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THE SPINOR SPANNER 

ETHAN D. BOLKER, University of Massachusetts, Boston 

1. Introduction. Consider a wrench, which is an object asymmetrical enough 
so that the result of any proper rotation performed on it is easily recognized. Rotate 
the wrench through a full 360" turn about an axis. Has it returned to its original 
state? Physical and geometric intuition both say "yes", yet the calculus of spinors, 
which models the quantum mechanical behavior of neutrons, predicts that the answer 
would be "no" if the wrench were a neutron, or any other Fermion, a particle with 
half integral spin. More striking still, the predicted answer is "yes" for two full 
turns (720") about the same axis. No experiment has yet been performed to verify 
these predictions, because beam splitters and interferometers for beams of polarized 
neutrons do not yet exist, but several such experiments have been imagined [I],[2]. 
There is, however, an easy experiment with an analogous outcome. P. A. M. Dirac 
invented it to lessen, in lectures, the implausibility of the neutron's predicted be- 
havior [3]. Consider the wrench again, .which Dirac would have called by its English 
name, a spanner, hence a spinor spanner because of the use to which he put it. 
Attach it by three cords to the walls of the room. (See the solid lines in Fig. 1.) 

When we turn the wrench through 360" the cords become tangled (the dashed lines 
in Fig. 1); no tampering can undo that tangle as long as the wrench is fixed. After 
two full turns (the dotted line in Fig. 1) the snarl seems worse but is not. Before 
reading further, find a wrench, perform the experiment, and convince yourself of 
the striking fact that after two full turns the cords are essentially untangled. The 
geometry of the spinor spanner is the key to Piet Hein's topological game Tangloids, 
described by Martin Gardner in the Scientijic American [9], and to an ingenious 
device invented and patented by D. A. Adams which allows a rotating platform 
to be connected to a stationary base with a flexible cable without using slip rings 
or rotary joints [S]. 

I first saw the spinor spanner demonstrated by Norman Ramsey, a physicist, 
while I was a graduate student. In this paper I shall explain in mathematical terms 
why the spinor spanner works, and indicate how that explanation can be couched 
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in language suitable for mathematics clubs and more general mathematically naive 
audiences. Someday, I should like to make a movie of the spinor spanner. 

We are about to show that the fundamental group G of S0(3), the group of proper 
rotations of Euclidean 3-space, is of order 2, and to exploit the proof to find a method 
for untangling the cords. Since Fermions correspond to representations of the double 
covering group of SO(3) which do not factor through SO(3) itself, the fact that the 
order of G is 2 really accounts both for the spinor spanner and for the neutron's 
behavior. 

2. Homotopy. Let X be a topological space and x, a fixed point in X .  A naive 
audience could think of X as a smooth part of some Euclidean space, say the surface 
of a sphere, or a solid torus, or an annulus. A loop in X is a continuous function 
P: [0, 11 -t X for which P(0) = P(1) = x,. If you think of X as a park then a loop 
may be thought of as the record of an hour's walk in X ,  starting and ending at x, . 
Be sure to  distinguish this precise usage from the more customary meaning of' "closed 
path in a park." The latter is the image of the function P. Two loops Pand Q are homo-
topic, written P - Q,  when one can be continuously deformed into the other. For- 
mally, P - Q when there is a continuous f : [0, I] x [0, 11 -,X for which f (0, s) = 

f(1, S) = x,, f (t, 0) = P(t) and f (t, 1) = Q(t) . Informally, suppose that you walk 
your dog in X :  you follow P while he follows Q.  Then P - Q means that when the 
walk is over the leash joining the two of you can be pulled in without encountering 
any parklike obstacles, trees or lakes, which you and your dog passed on opposite 
sides of. This interpretation makes clear the importance of the direction in which 
you traverse the curve which is the image of P. If P is a sense preserving repara-
metrization of Q then P -Q. The loop corresponding to the lazy man's walk 
is the constant loop 0 defined by O(t) = x, for all t .  

