Southern Illinois University 

Let d be a finite set of integers. The h-fold sum of .d,denoted by h d ,  is the 
set of all sums of h elements of a?, repetitions being allowed. In this note we describe 
exactly all sufficiently high sums of any finite set of integers. 

All latin letters stand for integers, and script letters for finite sets of integers. 
Denote by (a, ,  a,, ...,a,) the greatest common divisor of a , ,  a,, ...,a,. Let [p ,q ]  
be the set of integers n such that p s  n _I q .  Let z - 9 =  ( z - d J d ~ 9 )and 
z + 9  = { z + d / d ~ 9 ) .  

THEOREM.Let d = {a,,a,, ...,a,) be a finite set of integers with 
a,, = 0 < a ,  < ... < a, = a and (a,,a,,...,a,) = 1 .  Then there exist non-negative 
integers C and D and sets% c [O,C-21 and 9c [O,D-21 such that for all h 2 a2k 

We require the following lemma: 

LEMMA.Let a,,a,,. . . ,a, = a be positive integers with (al ,a2; . . ,ak)  = 1. 
Assume that 

Then there exist non-negative integers u,,u,, ...,u, such that 