Now let us consider taking two walks in succession. We shall denote "P followed 
by Q" by "P @ Q" . As a function, P @ Q is defined by 

It is intuitively clear and not hard to prove that homotopy is an equivalence relation, 
that the homotopy class of P @ Q depends only on the classes of P and of Q,  and 
that the set of homotopy classes is a group under @ . Details can be found in many 
topology texts (for example, [5] and [7]). The group is not usually abelian, but I 
have found additive notation less confusing than multiplicative for naive audiences. 
Observe that 0 is the group identity: P @ 0 - P . Our job now is to find the inverse 
of P ,  the solution to P @ ? - 0 .  The dog walking analogy can lead us to a good 
guess. If you are lazy while your dog follows P then his leash will be tangled when 
he returns, unless, by chance, P - 0 .  How could you untangle the leash? If the dog 
is intelligent the answer is easy: ask him to retrace his steps. That is, if we define 
the loop -P by (- P) ( t )  = P(1- t) then P @ (- P) - 0 .  
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3. Pasting. The topological spaces we can visualize as smooth parts of 2- or 
3-space are too simple to help us analyze the spinor spanner. We need a method for 
studying homotopy in more complicated ones. 

If we take a square piece of paper and paste together a pair of parallel sides, 
top to top and bottom to bottom, we have made a cylinder. We can study homotopy 
on the cylinder without actually pasting the square, as long as we remember that 
points along one edge are identified with corresponding points on the other. The 
idea of "pasting" can be made precise using quotient topologies, but we have no 
need for that much sophistication. For naive audiences it is instructive to mention 
the various spaces which can be obtained by pasting edges of a rectangle. They are 
the cylinder, the Mobius strip, the torus, the Klein Bottle, and, finally, the projective 
plane. The identifications which lead to these are symbolically indicated in Figs. 
2.1-2.5 respectively, in which some loops are sketched as well. The Klein Bottle 
and the projective plane cannot actually be constructed in 3-space but we can 
study them nevertheless. Fig. 2.5 suggests a more symmetrical view of the projective 
plane ll. Since each pair of opposite points of the square is pasted, the corners 
assume no special role. We can build I1 from a disk A by pasting together each pair 
of antipodal points on the rim: in Fig. 3, these are pairs (A ,A' ) ,  (B, B'), (C, C') , 
etc. 

Let x, be the center and L a  directed diameter of A. Since the ends of Lare iden- 
tified when we build ll we can consider the loop P in ll which begins at x,, follows 
L to the rim of A and then returns to x, along the other half of L. We show next 
that P w 0; to do so we use a homeomorphic copy or model of ll. Start with the 
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disk A and stretch it to form a closed hemisphere. Now consider the spherical sur- 
face I: of which A is a part. If we paste together each pair of antipodal points of 
I:, then II will result. To see this, paste first all the antipodal pairs one member or 
which lies in the interior of A. That yields the hemisphere into which A was stretched. 
The rest of the pasting, of the pairs on the equator, is just what to do to A to build II. 
In this model for II the north and south poles n and s of I:paste together to make xo  . 
In I: there is a unique continuous curve S which starts at n and which becomes P 
when I: is pasted to form I I ,  namely, the appropriate meridian joining n to s . That 
curve is not a loop in I:. If P were homotopic to 0 in II we could lift that homotopy 
to I: and so construct a continuous deformation in Z of S to the constant loop 
at n during which the endpoints n and s of S remained fixed. Since such a deformation 
is clearly impossible, P * 0 in II . We can see too that P @ P - 0 ,  because P O P 
is the result in II of pasting a great circle through n and s in I:. That great circle 
easily shrinks to the constant loop at n in I:. But to untangle cords later, we must 
now show in another way that P @ P - 0 .  Consider again our first model for II, 
obtained by pasting pairs of opposite points on the rim of A. 

Let M be another directed diameter of A, and let Q follow M in IT as P follows 
L (see Fig. 3). We can rotate L in A until it coincides with M; this rotation is a 
continuous deformation in II of P to Q .  If we take for M the diameter L with its 
direction reversed then Q is -P , so P O P - P O (- P) - 0 .  The projective plane 
thus surrounds a peculiar kind of hole. If you travel around it twice in the same 
direction you've not gone around it at all. That is analogous to what happens to 
the spinor spanner. In each case doubling something makes it vanish. But with the 
techniques of homotopy and pasting, we can do better than produce an analogy 
for the spinor spanner. We can predict and explain its behavior. 

4. The topology of SO(3). Let 0 be the space of all possible configurations of 
the wrench. A point o E R is thus the result of a particular proper rotation. Remem- 



19731 981THE SPINOR SPANNER 

ber, it is the configuration we are talking about, not the means by which the wrench 
came to that configuration. It is intuitively clear that R is a nice topological space. 
Our complete turn of the wrench about an axis corresponds to a loop P in R which 
begins and ends at the initial configuration o, . We shall show P N 0 but P @ P - 0 
in and then show how the homotopy which shrinks P @ P to 0 tells us how to 
untangle cords. 

We begin by building a model of R .  Replace the wrench by the surface of a 
sphere I:centered at the origin. Then each o E R can be identified with a map from 
C to itself defined by letting o(a) = the position of 0E X  when C is moved to con- 
figuration o. As a map, o preserves distances and the orientation of spherical 
triangles. We next show, in two ways, that every such map has a fixed point. Since 
o extends to a proper linear isometry of R3 the roots of its cubic characteristic 
polynomial have product 1 and each is of absolute value 1. Thus those roots are 1, 
eiO, e-" for some 8. Since 1 is a root, 1 is an eigenvalue and o has a fixed point. This 
argument clearly works in Rnif and only if n is odd. 

Here is a second proof in R3 ,  suitable for audiences who know no linear algebra. 
Let C have circumference 2 .  For x, y EC let p(x, y) be the least great circle distance 
between x and y . The function f: C -+ W defined by f (x) = p(x, ox:) is continuous 
and so assumes its minimum value 6 >= 0 at some a EX. If 6 = 0 then o a  = a 
and o has the fixed point we desire. We shall show next that 6 > 0 implies 6 = 0. 
Suppose S > 0. Since o is proper it cannot map every point to its antipode. Thus 
6 < 1 ,  so we can find a hemisphere H containing both a and ma. In H draw the 
great circle I' joining a to ma; it has length 6 .  Now draw two circles C and D centered 
at a and o a  respectively; make them so small that they lie in H and do not overlap. 
Let c be the intersection of C and l? and d the intersection of D and the continuation 
of r . Since p(a, c) = p(oa, oc) ,  o c  ED.But every point on D except d is less than 
6 units from c ,  so o c  = d .Now let n and s be the poles for which r lies on the equa- 
tor. Then p(a, n) = p(c, n) = 112 so p(oa,on)  = p(oc, on)  = 112. Therefore 
o n  = n or s .  But o n  = s is impossible because o preserves the orientation of the 
spherical triangle a c n . Thus o n  = n ,  n is a fixed point, and 6 = 0 .  That is, a must 
have been fixed to begin with. 

,Suppose o # o, .Then o has exactly two fixed points n,, s,; which lie at oppo- 
site ends of a diameter of X,and C can be brought to configuration o by a rotation 
of r radians about the axis n,, s,. We wish to consider rotations which are counter- 
clockwise when we look down on n, from outer space; this is the familiar right hand 
rule. In lectures I use an inflatable globe to show a counterclockwise rotation of 
102" about the axis joining Bermuda to Perth, Australia, moves Duluth to the 
Panama Canal. Since a clockwise rotation about an axis is a counterclockwise rota- 
tion about the same axis with its north and south poles interchanged, and since 
rotations through r and r - 2n radians about an axis lead to the same o ,  we can 
describe an o # o, by giving a vector m(o) # 0 with length /I m(o) I/ 5 n: m(o) 
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points toward n, from the origin, and 1) m(o) )I = r. If we set m(o,) = 0, the range of 
m is the solid ball B of radius n centered at 0. The function which inverts rn is one to 
one except when )I V 11 = n ,  for rotations through n radians about V and -V lead 
to the same o. Thus d is modeled by the space X which results when we paste 
together each pair of antipodal points on the surface of the solid ball B, because 
m: R +X is a homeomorphism; one to one, onto, continuous, and with a contin- 
uous inverse. The loop P in X which corresponds to a full turn of the wrench about 
an axis L starts at the center of B ,  moves out along L to the surface and returns 
to  the center along the other half of L. It is analogous to the loop with the same 
name we have just studied in 11. In fact, IT is a subspace of X in a natural way, 
so that the two loops we have named "P" coincide. Since P - -P in IT, P - - P  
in X .  For those who like formulas, we give one for that homotopy. Let A be the 
intersection of B with the x, z plane and L the directed diameter which extends to 
the directed x axis. The homotopy which interests us rotates Lin  A to change P to 
-P. The matrix for a right handed rotation through r radians about the axis in 
the x, z plane which makes an angle of 6' radians with L is 

i
cos2 8 + (cos r) sin28 -(sin r) sin 8 (1- cos r) sin 8 cos 8 

f ( r ,  8) = (sin r) sin 8 cos r -(sin r) cos 8 

(1 - cos r) sin 8 cos 8 (sin r) cos 8 sin28+(cos r) cos2 8 

The function f is continuous on [O,2n] x [0, n], f ( ,0) is the loop P, and f ( . ,n) 
is the loop -P ,  so f is our homotopy in d. 

To prove P w 0 in X we cannot merely use the fact that P lives in the subspace 
IT of X ,  for although no deformation of P to 0 is possible inside that subspace 
one might be possible in X .  To rule that out we need a new model for R analogous 
to our second model for IT, the one we built by pasting antipodal points on the 
2-sphere X.Let @ be the 3-sphere in real 4-space. We can stretch B so that it covers 
a hemisphere of 0.Then d results when we paste antipodal pairs in @, since B results 
when we paste first those pairs one member of which is interior to B.  In this model 
the north and south poles of @ paste together to make a,. Now the proof that 
P w 0 in d proceeds as it did for IT. In technical terms, we have just constructed 
and then used a simply connected covering space 0 for d. 

5. Untangling cords. To exploit the fact that P - -P, and hence that 
P @ P - 0 in R ,  we must model d and loops in it one more way. Consider two 
concentric spheres; call the inner one the globe (or the wrench, or the neutron) 
and the outer one the edge of the universe. Suppose the distance between the spheres 
is 1.Cords, as many of them as we wish to attach, lie initially along radii joining the 
globe to the edge of the universe. Pack the space between the globe and the 
edge of the universe with concentric spherical shells Z,, where t~ [0, 11 meas- 
ures the distance of Z, from 2,. Each cord is attached to Z, where they meet. 
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Imagine that the shells can slide relative to each other. Let R be any loop in R start-
ing and ending at o,;suppose we manipulate the globe C ,  so that at time t it is at 
R ( t ) .  Then the cords cause the intermediate shells to record R :  at time t ,  C, is in 
configuration R ( t )  (C,). A homotopy R - Q of paths in R is a function 
f: [O,1] x [O,1] -t R satisfying the conditions listed earlier. If we now manipulate 
the shells C, so that at time s ,shell C, is at position f ( t ,  s)  (C,) we shall have deformed 
the cords, which initially recorded R ,  to a record of Q .  Thus when P is the loop 
corresponding to a full turn about an axis the homotopy P O P -0 really tells us 
that our cords can be untangled, even if we started with many more than three. 

Because P * 0 ,  no manipulation of the intermediate shells can untangle the 
cords after one full turn. It is true and slightly subtler that they cannot be untangled 
at all [6]. 

Let us close by seeing just how the particular homotopy we have studied untangles 
the cords after two full turns. To convert P O  P to 0 we first deform the second sum- 
mand P to - P ,  or, in other words, deform the result of a full right handed turn 
about L to the result of a full left handed turn. We do that by rotating L, the axis 
of the turn, in the subspace A of B,  so that it reverses its direction. In Fig. 4 we sketch 
what happens to one of the cords between C ,  and C,,,  , the one which lies initially 
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along axis A A ' .  When the globe executes a full turn about Lithe cord assumes 
position i. As i varies from 1 to 4, L irotates counterclockwise through TC radians in 
the plane of the paper. That operation simultaneously loops the pictured cord 
and all others on the right over and behind the wrench and those on the left under 
and in front. That is easier to do than to describe: try it. It really untangles cords. 
With a little practice it makes a good lecture demonstration or conversation piece, 
a magic trick which is not magic, but which retlects a fundamental yet little known 
property of the space in which we live. The analogy between the spinor spanner 
and the neutron suggests that the state of the latter depends not only on-its position 
and momentum but on which of two topologically distinct ways it is tied to its sur- 
roundings. A full turn about an axis leaves its position and momentum unchanged 
but reverses its topological relation to the rest of the universe. 
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